Abstract
|
Full-Text (PDF)
|
Full-Text (HTML)
(479 Views)
|
Highlights
• A simple and precise method has been introduced for creating Spinal Cord Injury (SCI) in mice by a novel device.
• The device consists of a body part, an immobilization piece, and a bar-shaped weight.
• Assessment of locomotor activity, tissue damage, and macrophage infiltration confirmed the capability of the new SCI method.
• Reduction of adverse spinal movements and working without any accessory elements are the key points of this new animal model of SCI.
lain Language Summary
Spinal Cord Injury (SCI) is a medical problem that can cause the permanent motor and sensory dysfunction. Traffic accidents, falls, and violence are the most frequent causes of SCI, often affecting young people. Patients and even their families may encounter other problems, including reducing life quality, psychological burden, and enormous medical costs. Despite scientific and technological advances, no effective treatment has been found for SCI. Therefore, animal models help study damage mechanisms and evaluate novel treatment strategies. All SCI research centers require an economical and reproducible device without using complex surgical procedures by experienced surgeons to minimize variations in damage to the spinal cord. In this study, a simple, cheap, and reproducible novel instrument for SCI in-duction is introduced. The instrument consists of various parts, including a body part, an immobilization piece, and a bar-shaped weight. An 8-g weight was used for 5, 10, or 15 minutes to inflict injury to the spinal cord. Behavioral and tissue studies indicated that SCI could be induced in rodents in different severity without other elements. This instru-ment can be used in future investigations for SCI studies, including tissue engineering, stem cell therapy, and drugs delivery to access effective treatment.