Volume 9, Issue 4 (July & August 2018 2018)                   BCN 2018, 9(4): 227-240 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbarian B, Erfanian A. Automatic Seizure Detection Based on Nonlinear Dynamical Analysis of EEG Signals and Mutual Information. BCN 2018; 9 (4) :227-240
URL: http://bcn.iums.ac.ir/article-1-923-en.html
1- Iran Neural Technology Research Centre, Iran University of Science and Technology, Tehran, Iran.
2- Department of Bioelectrical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.
Abstract:  

Introduction: In this paper, nonlinear dynamical analysis based on Recurrence Quantification Analysis (RQA) is employed to characterize the nonlinear EEG dynamics. RQA can provide useful quantitative information on the regular, chaotic, or stochastic property of the underlying dynamics. 
Methods: We use the RQA-based measures as the quantitative features of the nonlinear EEG dynamics. Mutual Information (MI) was used to find the most relevant feature subset out of RQA-based features. The selected features were fed into an artificial neural network for grouping of EEG recordings to detect ictal, interictal, and healthy states. The performance of the proposed procedure was evaluated using a database for different classification cases.
Results: The combination of five selected features based on MI achieved 100% accuracy, which demonstrates the superiority of the proposed method.
Conclusion: The results showed that the nonlinear dynamical analysis based on Rcurrence Quantification Analysis (RQA) can be employed as a suitable approach for characterizing the nonlinear EEG dynamics and detecting the seizure.

Type of Study: Original | Subject: Computational Neuroscience
Received: 2017/03/3 | Accepted: 2017/10/4 | Published: 2018/07/1

References
1. Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205-11. [DOI:10.1109/TBME.2006.886855] [PMID] [DOI:10.1109/TBME.2006.886855]
2. Alam, S. S., & Bhuiyan, M. I. H. (2013). Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE Journal of Biomedical and Health Informatics, 17(2), 312-8. [DOI:10.1109/JBHI.2012.2237409] [PMID] [DOI:10.1109/JBHI.2012.2237409]
3. Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). [DOI:10.1103/physreve.64.061907] [DOI:10.1103/PhysRevE.64.061907]
4. Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135-42. [DOI:10.1109/TITB.2011.2181403] [PMID] [DOI:10.1109/TITB.2011.2181403]
5. Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50. [DOI:10.1016/S0167-2789(97)00118-8] [DOI:10.1016/S0167-2789(97)00118-8]
6. Cerf, R., Amri, M. E., Ouasdad, E. H., & Hirsch, E. (1999). Non-linear analysis of epileptic seizures I. Correlation-dimension measurements for absence epilepsy and near-periodic signals. Biological Cybernetics, 80(4), 247-58. [DOI:10.1007/s004220050522] [PMID] [DOI:10.1007/s004220050522]
7. Chen, T. J., Chiueh, H., Liang, S. F., Chang, S. T., Jeng, C., Hsu, Y. C., et al. (2011). The implementation of a low-power biomedical signal processor for real-time epileptic seizure detection on absence animal models. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 613-21. [DOI:10.1109/JETCAS.2011.2174472] [DOI:10.1109/JETCAS.2011.2174472]
8. D'Alessandro, M., Esteller, R., Vachtsevanos, G., Hinson, A., Echauz, J., & Litt, B. (2003). Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: A report of four patients. IEEE Transactions on Biomedical Engineering, 50(5), 603-15. [DOI:10.1109/TBME.2003.810706] [PMID] [DOI:10.1109/TBME.2003.810706]
9. Easwaramoorthy, D., & Uthayakumar, R. (2011). Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. Journal of Computational Science, 2(1), 31-8. [DOI:10.1016/j.jocs.2011.01.001] [DOI:10.1016/j.jocs.2011.01.001]
10. Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4(9), 973–7. [DOI:10.1209/0295-5075/4/9/004] [DOI:10.1209/0295-5075/4/9/004]
11. Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134-40. [DOI:10.1103/PhysRevA.33.1134] [DOI:10.1103/PhysRevA.33.1134]
12. Gao, J. B., Cao, Y., Gu, L., Harris, J. G., & Principe, J. C. (2003). Detection of weak transitions in signal dynamics using recurrence time statistics. Physics Letters A, 317(1), 64-72. [DOI:10.1016/j.physleta.2003.08.018] [DOI:10.1016/j.physleta.2003.08.018]
13. Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2007). Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54(9), 1545-51. [DOI:10.1109/TBME.2007.891945] [PMID] [DOI:10.1109/TBME.2007.891945]
14. Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2008). Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2), 512-8. [DOI:10.1109/TBME.2007.905490] [PMID] [DOI:10.1109/TBME.2007.905490]
15. Güler, N. F., Übeyli, E. D., & Güler, I. (2005). Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29(3), 506-14. [DOI:10.1016/j.eswa.2005.04.011] [DOI:10.1016/j.eswa.2005.04.011]
16. Guo, L., Rivero, D., Dorado, J., Munteanu, C. R., & Pazos, A. (2011). Automatic feature extraction using genetic programming: An application to epileptic EEG classification. Expert Systems with Applications, 38(8), 10425-36. [DOI:10.1016/j.eswa.2011.02.118] [DOI:10.1016/j.eswa.2011.02.118]
17. Guo, L., Rivero, D., Dorado, J., Rabunal, J. R., & Pazos, A. (2010). Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. Journal of Neuroscience Methods, 191(1), 101-9. [DOI:10.1016/j.jneumeth.2010.05.020] [PMID] [DOI:10.1016/j.jneumeth.2010.05.020]
18. Iasemidis, L. D., Shiau, D. S., Chaovalitwongse, W., Sackellares, J. C., Pardalos, P. M., Principe, J. C., et al. (2003). Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5), 616-27. [DOI:10.1109/TBME.2003.810689] [PMID] [DOI:10.1109/TBME.2003.810689]
19. Iscan, Z., Dokur, Z., & Demiralp, T. (2011). Classification of electroencephalogram signals with combined time and frequency features. Expert Systems with Applications, 38(8), 10499-505. [DOI:10.1016/j.eswa.2011.02.110] [DOI:10.1016/j.eswa.2011.02.110]
20. Kumar, Y., Dewal, M. L., & Anand, R. S. (2014). Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing, 133, 271-9. [DOI:10.1016/j.neucom.2013.11.009] [DOI:10.1016/j.neucom.2013.11.009]
21. Kwak, N., & Choi, C. H. (2002). Input feature selection for classification problems. IEEE Transactions on Neural Networks, 13(1), 143-59. [DOI:10.1109/72.977291] [PMID] [DOI:10.1109/72.977291]
22. Li, X., Ouyang, G., Yao, X., & Guan, X. (2004). Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis. Physics Letters A, 333(1), 164-71. [DOI:10.1016/j.physleta.2004.10.028] [DOI:10.1016/j.physleta.2004.10.028]
23. Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5), 237-329. [DOI:10.1016/j.physrep.2006.11.001] [DOI:10.1016/j.physrep.2006.11.001]
24. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical Review E, 66(2), 026702. [DOI:10.1103/PhysRevE.66.026702] [PMID] [DOI:10.1103/PhysRevE.66.026702]
25. Mukherjee, S., Palit, S. K., Banerjee, S., Ariffin, M. R. K., Rondoni, L., & Bhattacharya, D. K. (2015). Can complexity decrease in congestive heart failure?. Physica A: Statistical Mechanics and its Applications, 439, 93-102. [DOI:10.1016/j.physa.2015.07.030] [DOI:10.1016/j.physa.2015.07.030]
26. Naghsh-Nilchi, A. R., & Aghashahi, M. (2010). Epilepsy seizure detection using eigen-system spectral estimation and Multiple Layer Perceptron neural network. Biomedical Signal Processing and Control, 5(2), 147-57. [DOI:10.1016/j.bspc.2010.01.004] [DOI:10.1016/j.bspc.2010.01.004]
27. Nair, A., & Kiasaleh, K. (2014). Function mapped trajectory estimation for ECG sets. Biomedical Engineering Letters, 4(3), 277-84. [DOI:10.1007/s13534-014-0145-z] [DOI:10.1007/s13534-014-0145-z]
28. Niknazar, M., Mousavi, S. R., Motaghi, S., Dehghani, A., Vahdat, B. V., Shamsollahi, M. B., et al. (2013). A unified approach for detection of induced epileptic seizures in rats using ECoG signals. Epilepsy & Behavior, 27(2), 355-64. [DOI:10.1016/j.yebeh.2013.01.028] [PMID] [DOI:10.1016/j.yebeh.2013.01.028]
29. Niknazar, M., Mousavi, S. R., Vahdat, B. V., & Sayyah, M. (2013). A new framework based on recurrence quantification analysis for epileptic seizure detection. IEEE Journal of BioMedical and Health Informatics, 17(3), 572-8. [DOI:10.1109/JBHI.2013.2255132] [PMID] [DOI:10.1109/JBHI.2013.2255132]
30. Orhan, U., Hekim, M., & Ozer, M. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications, 38(10), 13475-81. [DOI:10.1016/j.eswa.2011.04.149] [DOI:10.1016/j.eswa.2011.04.149]
31. Osorio, I., Zaveri, H. P., Frei, M. G., & Arthurs, S. (2016). Epilepsy: The intersection of neurosciences, biology, mathematics, engineering, and physics. Boca Raton, Florida: CRC Press.
