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Introduction: The Lateral Hypothalamus (LH) has long been known to implicate the addictive 
behaviors of drug abuse. The Ventral Tegmental Area (VTA) is a major area of the mesolimbic 
system that is strongly involved in developing morphine sensitization. The current study aimed 
to examine the role of intra-VTA orexin receptors in the LH stimulation-induced sensitization 
to the antinociceptive response of morphine. 

Methods: A total of 114 adult male Wistar rats underwent unilateral implantation of two 
separate cannulae in the LH and VTA using the stereotaxic apparatus. Intra-VTA administration 
of the Orexin-1 (OX1) and Orexin-2 (OX2) receptor antagonists, SB334867 and TCS OX2 
29 (1, 3, and 10 nM/0.3 μL DMSO), respectively, was performed 5 min before concurrent 
microinjection of carbachol (250 nM/0.5 μL saline) into the LH and an ineffective dose of 
morphine (0.5 mg/kg; SC) during a 3-day sensitization period. After a 5-day free drug period, 
on the ninth day, for assessing the morphine sensitization, the nociceptive response was 
measured before and after morphine injection (1 mg/kg; SC) using the tail-flick test. 

Results: The results revealed that the concurrent administration of carbachol (250 nM) and 
an ineffective dose of morphine significantly induced morphine sensitization. Besides, the 
blockade of OX1 and OX2 receptors within the VTA before intra-LH carbachol injection 
attenuated morphine sensitization. 

Conclusion: These findings suggest that LH stimulation potentiates the sensitization to 
morphine antinociceptive responses via affecting orexin receptors located in the VTA. 
However, OX1 receptors contribute more than OX2 receptors in the VTA to morphine 
sensitization in rats. 
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1. Introduction 

orphine is a valuable drug in the clinic 
for its analgesic properties. Morphine 
use is, however, limited because of 
its addictive nature. Development of 
behavioral sensitization, defined as an 

enhanced systemic reaction to the same dose of mor-
phine or any other addictive substance, occurs in re-
sponse to continuous and intermittent administration of 
these drugs in rodents (Lv et al., 2019; Reisi, Bani-Ar-
dalan, Zarepour, & Haghparast, 2014; Vezina & Leyton, 
2009). Several neurotransmitters and neuromodulators 
are involved in opioid-induced behavioral sensitization, 
including dopamine (Charmchi, Zendehdel, & Hagh-
parast, 2016), glutamate (Sepehrizadeh, Sahebgharani, 
Ahmadi, Shapourabadi, Bozchlou, & Zarrindast, 2008), 
serotonin (Pang et al., 2016), and orexin (Łupina et al., 
2018; Razavi, Karimi, Bani-Ardalan, & Haghparast, 
2014). The Ventral Tegmental Area (VTA) and Nucleus 
Accumbens (NAc) play a predominant role in develop-
ing morphine sensitization via dopamine receptor acti-
vation (Reisi et al., 2014). Orexinergic neurons located 
in the Lateral Hypothalamus (LH) evoke their effects 

via two metabotropic receptors: Orexin receptor type 
1 (OX1) and Orexin receptor type 2 (OX2), which are 
widely distributed in the various brain areas (Marcus & 
Elmquist, 2006; Sakurai et al., 1998). The lateral hypo-
thalamus sends orexinergic projections all over the me-
solimbic dopaminergic pathway such as VTA (Fadel & 
Deutch, 2002), a cerebral region that is highly involved 
in behavioral sensitization (Borgland, Taha, Sarti, Fields, 
& Bonci, 2006), and chemical stimulation of LH has 
been shown to involve in pain modulation via acting 
on orexin receptors located in this area (Ezzatpanah, 
Babapour, & Haghparast, 2016). Generally, the meso-
corticolimbic pathway is a dopaminergic projection de-
rived from VTA into the NAc and the prefrontal cortex, 
which participates in addictive behaviors (Stott & Ang, 
2013). Our laboratory’s prior work revealed that chemi-
cal stimulation of LH potentiated morphine sensitization 
in the Conditioned Place Preference (CPP) paradigm 
through the OX1 receptors located in the VTA region in 
rats’ brain (Razavi et al., 2014). Although many studies 
have been performed in the context of morphine sensiti-
zation, few have indicated the alterations of antinocicep-
tive effects of morphine in morphine-sensitized animals 
(Zarrindast, Asgari-Afshar, & Sahebgharani, 2007). So 

