1. Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205-11. [DOI:10.1109/TBME.2006.886855] [PMID] [
DOI:10.1109/TBME.2006.886855]
2. Alam, S. S., & Bhuiyan, M. I. H. (2013). Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE Journal of Biomedical and Health Informatics, 17(2), 312-8. [DOI:10.1109/JBHI.2012.2237409] [PMID] [
DOI:10.1109/JBHI.2012.2237409]
3. Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). [DOI:10.1103/physreve.64.061907] [
DOI:10.1103/PhysRevE.64.061907]
4. Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135-42. [DOI:10.1109/TITB.2011.2181403] [PMID] [
DOI:10.1109/TITB.2011.2181403]
5. Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50. [DOI:10.1016/S0167-2789(97)00118-8] [
DOI:10.1016/S0167-2789(97)00118-8]
6. Cerf, R., Amri, M. E., Ouasdad, E. H., & Hirsch, E. (1999). Non-linear analysis of epileptic seizures I. Correlation-dimension measurements for absence epilepsy and near-periodic signals. Biological Cybernetics, 80(4), 247-58. [DOI:10.1007/s004220050522] [PMID] [
DOI:10.1007/s004220050522]
7. Chen, T. J., Chiueh, H., Liang, S. F., Chang, S. T., Jeng, C., Hsu, Y. C., et al. (2011). The implementation of a low-power biomedical signal processor for real-time epileptic seizure detection on absence animal models. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 613-21. [DOI:10.1109/JETCAS.2011.2174472] [
DOI:10.1109/JETCAS.2011.2174472]
8. D'Alessandro, M., Esteller, R., Vachtsevanos, G., Hinson, A., Echauz, J., & Litt, B. (2003). Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: A report of four patients. IEEE Transactions on Biomedical Engineering, 50(5), 603-15. [DOI:10.1109/TBME.2003.810706] [PMID] [
DOI:10.1109/TBME.2003.810706]
9. Easwaramoorthy, D., & Uthayakumar, R. (2011). Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. Journal of Computational Science, 2(1), 31-8. [DOI:10.1016/j.jocs.2011.01.001] [
DOI:10.1016/j.jocs.2011.01.001]
10. Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4(9), 973–7. [DOI:10.1209/0295-5075/4/9/004] [
DOI:10.1209/0295-5075/4/9/004]
11. Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134-40. [DOI:10.1103/PhysRevA.33.1134] [
DOI:10.1103/PhysRevA.33.1134]
12. Gao, J. B., Cao, Y., Gu, L., Harris, J. G., & Principe, J. C. (2003). Detection of weak transitions in signal dynamics using recurrence time statistics. Physics Letters A, 317(1), 64-72. [DOI:10.1016/j.physleta.2003.08.018] [
DOI:10.1016/j.physleta.2003.08.018]
13. Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2007). Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54(9), 1545-51. [DOI:10.1109/TBME.2007.891945] [PMID] [
DOI:10.1109/TBME.2007.891945]
14. Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2008). Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2), 512-8. [DOI:10.1109/TBME.2007.905490] [PMID] [
DOI:10.1109/TBME.2007.905490]
15. Güler, N. F., Übeyli, E. D., & Güler, I. (2005). Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29(3), 506-14. [DOI:10.1016/j.eswa.2005.04.011] [
DOI:10.1016/j.eswa.2005.04.011]
16. Guo, L., Rivero, D., Dorado, J., Munteanu, C. R., & Pazos, A. (2011). Automatic feature extraction using genetic programming: An application to epileptic EEG classification. Expert Systems with Applications, 38(8), 10425-36. [DOI:10.1016/j.eswa.2011.02.118] [
DOI:10.1016/j.eswa.2011.02.118]