32. Ouyang, G., Li, X., Dang, C., & Richards, D. A. (2008). Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats. Clinical Neurophysiology, 119(8), 1747-55. [DOI:10.1016/j.clinph.2008.04.005] [PMID] [DOI:10.1016/j.clinph.2008.04.005]
33. Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomedical Engineering Online, 10(1), 38. [DOI:10.1186/1475-925X-10-38] [PMID] [PMCID] [DOI:10.1186/1475-925X-10-38]
34. Pachori, R. B. (2008). Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing, 2008, Article ID: 293056. [DOI:10.1155/2008/293056] [DOI:10.1155/2008/293056]
35. Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373-81. [DOI:10.1016/j.cmpb.2011.03.009] [PMID] [DOI:10.1016/j.cmpb.2011.03.009]
36. Page, A., Sagedy, C., Smith, E., Attaran, N., Oates, T., & Mohsenin, T. (2015). A flexible multichannel EEG feature extractor and classifier for seizure detection. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(2), 109-13. [DOI:10.1109/TCSII.2014.2385211] [DOI:10.1109/TCSII.2014.2385211]
37. Peker, M., Sen, B., & Delen, D. (2016). A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE Journal of Biomedical and Health Informatics, 20(1), 108-18. [DOI:10.1109/JBHI.2014.2387795] [PMID] [DOI:10.1109/JBHI.2014.2387795]
38. Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226-38. [DOI:10.1109/TPAMI.2005.159] [PMID] [DOI:10.1109/TPAMI.2005.159]
39. Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N. E., Fernández, I. S., Klehm, J., et al. (2014). Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy & Behavior, 37, 291-307. [DOI:10.1016/j.yebeh.2014.06.023] [PMID] [DOI:10.1016/j.yebeh.2014.06.023]
40. Riaz, F., Hassan, A., Rehman, S., Niazi, I. K., & Dremstrup, K. (2016). EMD-based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1), 28-35. [DOI:10.1109/TNSRE.2015.2441835] [PMID] [DOI:10.1109/TNSRE.2015.2441835]
41. Shafiul Alam, S. M., & Bhuiyan, M. I. H. (2013). Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE Journal of Biomedical and Health Informaticas, 17(2), 313-8. [DOI:10.1109/JBHI.2012.2237409.] [PMID] [DOI:10.1109/JBHI.2012.2237409]
42. Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288-95. [DOI:10.1109/TITB.2006.884369] [PMID] [DOI:10.1109/TITB.2006.884369]
43. Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084-93. [DOI:10.1016/j.eswa.2006.02.005] [DOI:10.1016/j.eswa.2006.02.005]
44. Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications, 37(12), 8659-66. [DOI:10.1016/j.eswa.2010.06.065] [DOI:10.1016/j.eswa.2010.06.065]
45. Temko, A., Nadeu, C., Marnane, W., Boylan, G., & Lightbody, G. (2011). EEG signal description with spectral-envelope-based speech recognition features for detection of neonatal seizures. IEEE Transactions on Information Technology in Biomedicine, 15(6), 839-47. [DOI:10.1109/TITB.2011.2159805] [PMID] [PMCID] [DOI:10.1109/TITB.2011.2159805]
46. Thomas, E. M., Temko, A., Marnane, W. P., Boylan, G. B., & Lightbody, G. (2013). Discriminative and generative classification techniques applied to automated neonatal seizure detection. IEEE Journal of Biomedical and Health Informatics, 17(2), 297-304. [DOI:10.1109/JBHI.2012.2237035] [PMID] [DOI:10.1109/JBHI.2012.2237035]