Highlights 

● LH stimulation enhances sensitization to the ineffective dose of morphine 

● Intra-VTA OX1 receptor involves in morphine sensitization-induced by LH stimulation

● Intra-VTA OX2 receptor involves in morphine sensitization-induced by LH stimulation

Plain Language Summary 

Behavioral sensitization, such as sensitization to the antinociceptive response of drugs, which defines as an enhanced 
systemic reaction to the same dose of addictive drugs, occurs in response to continuous and intermittent administra-
tion of these drugs. The Lateral Hypothalamus (LH) sends the orexinergic projections to the various regions of the 
brain and stimulation of LH induces sensitization to the antinociceptive response of morphine. The Ventral tegmental 
area (VTA) is a region of the brain that is strongly involved in developing morphine sensitization and receives orex-
inergic projections of LH. The current study aimed to examine the role of orexin receptors within the VTA in the LH 
stimulation-induced sensitization to the antinociceptive response of morphine in rats. In this study orexin-1 (OX1) and 
orexin-2 (OX2) receptors within the VTA region were blocked using their antagonists.  After five minutes chemical 
stimulation of LH was done using carbachol microinjection into this area and ineffective dose of morphine was injected 
subcutaneously. These interventions were done for three consecutive days as sensitization period. After a 5-day free 
drug period, on the ninth day, for assessing the morphine sensitization, the nociceptive response was measured. The 
results revealed that the concurrent administration of LH stimulation and an ineffective dose of morphine significantly 
induced morphine sensitization. Besides, the blockade of OX1 and OX2 receptors within the VTA before LH stimula-
tion attenuated sensitization to the antinociceptive response of morphine. Therefore, the orexinergic system plays an 
important role in morphine sensitization and can be considered as one of the potential targets to increase the analgesic 
effect of morphine.
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considering that the mesolimbic dopamine system has 
a crucial role in the induction of morphine sensitization 
and given the distribution of orexinergic projections 
all over the mesolimbic system, including the VTA, it 
seems essential to study the role of LH in the induction 
of sensitization to morphine antinociceptive responses 
and the potential role of intra-VTA OX1 and OX2 recep-
tors in this phenomenon. 

2. Methods 

Study animals 

A total of 114 adult male Wistar rats (Pasteur Institute, 
Tehran, Iran; 220-250 gr) were randomly chosen and as-
signed into 18 groups (n=6-8 in each group). Animals 
were maintained in a 12/12 h light/dark cycle with food 
and water ad libitum. All experimental protocols were 
carried out in accordance with the Guide for the Care 
and Use of Laboratory Animals (National Institutes of 
Health Publication No. 80-23, revised 1996) and were 
confirmed by the Research and Ethics Committee of 
Shahid Beheshti University of Medical Sciences (IR.
SBMU.PHNS.REC.1398.133), Tehran, Iran. 

Surgical preparation 

The animals were anesthetized with Intraperitoneal 
(IP) administration of xylazine 2% (10 mg/kg) and ket-
amine 10% (100 mg/kg) mixture and placed in a stereo-
taxic instrument (Stoelting, USA). Two stainless steel 
guide cannulae (23-gauge, 11 mm in length) were im-
planted unilaterally (right or left side) into the LH and 
VTA injection sites and anchored with a steel screw. The 
incision was closed with dental cement. The coordinates 
for the VTA region according to the Paxinos and Watson 
rat brain atlas (Paxinos & Watson, 1982) were as fol-
lows: Anteroposterior (AP) = 4.8 mm caudal to bregma, 
Lateral to midline (Lat) = ±0.9 mm, Dorsoventral (DV) 
= 8.3 mm ventral from the skull surface. Also, the coor-
dinates for LH were as follows: AP = - 2.92 mm, Lat = 
± 1 mm and DV = 8.1 mm ventral to the skull surface. 
Rats were then allowed to recover for one week before 
the beginning of experiments. 

Drugs and drug administration 

In this study, the following drugs were used: morphine 
sulfate dissolved in 0.9% sterile saline (Temad, Tehran, 
Iran), different solutions (62.5, 125, and 250 nM) of car-
bachol (Sigma-Aldrich, USA), which were dissolved in 
0.5 μL saline. Different doses of SB334867 (1, 3, and 
10 nM) as an OX1 receptor antagonist or TCS OX2 29 

(1, 3, and 10 nM) as an OX2 receptor antagonist (Tocris 
Bioscience, Bristol, UK) were dissolved in 0.3 μL di-
methyl sulfoxide 12% (DMSO; Sigma-Aldrich, Germa-
ny) as a vehicle of both orexin receptor antagonists. All 
drugs or vehicle solutions were infused slowly over 60 
s. All microinjections were conducted in animals via a 
stainless-steel injector (30-gauge needle) connected to a 
1-µL Hamilton syringe via a polyethylene tube (PE-20). 

Tail-flick test 

In this study, morphine sensitization was assessed by 
the antinociceptive response of morphine. The nocicep-
tive response was measured using the tail-flick appara-
tus (Harvard Apparatus, USA). A thermal stimulus was 
applied in succession 3, 5, or 7 cm from the caudal tip 
of the tail. An automatic sensor detected the tail-flick 
response and reaction time between the onset of the 
thermal stimulus and tail-flick response recorded as Tail-
Flick Latency (TFL). The rats were tested before and 5, 
15, and 30 min after morphine injection (1 mg/kg; SC). 
The obtained value of each TFL time was calculated on 
the average of two consecutive tail-flick tests at each 
time point. The radiant heat intensity was manually set 
at 45% of the maximum intensity that yields baseline 
TFL values in 3-4 s. A cut-off time of 10 s was applied to 
avoid tissue damage. 

The TFL value was expressed as a percentage of maxi-
mal possible effect (%MPE), calculated as follows: 

%MPE=Post-drug administration latency(s)−Baseline latency(s)
Cut-off value(s)−Baseline latency(s)

×100 

Experimental design 

Briefly, animals received intra-LH carbachol after in-
tra-VTA OX1/OX2 receptor antagonists, followed by an 
ineffective dose of morphine (0.5 mg/kg; SC) for 3 con-
secutive days as a sensitization period. Then, after five 
days of free drug administration, on the ninth day, the 
tail-flick test was performed before and after the mor-
phine (1 mg/kg; SC) injection (Figure 1). 

The effect of morphine injection during sensitization 
period on the induction of morphine sensitization 

To understand the effect of morphine (5 mg/kg; SC) 
administration for three consecutive days (sensitization 
period) on the development of morphine sensitization, 
the rats received saline (1 mL/kg; SC) or morphine (5 
mg/kg; SC) during sensitization period. After five days 
of free drug administration, on the ninth day, the tail-
flick test was performed before and after morphine in-
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jection. To determine the appropriate dose of morphine 
for induction of morphine sensitization, different doses 
of morphine (0.1, 0.5, and 1 mg/kg; SC) were injected 
before the tail-flick test. 

The effect of co-administration of carbachol and in-
effective dose of morphine during the sensitization 
period on the induction of morphine sensitization 

To elucidate the role of intra-LH administration of carba-
chol in the development of morphine sensitization, during 
a 3-day sensitization period, different doses of carbachol 
(62.5, 125, and 250 nM/0.5 µL saline) were microinjected 
just before the injection of saline (1 mL/kg; SC) or the 
ineffective dose of morphine (0.5 mg/kg; SC) during sen-
sitization period. After five days of free drug administra-
tion, on the ninth day, the tail-flick test was performed 
before and after the morphine (1 mg/kg; SC) injection. 

The role of OX1 and OX2 receptors within the 
VTA in the LH stimulation-induced morphine 
sensitization 

In this set of experiments, different doses of SB334867 
(1, 3, and 10 nM) as an OX1 receptor antagonist or TCS 
OX2 29 (1, 3, and 10 nM/0.3 µL DMSO) as an OX2 
receptor antagonist were microinjected 5 minutes be-
fore concurrent administration of the ineffective dose 
of morphine (0.5 mg/kg; SC) and intra-LH administra-

tion of the highest dose of carbachol (250 nM/0.5 µL 
saline) during 3-day sensitization period to evaluate the 
role OX1 and OX2 receptors within the VTA in the LH 
stimulation-induced morphine sensitization. After five 
days of free drug administration, on the ninth day, a tail-
flick test was performed before and after the morphine (1 
mg/kg; SC) injection. 

Histological verification 

After completing the experiments, the animals were anes-
thetized with a ketamine and xylazine mixture. Animals 
were then transcardially perfused with 0.9% normal saline 
and formaldehyde solution (10%). After removing the rat 
brains, 50-μm transverse brain sections were prepared, 
and the location of the guide cannula tips was compared 
with the VTA coordinates in the rat brain atlas (Paxinos 
& Watson, 2006). The animals with the wrong cannulae 
placements were excluded from the data analysis. 

Statistical analysis 

All statistical analyses were performed using com-
mercially available software GraphPad Prism® 6.0 
(GraphPad Software, CA, USA). Data were expressed 
as mean ± SEM (standard error of the mean). The ob-
tained %MPE at any time set intervals in all groups were 
subjected to a 1-way Analysis of Variance (ANOVA) 

Figure 1. A Schematic timeline of the experimental protocol

Carbachol was dissolved in 0.5 µL saline and was microinjected into the lateral hypothalamus region in the rat’s brain. SB334867 and 
TCS OX2 29 were dissolved in 0.3 µL DMSO (12%) and were microinjected into the ventral tegmental area region in the rat’s brain. 

TF: Tail-Flick; SC: Subcutaneous.
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followed by the Dunnett or Newman-Keuls multiple 
comparisons test. P values less than 0.05 were consid-
ered significant statistically. 

3. Results 

The effect of morphine injection during sensitiza-
tion period on the induction of morphine sensiti-
zation

One-way ANOVA followed by the Dunnett test (F6, 48= 
21.51, P<0.0001; Figure 2) showed that morphine ad-
ministration (5 mg/kg; SC) for three consecutive days 
(sensitization period) enhanced sensitization to the an-
tinociceptive response of morphine in animals which 
received morphine 1 mg/kg but not 0.1 or 0.5 mg/kg 
before the tail-flick test. Thus, 1 mg/kg of morphine was 
selected as the appropriate dose for the rest of the experi-
ments. The mean percentage of maximal possible effect 
(%MPE) was considered an antinociceptive index. As 
shown in Figure 2, saline (1 mL/kg; SC) administration 
instead of morphine (5 mg/kg; SC) during the sensitiza-
tion period could not induce morphine sensitization in 
animals that received different doses of morphine (0.1, 
0.5, or 1 mg/kg; SC) before the nociceptive test. 

The effect of concomitant administration of car-
bachol and morphine during the sensitization 
period on the induction of morphine sensitization 

One-way ANOVA followed by the Newman-Keuls 
multiple comparisons test indicated that intra-LH micro-
injection of carbachol (125 and 250 nM/ 0.5 μL saline) 
just before injection of an ineffective dose of morphine 
(0.5 mg/kg; SC) during the sensitization period enhanced 
sensitization to the antinociceptive response of morphine 
(F3, 23=16.63, P<0.0001; Figure 3, right panel). In con-
trast, 62.5 nM of carbachol could not induce morphine 
sensitization. As shown in Figure 3, 1-way ANOVA fol-
lowed by the Dunnett test (F3, 26=0.1277, P=0.9427; Left 
panel) indicated that concurrent administration of saline 
(1 mL/kg; SC) and different doses of intra-LH carbachol 
(62.5, 125, and 250 nM/ 0.5 μL saline) for three consecu-
tive days could not induce sensitization to the antinoci-
ceptive response of morphine (1 mg/kg; SC) measured 
by the tail-flick test. 

The effect of Intra-VTA Injection of OX1 recep-
tor antagonist, SB334867 on the LH stimulation-
Induced morphine sensitization 

Figure 2. Effect of morphine administration during the sensitization period on the induction of morphine sensitization mea-
sured by Tail-Flick Test 

Three consecutive days (sensitization period) of morphine administration (5 mg/kg; SC) followed by five days of no drug administra-
tion enhanced sensitization to the antinociceptive response of morphine (1 mg/kg; SC). The percentage mean of maximal possible 
effect (%MPE) was considered an antinociceptive index. Injection of saline instead of morphine did not induce morphine sensitization 
at any doses of morphine. Each point shows the mean ± SEM for seven rats in each group. 

***P<0.001 compared to the saline-control group. 
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One-way ANOVA followed by the Dunnett test in-
dicated that the blockade of OX1 receptors within the 
VTA by SB334867 before intra-LH microinjection of 
carbachol could decrease the morphine sensitization-
induced by co-administration of carbachol (250 nM/0.5 
µL saline) and ineffective dose of morphine (0.5 mg/kg; 
SC) (F5, 41=14.37, P<0.0001; Figure 4). However, intra-
VTA administration of the highest dose of SB334867 
(10 nM/0.3 µL DMSO) alone did not induce morphine 
sensitization measured by the tail-flick test. Moreover, 
statistical analysis showed that intra-VTA administration 
of SB334867 (3 and 10 nM/0.3 µL DMSO) could block 
the morphine sensitization induced by carbachol micro-
injection compared to the group which received intra-
VTA DMSO instead of SB334867 (Figure 4). 

The effect of Intra-VTA injection of OX2 receptor 
antagonist, TCS OX2 29 on the LH stimulation-
induced morphine sensitization 

As shown in Figure 5, one-way ANOVA followed by 
the Dunnett test indicated that intra-VTA microinjec-
tion of OX2 receptor antagonist, TCS OX2 29 before 
co-administration of carbachol (250 nM/0.5 µL saline) 
and ineffective dose of morphine could decrease the 
morphine sensitization (F5, 40=16.5, P<0.0001; Figure 5). 
However, intra-VTA administration of the highest dose 
of TCS OX2 29 (10 nM/0.3 µL DMSO) alone did not 
induce morphine sensitization. Besides, 1-way ANOVA 
showed that only the highest dose of TCS OX2 29 (10 
nM/0.3 µL DMSO) could block the morphine sensitiza-
tion induced by carbachol microinjection compared to 
the group which received intra-VTA DMSO instead of 
TCS OX2 29 in this set of experiments (Figure 5). 

4. Discussion 

The current study demonstrates the contribution of 
OX1 and OX2 receptors within the VTA in morphine 
sensitization induced by LH’s chemical stimulation be-
fore the subcutaneous injection of the ineffective dose of 

Figure 3. Effect of chemical stimulation of the Lateral Hypothalamus (LH) by carbachol before morphine injection during sen-
sitization period on the induction of morphine sensitization measured by Tail-Flick Test

Intra-LH microinjection of carbachol just before injection of an ineffective dose of morphine (0.5 mg/kg; SC) during the sensitization 
period (right panel) enhanced sensitization to the antinociceptive response of morphine. In contrast, concurrent administration of 
saline (1 mL/kg; SC) and different doses of intra-LH carbachol during the sensitization period (left panel) could not induce morphine 
sensitization. Each point shows the Mean±SEM for 6-7 rats in each group. 

P<0.01 and ***P<0.001 compared to the saline-control group. P<0.01 and †††P<0.001 compared to the respective vehicle groups.
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morphine. The significant findings of this study were as 
follows: 1) concurrent microinjection of carbachol into 
the LH and subcutaneous injection of morphine for three 
consecutive days as the sensitization period, enhanced 
sensitivity to the antinociceptive effects of morphine; 
2) blockade of the OX1 and OX2 receptors within the 
VTA during sensitization period, significantly reduced 
the morphine sensitization induced by co-administration 
of carbachol and morphine, and 3) The contribution of 
OX1 receptors in the VTA was more predominant than 
that of OX2 receptors to morphine sensitization. 

The present study indicates that subcutaneous injec-
tion of morphine (5 mg/kg) for three consecutive days 
followed by five days of free-morphine administration 
induced sensitization to the antinociceptive response 
of morphine (1 mg/kg but not morphine 0.1 or 0.5 mg/
kg). In this respect, certain similar studies indicated that 
repeated administration of morphine (5 mg/kg; SC) for 
three consecutive days followed by five days of washout 

increased antinociceptive responses of morphine (1 mg/
kg) in sensitized animals (Charmchi et al., 2016; Mo-
laei, Sanati, Zaringhalam, & Haghparast, 2014; Reisi 
et al., 2014). On the other hand, it has been reported 
that repeated morphine administration (20 mg/kg; IP) 
for seven days (Roeckel et al., 2017) or a regimen of 
three days of morphine (20 mg/kg; IP) followed by a 
five days washout led to opioid-induced hyperalgesia 
in mice (Ahmadi, Golbaghi, Azizbeigi, & Esmailzadeh, 
2014). This discrepancy stems from the dosage and du-
ration of morphine administration. The obtained results 
also showed that intra-LH microinjection of carbachol 
for three consecutive days followed by five days of no 
drug administration could not potentiate morphine sen-
sitization, while co-administration of intra-LH carbachol 
and ineffective dose of morphine (0.5 mg/kg; SC) dur-
ing the sensitization period enhanced sensitivity to the 
antinociceptive response of morphine. Previously it has 
been shown that chemical stimulation of LH potentiated 
morphine sensitization in the CPP paradigm (Razavi et 

Figure 4. The effect of intra-VTA injection of SB334867 on the morphine sensitization-induced by co-administration of carba-
chol and morphine

Intra-VTA administration of OX1 receptor antagonist, SB334867 before co-administration of intra-LH carbachol (250 nM/0.5 µL saline) 
and ineffective dose of morphine (0.5 mg/kg; SC) during the sensitization period could decrease the morphine sensitization-induced 
by concurrent administration of carbachol and morphine. Morphine sensitization was measured by the tail-flick test. Each point shows 
the Mean±SEM for 7 rats in each group. 

**P<0.01 and ***P<0.001 compared to the saline-control group. †P<0.05 and †††P<0.001 compared to the DMSO group.
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al., 2014), and orexinergic neurons of the LH, and not 
nearby Melanin-Concentrating Hormone (MCH) neu-
rons, have µ-opioid receptors and implicate in the addic-
tive behaviors in response to chronic morphine adminis-
tration (Georgescu et al., 2003). Intracerebroventricular 
(ICV) injection of SB-334867 as a selective OX1 recep-
tor antagonist before subcutaneous injection of morphine 
has been reported to decrease morphine-induced antino-
ciceptive response in formalin test (Azhdari-Zarmehri, 
Esmaeili, Sofiabadi, & Haghdoost-Yazdi, 2013). Steiner 
et al. reported that blockade of both orexin receptors by 
oral gavage of almorexant decreased morphine-induced 
sensitization to the locomotor activity in sensitized rats 
(Steiner, Lecourt, & Jenck, 2013). Therefore, some ef-
fects of morphine administration mediate by orexin 
receptors. The results of the present study revealed that 
chemical stimulation of LH induced morphine sensitiza-
tion by affecting 

OX1 and OX2 receptors within the VTA. There is a 
dense projection of orexin neurons from the LH to the 

dopaminergic and non-dopaminergic neurons in the 
VTA. Accordingly, single-unit extracellular and whole-
cell patch-clamp recordings indicated that orexin depo-
larizes these neurons and increases the firing frequency 
of either group of neurons (Korotkova, Sergeeva, O. A., 
Eriksson, Haas, & Brown, 2003). Functional interplay 
between orexin and dopamine neurons of the mesolim-
bic system has been reported to implicate rewarding ef-
fects and hyperlocomotion induced by morphine (Nar-
ita et al., 2006). 

Several lines of the study reveal that the induction of 
drug sensitization is not only associated with the release 
of dopamine (Lv et al., 2019; Stout et al., 2016) but is 
also pertinent to the alterations in the sensitivity of do-
pamine receptors in the mesolimbic structures, including 
the NAc, VTA, striatum, and hippocampus (for review, 
see Listos, Łupina, Talarek, Mazur, Orzelska-Górka, & 
Kotlińska, 2019). Besides, the blockade of dopamine re-
ceptors within the VTA and NAc prevents sensitization 
to the antinociceptive response of morphine (Reisi et al., 

Figure 5. The effect of intra-VTA injection of TCS OX2 29 on the morphine sensitization-induced by co-administration of car-
bachol and morphine

 Intra-VTA administration of OX2 receptor antagonist, TCS OX2 29 (10 nM/0.3 µL DMSO) before co-administration of intra-LH car-
bachol (250 nM/0.5 µL saline) and ineffective dose of morphine (0.5 mg/kg; SC) during the sensitization period could decrease the 
morphine sensitization by concurrent administration of carbachol and morphine. Morphine sensitization was measured by the tail-
flick test. Each point shows the Mean±SEM for 6-8 rats in each group. 

*P<0.05 and ***P<0.001 compared to the saline-control group. †P<0.05 compared to the DMSO group.
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2014). It has been reported that the levels of dopamine 
and its major metabolites in the NAc are markedly in-
creased by intra-VTA administration of both orexin A and 
orexin B (Narita et al., 2006). Moreover, orexin A can 
induce its antinociceptive response by activating intra-
VTA orexinergic receptors, which activate the dopami-
nergic inputs to the NAc in rats (Yazdi-Ravandi, Razavi, 
Haghparast, Goudarzvand, & Haghparast, 2014). It has 
been demonstrated that microglial activation following 
chronic administration of morphine leads to disruption 
of the VTA dopaminergic circuitry (Taylor et al., 2016). 
Besides, Glial Fibrillary Acidic Protein (GFAP), an im-
portant marker of astrocyte activation, increased the stria-
tum and the prefrontal cortex in morphine sensitized rats. 
However, intraperitoneal administration of SB-334867 
reversed these alterations (Łupina et al., 2018). So it 
seems that the interaction of orexin and the mesolimbic 
dopamine system plays a crucial role in inducing sensiti-
zation to the antinociceptive response of morphine.

5. Conclusion 

Summing up, this study confirms and extends the con-
tribution of OX1/OX2 receptors within the VTA in sen-
sitization to the antinociceptive response of morphine-
induced by concomitant intra-LH administration of 
carbachol and subcutaneous injection of morphine.
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