17. Guo, L., Rivero, D., Dorado, J., Rabunal, J. R., & Pazos, A. (2010). Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. Journal of Neuroscience Methods, 191(1), 101-9. [DOI:10.1016/j.jneumeth.2010.05.020] [PMID] [
DOI:10.1016/j.jneumeth.2010.05.020]
18. Iasemidis, L. D., Shiau, D. S., Chaovalitwongse, W., Sackellares, J. C., Pardalos, P. M., Principe, J. C., et al. (2003). Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5), 616-27. [DOI:10.1109/TBME.2003.810689] [PMID] [
DOI:10.1109/TBME.2003.810689]
19. Iscan, Z., Dokur, Z., & Demiralp, T. (2011). Classification of electroencephalogram signals with combined time and frequency features. Expert Systems with Applications, 38(8), 10499-505. [DOI:10.1016/j.eswa.2011.02.110] [
DOI:10.1016/j.eswa.2011.02.110]
20. Kumar, Y., Dewal, M. L., & Anand, R. S. (2014). Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing, 133, 271-9. [DOI:10.1016/j.neucom.2013.11.009] [
DOI:10.1016/j.neucom.2013.11.009]
21. Kwak, N., & Choi, C. H. (2002). Input feature selection for classification problems. IEEE Transactions on Neural Networks, 13(1), 143-59. [DOI:10.1109/72.977291] [PMID] [
DOI:10.1109/72.977291]
22. Li, X., Ouyang, G., Yao, X., & Guan, X. (2004). Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis. Physics Letters A, 333(1), 164-71. [DOI:10.1016/j.physleta.2004.10.028] [
DOI:10.1016/j.physleta.2004.10.028]
23. Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5), 237-329. [DOI:10.1016/j.physrep.2006.11.001] [
DOI:10.1016/j.physrep.2006.11.001]
24. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical Review E, 66(2), 026702. [DOI:10.1103/PhysRevE.66.026702] [PMID] [
DOI:10.1103/PhysRevE.66.026702]
25. Mukherjee, S., Palit, S. K., Banerjee, S., Ariffin, M. R. K., Rondoni, L., & Bhattacharya, D. K. (2015). Can complexity decrease in congestive heart failure?. Physica A: Statistical Mechanics and its Applications, 439, 93-102. [DOI:10.1016/j.physa.2015.07.030] [
DOI:10.1016/j.physa.2015.07.030]
26. Naghsh-Nilchi, A. R., & Aghashahi, M. (2010). Epilepsy seizure detection using eigen-system spectral estimation and Multiple Layer Perceptron neural network. Biomedical Signal Processing and Control, 5(2), 147-57. [DOI:10.1016/j.bspc.2010.01.004] [
DOI:10.1016/j.bspc.2010.01.004]
27. Nair, A., & Kiasaleh, K. (2014). Function mapped trajectory estimation for ECG sets. Biomedical Engineering Letters, 4(3), 277-84. [DOI:10.1007/s13534-014-0145-z] [
DOI:10.1007/s13534-014-0145-z]
28. Niknazar, M., Mousavi, S. R., Motaghi, S., Dehghani, A., Vahdat, B. V., Shamsollahi, M. B., et al. (2013). A unified approach for detection of induced epileptic seizures in rats using ECoG signals. Epilepsy & Behavior, 27(2), 355-64. [DOI:10.1016/j.yebeh.2013.01.028] [PMID] [
DOI:10.1016/j.yebeh.2013.01.028]
29. Niknazar, M., Mousavi, S. R., Vahdat, B. V., & Sayyah, M. (2013). A new framework based on recurrence quantification analysis for epileptic seizure detection. IEEE Journal of BioMedical and Health Informatics, 17(3), 572-8. [DOI:10.1109/JBHI.2013.2255132] [PMID] [
DOI:10.1109/JBHI.2013.2255132]
30. Orhan, U., Hekim, M., & Ozer, M. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications, 38(10), 13475-81. [DOI:10.1016/j.eswa.2011.04.149] [
DOI:10.1016/j.eswa.2011.04.149]
31. Osorio, I., Zaveri, H. P., Frei, M. G., & Arthurs, S. (2016). Epilepsy: The intersection of neurosciences, biology, mathematics, engineering, and physics. Boca Raton, Florida: CRC Press.
32. Ouyang, G., Li, X., Dang, C., & Richards, D. A. (2008). Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats. Clinical Neurophysiology, 119(8), 1747-55. [DOI:10.1016/j.clinph.2008.04.005] [PMID] [
DOI:10.1016/j.clinph.2008.04.005]
33. Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomedical Engineering Online, 10(1), 38. [DOI:10.1186/1475-925X-10-38] [PMID] [PMCID] [
DOI:10.1186/1475-925X-10-38]
34. Pachori, R. B. (2008). Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing, 2008, Article ID: 293056. [DOI:10.1155/2008/293056] [
DOI:10.1155/2008/293056]
35. Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373-81. [DOI:10.1016/j.cmpb.2011.03.009] [PMID] [
DOI:10.1016/j.cmpb.2011.03.009]
36. Page, A., Sagedy, C., Smith, E., Attaran, N., Oates, T., & Mohsenin, T. (2015). A flexible multichannel EEG feature extractor and classifier for seizure detection. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(2), 109-13. [DOI:10.1109/TCSII.2014.2385211] [
DOI:10.1109/TCSII.2014.2385211]
37. Peker, M., Sen, B., & Delen, D. (2016). A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE Journal of Biomedical and Health Informatics, 20(1), 108-18. [DOI:10.1109/JBHI.2014.2387795] [PMID] [
DOI:10.1109/JBHI.2014.2387795]
38. Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226-38. [DOI:10.1109/TPAMI.2005.159] [PMID] [
DOI:10.1109/TPAMI.2005.159]
39. Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N. E., Fernández, I. S., Klehm, J., et al. (2014). Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy & Behavior, 37, 291-307. [DOI:10.1016/j.yebeh.2014.06.023] [PMID] [
DOI:10.1016/j.yebeh.2014.06.023]
40. Riaz, F., Hassan, A., Rehman, S., Niazi, I. K., & Dremstrup, K. (2016). EMD-based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1), 28-35. [DOI:10.1109/TNSRE.2015.2441835] [PMID] [
DOI:10.1109/TNSRE.2015.2441835]
41. Shafiul Alam, S. M., & Bhuiyan, M. I. H. (2013). Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE Journal of Biomedical and Health Informaticas, 17(2), 313-8. [DOI:10.1109/JBHI.2012.2237409.] [PMID] [
DOI:10.1109/JBHI.2012.2237409]
42. Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288-95. [DOI:10.1109/TITB.2006.884369] [PMID] [
DOI:10.1109/TITB.2006.884369]
43. Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084-93. [DOI:10.1016/j.eswa.2006.02.005] [
DOI:10.1016/j.eswa.2006.02.005]
44. Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications, 37(12), 8659-66. [DOI:10.1016/j.eswa.2010.06.065] [
DOI:10.1016/j.eswa.2010.06.065]
45. Temko, A., Nadeu, C., Marnane, W., Boylan, G., & Lightbody, G. (2011). EEG signal description with spectral-envelope-based speech recognition features for detection of neonatal seizures. IEEE Transactions on Information Technology in Biomedicine, 15(6), 839-47. [DOI:10.1109/TITB.2011.2159805] [PMID] [PMCID] [
DOI:10.1109/TITB.2011.2159805]
46. Thomas, E. M., Temko, A., Marnane, W. P., Boylan, G. B., & Lightbody, G. (2013). Discriminative and generative classification techniques applied to automated neonatal seizure detection. IEEE Journal of Biomedical and Health Informatics, 17(2), 297-304. [DOI:10.1109/JBHI.2012.2237035] [PMID] [
DOI:10.1109/JBHI.2012.2237035]
47. Thomasson, N., Hoeppner, T. J., Webber, C. L., & Zbilut, J. P. (2001). Recurrence quantification in epileptic EEGs. Physics Letters A, 279(1), 94-101. [DOI:10.1016/S0375-9601(00)00815-X] [
DOI:10.1016/S0375-9601(00)00815-X]
48. Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine, 13(5), 703-10. [DOI:10.1109/TITB.2009.2017939] [PMID] [
DOI:10.1109/TITB.2009.2017939]
49. Übeyli, E. D. (2009). Statistics over features: EEG signals analysis. Computers in Biology and Medicine, 39(8), 733-41. [DOI:10.1016/j.compbiomed.2009.06.001] [PMID] [
DOI:10.1016/j.compbiomed.2009.06.001]
50. Van Drongelen, W., Nayak, S., Frim, D. M., Kohrman, M. H., Towle, V. L., Lee, H. C., et al. (2003). Seizure anticipation in pediatric epilepsy: Use of Kolmogorov entropy. Pediatric Neurology, 29(3), 207-13. [DOI:10.1016/S0887-8994(03)00145-0] [
DOI:10.1016/S0887-8994(03)00145-0]
51. Wang, D., Miao, D., & Xie, C. (2011). Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Systems with Applications, 38(11), 14314-20. [DOI:10.1016/j.eswa.2011.05.096] [
DOI:10.1016/j.eswa.2011.05.096]
52. Wang, N., & Lyu, M. R. (2015). Extracting and selecting distinctive EEG features for efficient epileptic seizure prediction. IEEE Journal of Biomedical and Health Informatics, 19(5), 1648-59. [DOI:10.1109/JBHI.2014.2358640] [PMID] [
DOI:10.1109/JBHI.2014.2358640]
53. Webber, C. L., & Marwan, N. (2015). Recurrence quantification analysis. Berlin: Springer. [DOI:10.1007/978-3-319-07155-8] [
DOI:10.1007/978-3-319-07155-8]
54. Wlodarczyk, B. J., Palacios, A. M., George, T. M., & Finnell, R. H. (2012). Antiepileptic drugs and pregnancy outcomes. American Journal of Medical Genetics Part A, 158(8), 2071-90. [DOI:10.1002/ajmg.a.35438] [PMID] [PMCID] [
DOI:10.1002/ajmg.a.35438]
55. Yang, C., Jeannès, R. L. B., Bellanger, J. J., & Shu, H. (2013). A new strategy for model order identification and its application to transfer entropy for EEG signals analysis. IEEE Transactions on Biomedical Engineering, 60(5), 1318-27. [DOI:10.1109/TBME.2012.2234125] [PMID] [
DOI:10.1109/TBME.2012.2234125]
56. Yaylali, I., Koçak, H., & Jayakar, P. (1996). Detection of seizures from small samples using nonlinear dynamic system theory. IEEE Transactions on Biomedical Engineering, 43(7), 743-51. [DOI:10.1109/10.503182] [PMID] [
DOI:10.1109/10.503182]
57. Zabihi, M., Kiranyaz, S., Bahrami Rad, A., Katsaggelos, A. K., Gabbouj, M., & Ince, T. (2016). Analysis of high-dimensional phase space via Poincaré section for patient-specific seizure detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(3), 386-98. [DOI:10.1109/TNSRE.2015.2505238] [PMID] [
DOI:10.1109/TNSRE.2015.2505238]
58. Zhang, Z., & Parhi, K. K. (2016). Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 693-706. [DOI:10.1109/TBCAS.2015.2477264] [PMID] [
DOI:10.1109/TBCAS.2015.2477264]
59. Zhou, W., Liu, Y., Yuan, Q., & Li, X. (2013). Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Transactions on Biomedical Engineering, 60(12), 3375-81. [DOI:10.1109/TBME.2013.2254486] [PMID] [
DOI:10.1109/TBME.2013.2254486]