47. Thomasson, N., Hoeppner, T. J., Webber, C. L., & Zbilut, J. P. (2001). Recurrence quantification in epileptic EEGs. Physics Letters A, 279(1), 94-101. [DOI:10.1016/S0375-9601(00)00815-X] [DOI:10.1016/S0375-9601(00)00815-X]
48. Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine, 13(5), 703-10. [DOI:10.1109/TITB.2009.2017939] [PMID] [DOI:10.1109/TITB.2009.2017939]
49. Übeyli, E. D. (2009). Statistics over features: EEG signals analysis. Computers in Biology and Medicine, 39(8), 733-41. [DOI:10.1016/j.compbiomed.2009.06.001] [PMID] [DOI:10.1016/j.compbiomed.2009.06.001]
50. Van Drongelen, W., Nayak, S., Frim, D. M., Kohrman, M. H., Towle, V. L., Lee, H. C., et al. (2003). Seizure anticipation in pediatric epilepsy: Use of Kolmogorov entropy. Pediatric Neurology, 29(3), 207-13. [DOI:10.1016/S0887-8994(03)00145-0] [DOI:10.1016/S0887-8994(03)00145-0]
51. Wang, D., Miao, D., & Xie, C. (2011). Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Systems with Applications, 38(11), 14314-20. [DOI:10.1016/j.eswa.2011.05.096] [DOI:10.1016/j.eswa.2011.05.096]
52. Wang, N., & Lyu, M. R. (2015). Extracting and selecting distinctive EEG features for efficient epileptic seizure prediction. IEEE Journal of Biomedical and Health Informatics, 19(5), 1648-59. [DOI:10.1109/JBHI.2014.2358640] [PMID] [DOI:10.1109/JBHI.2014.2358640]
53. Webber, C. L., & Marwan, N. (2015). Recurrence quantification analysis. Berlin: Springer. [DOI:10.1007/978-3-319-07155-8] [DOI:10.1007/978-3-319-07155-8]
54. Wlodarczyk, B. J., Palacios, A. M., George, T. M., & Finnell, R. H. (2012). Antiepileptic drugs and pregnancy outcomes. American Journal of Medical Genetics Part A, 158(8), 2071-90. [DOI:10.1002/ajmg.a.35438] [PMID] [PMCID] [DOI:10.1002/ajmg.a.35438]
55. Yang, C., Jeannès, R. L. B., Bellanger, J. J., & Shu, H. (2013). A new strategy for model order identification and its application to transfer entropy for EEG signals analysis. IEEE Transactions on Biomedical Engineering, 60(5), 1318-27. [DOI:10.1109/TBME.2012.2234125] [PMID] [DOI:10.1109/TBME.2012.2234125]
56. Yaylali, I., Koçak, H., & Jayakar, P. (1996). Detection of seizures from small samples using nonlinear dynamic system theory. IEEE Transactions on Biomedical Engineering, 43(7), 743-51. [DOI:10.1109/10.503182] [PMID] [DOI:10.1109/10.503182]
57. Zabihi, M., Kiranyaz, S., Bahrami Rad, A., Katsaggelos, A. K., Gabbouj, M., & Ince, T. (2016). Analysis of high-dimensional phase space via Poincaré section for patient-specific seizure detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(3), 386-98. [DOI:10.1109/TNSRE.2015.2505238] [PMID] [DOI:10.1109/TNSRE.2015.2505238]
58. Zhang, Z., & Parhi, K. K. (2016). Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 693-706. [DOI:10.1109/TBCAS.2015.2477264] [PMID] [DOI:10.1109/TBCAS.2015.2477264]
59. Zhou, W., Liu, Y., Yuan, Q., & Li, X. (2013). Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Transactions on Biomedical Engineering, 60(12), 3375-81. [DOI:10.1109/TBME.2013.2254486] [PMID] [DOI:10.1109/TBME.2013.2254486]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb