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Introduction: In this paper, nonlinear dynamical analysis based on Recurrence Quantification 
Analysis (RQA) is employed to characterize the nonlinear EEG dynamics. RQA can provide useful 
quantitative information on the regular, chaotic, or stochastic property of the underlying dynamics. 

Methods: We use the RQA-based measures as the quantitative features of the nonlinear EEG 
dynamics. Mutual Information (MI) was used to find the most relevant feature subset out of 
RQA-based features. The selected features were fed into an artificial neural network for grouping 
of EEG recordings to detect ictal, interictal, and healthy states. The performance of the proposed 
procedure was evaluated using a database for different classification cases.

Results: The combination of five selected features based on MI achieved 100% accuracy, which 
demonstrates the superiority of the proposed method.

Conclusion: The results showed that the nonlinear dynamical analysis based on Rcurrence 
Quantification Analysis (RQA) can be employed as a suitable approach for characterizing the 
nonlinear EEG dynamics and detecting the seizure.
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Highlights 

● A method is proposed based on nonlinear dynamic analysis and mutual information.

● The method is used for distinguishing among normal, ictal, and interictal EEG.

● Recurrence quantification analysis is used to extract features of the EEG signals.

● Mutual information is employed to select the most relevant features. 

● This method could distinguish normal, ictal, and interictal states with 100% accuracy.
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1. Introduction

pilepsy is a chronic neurological disor-
der that can cause recurrent seizures and 
characterized by sudden, excessive, dis-
ordered, hypersynchronous, and localized 
electrical discharge of a group of neurons 
in the brain that can temporarily change 
brain functions, (i.e. transient impairments 

of sensation, altered state of consciousness, or loss of 
awareness, and focal involuntary movements or con-
vulsions (Osorio, Zaveri, Frei, & Arthurs, 2016). 

Sudden and recurrent seizures can have significant ef-
fect on the life of the epileptic patient. Obviously reli-
able real-time detection of seizures could significantly 
improve the therapeutic potentials like “closed-loop” 
therapies. In closed-loop therapies, electrical stimula-
tion, drug infusion, cooling, or biofeedback may be de-
livered in response to seizure detection (Ramgopal et al., 
2014). Patients with epilepsy are usually treated with 
Antiepileptic Drugs (AEDs) to control their seizures 
(Wlodarczyk, Palacios, George, & Finnell, 2012); accu-
rate real-time detection of seizures is critical to reduce 
the side effects by on demand delivering of AEDs during 
the preictal phase with short-acting drugs.

A conventional technique for diagnosis and analysis 
of epilepsy is the long-term EEG recording for several 
days and then visual inspection of EEG recordings by 
human specialists. To reduce the burden of time-con-
suming inspection, a robust real-time seizure-detection 
system could facilitate long-term monitoring and lo-
calization of the epileptogenic zone (i.e. the brain zone 
that can generate seizures), which is helpful in preop-
erational evaluations. Accordingly, there is a strong 
demand for developing Automatic Seizure Detection 
(ASD) systems. A seizure detection system should be 
able to identify the occurrence of seizures from the on-

going EEG or intracranial EEG by classification of the 
brain signals. Different approaches have been proposed 
to deal with the automatic seizure detection. The key 
components of seizure detection are feature extraction 
from brain electrical activity and then their classifica-
tion. So far, different approaches based on time-domain 
analysis, frequency-domain analysis, and information 
theory have been used for feature extraction (Thomas, 
Temko, Marnane, Boylan, & Lightbody, 2013; Yang, 
Jeannès, Bellanger, & Shu, 2013; Page et al., 2015; Pe-
ker, Sen, & Delen, 2016).

Empirical Mode Decomposition (EMD) have been 
used for extracting features from the Intrinsic Mode 
Functions (IMFs) of EEG signals for seizure detection 
(Pachori, 2008; Oweis & Abdulhay, 2011; Pachori & 
Bajaj, 2011; Bajaj & Pachori, 2012; Alam & Bhuiyan, 
2013; Riaz, Hassan, Rehman, Niazi, & Dremstrup, 
2016). The mean frequency measure of IMFs has been 
used as a feature to recognize the difference between 
seizure (ictal) and seizure-free (interictal) EEG signals 
(Pachori, 2008). Oweis and Abdulhay (2011) used the 
weighted frequency of IMFs as the feature set for dis-
criminating healthy EEG from epileptic EEG signals. 

The area measurement of the analytic IMFs has been 
also used as a feature set for discriminating healthy from 
the epileptic seizure (Pachori & Bajaj, 2011). Bajaj and 
Pachori (2012) used the amplitude and frequency modu-
lation bandwidths of the analytic IMFs as the feature set 
for distinguishing seizure and non-seizure EEG signals. 
The higher order moments, including variance, kurtosis, 
and skewness, extracted from the IMFs of the EEG sig-
nals were used as the features for classification of vari-
ous cases; including healthy, interictal, and ictal; healthy 
and seizure; nonseizure and seizure; and interictal and 
ictal (Alam & Bhuiyan, 2013). Recently, spectral cen-
troid, coefficient of variation, and the spectral skew of 

Plain Language Summary 

Currently, there is a strong demand for developing automatic seizure detection systems. A seizure detection system must 
be able to identify the occurrence of seizures from the ongoing or intracranial EEG that can be achieved by classification 
of the brain signals. Various methods have been proposed to deal with the automatic seizure detection problem.

In this paper, a new method is proposed for automatic seizure detection. It is based on nonlinear dynamic analysis 
of the EEG signal and mutual information. The Recurrence Quantification Analysis (RQA) has been used for char-
acterizing the nonlinear EEG dynamics. The study results show that a robust accurate seizure detection with short 
period of time (1.475 s) can be obtained using the proposed method. The method could distinguish normal, ictal, and 
interictal states with 100% accuracy. The results hold a promising approach to automatic seizure. 
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the IMFs have been used for feature extraction to detect 
epileptic seizures (Riaz et al., 2016).

A series of studies have focused on Nonlinear Dynami-
cal Analysis (NDA) of EEG signals to extract features 
for detection of epilepsy (Srinivasan, Eswaran, & Sriraam, 
2007; Chen et al., 2011; Niknazar et al., 2013; Yaylali, 
Koçak, & Jayakar, 1996; Cerf, Amri, Ouasdad, & Hirsch, 
1999; Adeli, Ghosh-Dastidar, & Dadmehr, 2007; Ghosh-
Dastidar, Adeli, & Dadmehr, 2007; Iasemidis et al., 2003; 
Van Drongelen et al., 2003; Easwaramoorthy & Uthayaku-
mar, 2011; Zhou, Liu, Yuan, & Li, 2013; Zabihi et al., 2016; 
Thomasson, Hoeppner, Webber, & Zbilut, 2001; Li, Ouy-
ang, Yao, & Guan, 2004; Ouyang, Li, Dang, & Richards, 
2008; Niknazar, Mousavi, Vahdat, & Sayyah 2013). These 
features include Approximate Entropy (ApEn) (Srinivasan 
et al., 2007; Chen et al., 2011; Niknazar et al., 2013), cor-
relation dimension (Yaylali et al., 1996; Cerf et al., 1999; 
Adeli et al., 2007; Ghosh-Dastidar et al., 2007), Lyapunov 
exponent (Niknazar et al., 2013; Adeli et al., 2007; Ghosh-
Dastidar et al., 2007; Iasemidis et al., 2003), Kolmogorov 
entropy (Van Drongelen et al., 2003), fractal dimension 
(Niknazar et al., 2013; Easwaramoorthy & Uthayakumar, 
2011), lacunarity (Zhou et al., 2013), and features extracted 
from Poincaré section (Zabihi et al., 2016) as well as Re-
currence Quantification Analysis (RQA) (Niknazar et al., 
2013; Thomasson et al., 2001; Li et al., 2004; Ouyang et al., 
2008; Niknazar et al., 2013).

In spite of numerous approaches for feature extrac-
tion, a major challenge to classify the electrical brain 
activity for detecting epilepsy is the selection from a 
large number of available EEG features. Searching 

important and relevant features is essential to improve 
the accuracy, efficiency, and generalization of a clas-
sification process. There have been a few studies on the 
feature selection for seizure detection (D’Alessandro et 
al., 2003; Temko, Nadeu, Marnane, Boylan, & Light-
body, 2011; Wang & Lyu, 2015; Zhang & Parhi, 2016). 
Genetic algorithm (D’Alessandro et al., 2003), recur-
sive feature elimination (Temko et al., 2011; Wang & 
Lyu, 2015), and Fisher’s linear discriminant analysis 
combined with the branch and bound algorithm (Zhang 
& Parhi, 2016) were employed to select EEG features 
for epileptic seizure detection.

In this paper, a feature selection algorithm, which is 
based on Mutual Information (MI) estimates (Kwak 
& Choi, 2002; Peng, Long, & Ding, 2005) is used for 
seizure detection. MI is a nonparametric measure of the 
dependence between random variables and is always 
non-negative. In terms of MI, the aim of the feature se-
lection is to find features from a large feature set which 
jointly has the largest dependency on the target class. 
The original features were extracted from RQA of the 
EEG signals. The RQA of the EEG signals is used to 
characterize the nonlinear EEG dynamics and extract 
appropriate features for automatic seizure detection. We 
extend the previous RQA-based features and introduce 
different RQA measures, which are important for mea-
suring the complexity.

The dataset provided by Dr. R. Andrzejak was used in 
this study (Andrzejak, Lehnertz, Rieke, Mormann, Da-
vid, & Elger, 2001). The dataset consists of 500 single-
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Iscan et al. (2011) - - 100% - - 10 1.475 Combined time and 
frequency features 

Wang et al. (2011) - - 99.44% - - 4 1.475 
Wavelet packet 

entropy-hierarchical 
EEG classification 

Naghsh-Nilchi et al. 
(2010) - 97.49% - - - 27 23.6 Eigen-system spectral 

estimation-MLPNN 

Subasi et al. (2010) - - 100% - - 24 2.95 DWT-PCA, ICA, 
LDA and SVM 

Guo et al. (2010) - - 99.6% 97.77% - 5 23.6 DWT-line length 
feature-MLPNN 

Ubeyli (2009) - 96.33% - - - 9 1.475 
DWT-Lyapunov 

exponents, 
Eigenvector-MLP 

Tzallas et al. (2009) - 100% 100% - - 3 23.6 
Time-Frequency 
analysis- neural 

network 
Ghosh-Dastidar et al. 

(2008) - 96.6% - - - 9 23.6 Wavelet-chaos, PCA-
NN 

Subasi (2007) - - 94.5% - - 16 2.95 DWT-mixture of 
expert model 

Guler et al. (2005) - 96.79% - - - 4 1.475 
Lyapunov exponent-

Recurrent neural 
network 

This work 100% 100% 100% 100% 100% 5 1.475 
RQA, mutual 

information, neural 
network 

 

 
Figure 1. Examples of EEG signals from each of the five subsets A, B, C, D, and E 
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Figure 1. Examples of EEG signals from each of the five subsets A, B, C, D, and E
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channel EEG segments, each lasts 23.6 s, and is catego-
rized into five subsets (marked as sets A-E) while each 
subset contains 100 EEG segments. The subsets A and 
B have been recorded from five healthy candidates with 
their eyes open and closed, respectively, using the stan-
dard 10–20 electrode arrangement. The subsets C and 
D contain EEG signals recorded during interictal inter-
vals from the epileptogenic region and the hippocampal 
formation of the opposite hemisphere, respectively. The 
subset E includes EEG segments corresponding to sei-
zure attacks, recorded using all the electrodes. The sub-
sets A and B have been recorded extracranially, whereas 
subsets C, D, and E have been recorded intracranially. 
The EEG signals were recorded in a digital format at the 
sampling rate of 173.61 Hz and were band-pass filtered 
between 0.53 and 60 Hz. Figure 1 demonstrates the typi-
cal EEG signals from each subset.

2. Methods

2.1. Feature extraction procedure

The original features were extracted from the RQA of 
the EEG signals. The first step in RQA is the reconstruc-
tion of the phase space trajectory and construction of the 
Recurrence Plot (RP). RP is a technique, which can visu-
alize the recurrence of the system states of a dynamical 
system in the phase space.

2.1.1. Phase space reconstruction

An important step in the analysis of any dynamical sys-
tem is the reconstruction of its phase space. The phase 
space of a dynamical system is a space, which shows all 
states of a system, whereas each state of the system corre-
sponds to one unique point in the phase space. Phase space 
is a geometrical representation of system dynamics. A fre-
quently used method for the phase space reconstruction is 
Taken’s time delay method (Marwan, Romano, Thiel, & 
Kurths, 2007). According to Taken’s theorem, the dynam-
ics of time series (u1,u2,…,uN) can be embedded in an m-
dimensional phase space by the vector as follows:

(1) xt=(ut,ut+τ,…,ut+(m-1)τ)

, where τ and m are the time delay and the embedding 
dimension, respectively. In order to fully capture the 
dynamics, an appropriate time delay and the embed-
ding dimension should be chosen. A proper time delay 
is the first local minimum of the MI function (Fraser & 
Swinney, 1986). Cao (1997) proposed a method to de-
fine the minimum embedding dimension from a scalar 
time series. The method is started with a low value of the 

embedding dimension m and then increasing it until the 
number of false neighbors’ reduces to zero. In this paper, 
we used MI and Cao’ methods to approximate the time 
delay and embedding dimension, respectively.

2.1.2. Recurrence plot 

Recurrence is a substantial nature of dynamical systems 
(Marwan et al., 2007). Eckmann et al. (1987) introduced 
a method to visualize the recurrences of dynamical sys-
tems called RP (Marwan et al., 2007). To construct the 
RP, a symmetrical N×N array called recurrence matrix R 
is computed as follows:

(2) Ri,j(ε)=Θ(ε-‖xi-xj‖) 

, where N is the number of intended states x, Θ(x) is 
the Heaviside function (i.e. Θ(x)=0 if x< and Θ(x)=1 
otherwise), is the threshold distance, and ‖∙‖ is a norm. 
Thus recurrence matrix is a matrix consisting of 1s and 
0s. To calculate recurrence matrix, a suitable norm has 
to be selected. In this paper, we used Euclidean norm 
for calculating the distance between two states. RP of 
each dynamical system has its own topology. For ex-
ample, RP related to periodic systems has uncut and long 
diagonal lines. 

The vertical distance between these diagonal lines in-
dicates the period of the fluctuations. The RP of chaotic 
system also has diagonal lines, which are shorter than 
periodic systems with certain vertical distances. But, 
vertical distances in chaotic systems are not as regular 
as in the periodic systems. The RP of the uncorrelated 
stochastic signal consists of many single black points.

  

 

 
 

Figure 2. A schematic representation of the recurrence points of the second type (solid circles) and 
the sojourn points (open circles) 
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Figure 2. A schematic representation of the recurrence 
points of the second type (solid circles) and the sojourn 
points (open circles)
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2.1.3. Recurrence quantification analysis 

To quantify the structures in RPs, several measures of 
complexity have been proposed. These measures are 
known as Recurrence Quantification Analysis (RQA) 
(Marwan et al., 2007) and are based on the recurrence 
point density, the diagonal and vertical line structures, 
recurrence time, and recurrence network.

2.1.3.1. Recurrence point density measure

(3) RR= 1
N2 ∑N

i,j=1Ri,j(ε)

The measure RR describes the probability that a state 
recurs to its ε-neighborhood in phase space.

2.1.3.2. Diagonal line measures

These measures are calculated from the histogram 
P(ε,l) of diagonal lines with a length of l. The RP of 
stochastic systems has none or short diagonal lines 
structure and more single points, while deterministic 
systems are characterized by longer diagonal lines and 
less single isolated recurrence points.

The Determinism (DET) or predictability of a system 
can be measured by the ratio of recurrence points that 
form diagonal structures (of at least length lmin) to all 
recurrence points:

(4) DET=
∑N

l=lminl∙P(l)

∑N
l=1 l∙P(l)

, where lmin is the least length and P(l) is the frequency 
distribution of the length l of the diagonal structures 
in the RP. In this paper, we selected lmin=2. Diagonal 
line length (L) shows that a segment of the trajectory 
is partly close during l time step to another segment of 
the trajectory at a different time. These diagonal lines 
indicate the divergence of the trajectory segments. The 
average time that two segments of the trajectory are 
close to each other can be measured by the mean di-
agonal line length, and can be considered as the mean 
prediction time (Marwan et al., 2007):

(5) L=
∑N

l=lminl∙P(l)
∑N

l=lminl∙P(l)
The main diagonal is not considered for calculation. 

Maximal diagonal line length (Lmax) is the length of the 
longest diagonal line in the RP that is parallel to the 
main diagonal (Marwan et al., 2007). The main diago-
nal line is not considered for calculation of Lmax. The 
exponential divergence of the phase space trajectory is 
measured by Lmax. The shorter diagonal lines indicate 
faster trajectory divergence. 

Entropy of the diagonal line lengths (ENTR) is calcu-
lated as follows:

(6) ENTR=-∑N
l=lminp(l)lnp(l) 

, where p(l) is the probability that a diagonal line has 
exactly the length l. Complexity in the RP can be mea-
sured by ENTR. The small value of ENTR indicates 
strong regularity and less complexity and the large value 
indicates significant fluctuations.

2.1.3.3. Vertical line measures

The chaos-chaos, order-chaos, and chaos-order transi-
tions can be found by vertical line measures (Marwan, 
Wessel, Meyerfeldt, Schirdewan, & Kurths, 2002). 
Hence, these measures are appropriate for investigating 
the intermittency and short and non-stationary data se-
ries. The ratio of the recurrence points forming the ver-
tical structures to the entire set of recurrence points is 
defined as the Laminarity (LAM) as follows:

(7) LAM=
∑N

v=vmin  vP(v)

∑N
v=v vP(v)

, where the P(v) is the histogram of the vertical lines 
with length v and vmin is minimal length.

Trapping Time (TT) is the average length of vertical 
structures as follows: 

(8) TT=
∑N

v=v minvP(v)
∑N

v=v minvP(v)

, which describes the mean time that the system re-
mains in a state.

Maximal vertical line length (Vmax) is the length of the 
longest vertical line in the RP:

(9) Vmax=max({vi; i=1,…,Nv })

, where Nv is the total number of vertical lines in RP.

2.1.3.4. Recurrence time-based measures

Three RQA measures based on recurrence time statis-
tics have been proposed for detecting the transitional 
signals in noisy and nonstationary environments (Gao, 
Cao, Gu, Harris, & Principe, 2003). These measures 
are called the first type T1 and the second type T2 of re-
currence time and Recurrence Period Density Entropy 
(RPDE).To define the second type of recurrence time, 
consider a scalar time series {u(i), i=1,2,…} and cor-
responding reconstructed trajectory in m-dimensional 
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phase space as xt=(ut,ut+τ,…, ut+(m-1)τ). An arbitrary refer-
ence point (x0) on the reconstructed trajectory is select-
ed, then a neighborhood of radius r for reference point 
Br(x0)={x:‖x-x0 ‖≤r} is defined. The set of points consist-
ing of the first trajectory point getting inside the neigh-
borhood from outside are defined as recurrence points of 
the second type (Figure 2). 

The trajectories that remain inside the neighborhood 
for a while, produce a sequence of points that are called 
the sojourn points (white circle in Figure 2). The set of 
the recurrence points of the second type as well as the 
sojourn points constitute the recurrence points of the first 
type. If the recurrence points are defined as S={xt1,xt2,…
,xti,…}, then the corresponding recurrence time T is 
{T(i)=ti+1-ti,i=1,2,…} (Figure 2).

Recurrence Period Density Entropy (RPDE) is a mea-
sure that can describe the complexity of a signal and 
determine the periodicity of a signal (Mukherjee et al., 
2015). A system with periodic behavior has a RPDE with 
a value close to 0, whereas a system with chaotic behav-
ior has RPDE a close to 1 (Nair & Kiasaleh, 2014). The 
RPDE can be computed as follows: 

(10) RPDE=-(lnTmax )
-1 ∑Tmax

t=1P(t)lnP(t)

, where Tmax and P(t) are the largest recurrence value 
and the recurrence period density function, respectively.

2.1.3.5. Recurrence network analysis based measure

Recurrence Network Analysis (RNA) measure is the 
so-called network transitivity (Trans) and is based on 
the adjacency matrix A elements (Webber & Marwan, 
2015), defined as:

(11) Trans=
∑N

i,j,k=1Ai,jAj,kAk,i

∑N
i,j,k=1 Ai,jAk,i

, where A=R-I. Trans reflects network complexity and 
distinguishes between regular and irregular dynamics.

2.2. Feature selection based on mutual information

The relevance between two variables can be measured 
by MI. A formalism for quantifying MI is Shannon’s 
information theory. Assume X is a random variable that 
represents continuous-valued random feature vector, and 
C is a discrete-valued random variable that represents 
the class labels, the MI between two variables X and C 
are calculated as follows:

(12) I(X;C)=∑cεC∫x p(c,x) log p(c,x)
p(c)p(x)

dx

, where p(c, x) is the joint probability density function 
of x and c, and p(c) are the marginal probability den-
sity functions of x and c, respectively. A large value of 
the MI between two random variables indicates that two 
variables are closely related. If two random variables 
are strictly independent, the MI is 0. In terms of MI, the 
optimal feature selection requires selecting a feature set 
f with m features, which jointly have the largest depen-
dency on the target class C (i.e. maximal dependency). 
That is, we seek:

(13) maxD(f,c), D=I(f;C)

I(f,C)=∑∫K∫p(f1Kfm )log
p(f1Λfm,c)

p(f1 Λfm)p(c)
df1Λdfm

cεC

However, it requires an accurate estimation of the un-
derlying Probability Density Functions (PDFs) of the data 
and the integration on these PDFs. Moreover, due to the 
tremendous computational requirements of the method, 
the practical applicability of the above solution to the 
problems requiring a large number of features is limited. 
To overcome this problem, a heuristic method proposed 
by Peng et al. (2005), which is based on minimal-Redun-
dancy-Maximal-Relevance (mRMR) framework. It was 
proven that mRMR criterion is equivalent to maximal de-
pendency (13) if one feature is added at one time (Peng et 
al., 2005). This criterion is given by:

(14) J={I(fi;c)-β∑fsεsI(fi;fs)}

According to this criterion, Term I(fi;c) indicates depen-
dency between a new feature Fi and the target class that 
should be maximized (i.e. maxiI(fi;c) and the term ∑fsεSI(fi;fs 
) indicates the dependency of the new feature with the al-
ready selected features. This term should be minimized 
(i.e. mini∑fsεSI(fi;fs ). The parameter ß is the redundancy pa-
rameter, which regulates the relative importance of the MI 
between the new feature and the already selected features 
with respect to the MI with the output class.

2.3. Classification of EEG features

Each EEG segment was split into 16 blocks of 1.475 s 
duration. Original features were formed from each block. 
Thus, 1600 feature vectors were constructed from each 
EEG subset. Then, the MI-based feature selection process 
was carried out to select optimal feature vector. For clas-
sification of the selected features, a two-layer feed-forward 
neural network was employed to perform the classification. 
The scaled conjugate gradient algorithm was used to train 
the network using the selected feature vectors. The number 
of neurons in the hidden layer was 20 and the output layer 
was equal to the number of classes. Repeated random sub-
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sampling for evaluation, whereas during each repeat, 60%, 
5%, and 35% of the feature vectors are randomly selected 
for training, validation, and testing, respectively. The evalu-
ation procedure was repeated 20 times and the mean and 
standard deviation were calculated. Classifications were 
executed using MATLAB.

For the EEG dataset described in Section 2, five differ-
ent cases of classification were considered. The cases 
were selected due to their clinical relevance and wide 
usage by the researchers (Alam & Bhuiyan, 2013; Riaz 
et al., 2016). In Case I, the sets A and B were grouped 
as healthy class, the sets C and D were grouped as 
interictal class, and the set E was recognized as ictal 
class. In Case II, the sets A, D, and E were considered 
as healthy, interictal, and ictal classes, respectively. In 
Case III, the sets A and E were classified as healthy 
and interictal, ictal classes, respectively. In Case IV, the 
sets A, B, C, and D were grouped as nonseizure class 
and the set E as seizure class. In case V, the first class 
consisted of the set D as interictal class and the second 
class included the set E as ictal class.

3. Results

3.1. RP of the EEG signals

Figure 3 shows examples of RP of the EEG recordings 
corresponding to healthy (A and B), interictal (C and D), 
and ictal (E) conditions. It is observed that there are verti-
cal and horizontal line structures in the RP of the healthy 
subject (Figure 3a and 3b). The rectangles formed by 
the vertical and horizontal lines indicate that the system 

trapped in a state and does not change or changes very 
slowly for some time. The vertical structures in the RP 
of EEG indicate intermittency and laminar. Interesting 
observation is the white band structures during seizure-
free (Figure 3c and 3d). White area or bands corresponds 
to sudden changes in the dynamic as well as extreme 
events (Webber & Marwan, 2015). During a seizure, di-
agonal lines and checkerboard structures are observed in 
RP (Figure 3e and 3f). These structures indicate the sys-
tem with periodic or quasi-periodic behavior (Webber 
& Marwan, 2015). The results demonstrate that the RP 
can visualize the dynamic changes of the EEG signals 
during different brain states. 

3.2. Mutual information-based feature selection

Figure 4 shows the results of feature selection using 
mRMR for the Case I. It is observed that Lmax is the first 
relevant feature that is selected (Figure 4a). According to 
mRMR criterion, the feature that has maximum MI with 
the class labels is selected as the first relevant feature. 
As already mentioned, Lmax is a RQA measure based on 
the diagonal lines structures and indicates repeating re-
currences within a state. The diagonal lines are long for 
periodic signals and short for chaotic signals (Webber & 
Marwan, 2015). The second, third, fourth, and fifth se-
lected features are Vmax, RR, RPDE, and DET, respectively 
(Figure 4b and 4e).

Table 1 summarizes the results of feature selection 
using mRMR for different cases of classification. It is 
observed that in all cases, Lmax is the first feature that is 
selected. Moreover, Vmax is also selected in all cases.
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3.3. Classification

The classification accuracy for different RQA-based 
features is shown in Figure 5. It is observed that Lmax 
and Trans features provide a high classification accura-
cy for the Cases III, IV, and V with respect to the cases 
I and II. This is because the EEG data grouped into two 
classes in the Cases III, IV, and V while the classifica-
tion Cases of I and II have three classes. Moreover, di-
agonal structures within the RP reflect the system with 
periodic and quasi-periodic behavior and the Trans 
feature can distinguish regular from irregular dynam-
ics. The L could discriminate accurately Case III which 
contains only healthy and ictal classes.

The average overall detection accuracy, using selected 
features by mRMR algorithm and the feature vectors 
used in (Niknazar et al., 2013) is presented in Table 2. 
The results show that the average detection accuracy is 
100% using only five selected features for all cases. In 
Niknazar et al. (2013), RQA was applied on the EEG 

recordings provided by Dr. R. Andrzejak as in the cur-
rent study. The RQA-based features (i.e. DET, L, Lmax, 
ENTR, LAM, TT) of the original signal and subbands (i.e. 
delta, theta, alpha, beta, and gamma) were used for clas-
sification. The overall accuracy was 89.50% and 98.67% 
using the RQA-based features of the original signal (i.e. 
6 features) and a combination of the original signal and 
subbands (i.e. 36 features), respectively.

The classification accuracies obtained in this study and 
in the previous studies are summarized in Table 3. Only 
the previous studies that used the data set provided by Dr 
R. Andrzejak were considered for comparison to provide 
a fair comparison. 

4. Discussion

There is significant interest in developing accurate 
automatic seizure detection. The classification of EEG 
into healthy, ictal, and interictal EEGs is the main goal 
of seizure detection. Two major components of a clas-

Table 1. Selected features using mRMR algorithm for different cases of classification

Case Case I Case II Case III Case IV Case V

First selected feature Lmax Lmax Lmax Lmax Lmax

Second selected feature Vmax Vmax DET Vmax Vmax

Third selected feature RR LAM Vmax RR LAM

Fourth selected feature PRDE T1 T1 PRDE Trans

Fifth selected feature DET T2 TT DET T1

Figure 3. Recurrence plot of a block of subsets A (a), B (b), C (c), D (d), and E (e-f) 
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sification process are the feature extraction and feature 
selection. Different linear approaches have been pro-
posed for time series analysis of EEG signal and extrac-
tion features. However, the linear approaches ignore the 
underlying nonlinear EEG dynamics. The complex non-
linear EEG dynamics show different transitions between 
regular, laminar, and chaotic behaviors. 

The knowledge of these transitions is necessary for 
characterizing the underlying dynamics. A very useful 
nonlinear approach for measuring the complexity of a 
nonlinear dynamical system is RQA. Up to now, differ-
ent RQA measures, including RR, DET, L, Lmax, ENTR, 
LAM, TT, and Trend have been used as the features 
of the EEG signal for seizure detection. In the current 
study, different RQA measures, including Vmax, T1, T2, 

Table 2. The mean of classification accuracy (± SD) for different number of selected features 

Case 
RQA-Based

Features
Signal I II III IV V

Three selected features (mRMR) Original 87.91±4.39 98.61±4.79 99.85±0.64 99.6±0.43 98.9±0.34

Four selected features (mRMR) Original 97.59±1.52 99.28±1.52 100 100 100

Five selected features (mRMR) Original 100 100 100 100 100

DET, L, Lmax, ENTR, LAM, TT
(Features used in Niknazar et al., 

2013)

Original 89.5±1.72 - - - -

Delta band 67.46±2.68 - - - -

Theta band 77.53±2.43 - - - -

Alpha band 63.73±3.35 - - - -

Beta band 82.73±2.26 - - - -

Gamma band 86.6±7.5 - - - -

Original+subbands 98.67±0.52 - - - -

Figure 3. Recurrence plot of a block of subsets A (a), B (b), C (c), D (d), and E (e-f) 
 

 

 
(a)                                                           (b)                                                        (c)  

 
                                                              (d)                                                          (e) 

 
Figure 4. Feature selection process using mRMR algorithm for the Case I. Selection of the first 
(a), second (b), third (c), fourth (d), and fifth (e) feature. 
 
 

 
 
 
 

 
 

Figure 5. Classification accuracy of different features for different cases of classification (Case I: 
Dark blue, Case II: Blue, Case III: Green, Case IV: Red, Case V: Brown). 

 
 
 

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

Feature

J

 

 

RR DET L

Lmax*

ENTR LAM TT

Vmax

T1
T2 RPDE

Trans

1 2 3 4 5 6 7 8 9 10 11
-3

-2.5

-2

-1.5

-1

-0.5

0

Feature

J

L
RR

DET
ENTR

LAM
TT T1

T2 Trans
RPDE

Vmax*

1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

Feature

J

DET L ENTRLAM TT T1 T2 RPDETransRR*

1 2 3 4 5 6 7 8 9
-5

-4

-3

-2

-1

0

Features

J

DET L LAM T2 RPDE*
T1TTENTR Trans

1 2 3 4 5 6 7 8
-5

-4

-3

-2

-1

0

Feature

J

DET*
L ENTR LAM TT T1 TransT2

RR DET L Lmax ENTR LAM TT Vmax T1 T2 RPDE Trans
0

10

20

30

40

50

60

70

80

90

100

Feature

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

Figure 5. Classification accuracy of different features for different cases of classification

Case I: Dark blue; Case II: Blue; Case III: Green; Case IV: Red; Case V: Brown

Akbarian, B., et al. (2018). ASD Based on NDA of EEG Signals and Mutual Information. BCN, 9(4), 227-240.

http://bcn.iums.ac.ir/


Basic and Clinical

236

July, August 2018, Volume 9, Number 4

Table 3. Comparison of the results obtained by the proposed method and other methods

Case

Authors 

Percent Number of 
Feature 

Block
Duration Method

Case 1 Case II Case III Case IV Case V 

Peker et al. (2016) 98.28 99.30 100 99.33 - 5 23.6 DTCWT-CVANN

Shafiul Alam et al. 
(2013) 80 100 100 100 100 3 1.475 EMD-higher order mo-

ments- neural network

Riaz et al. (2016) 94 91 99 98 96 6 23.6 EMD-based temporal 
and spectral features

Srinivasan et al. (2007) - - 100 - - 1 2.95 ApEn- neural network

Ghosh-Dastidar et al. 
(2007) - 96.7 - - - 9 23.6

Mixed-band wavelet-
chaos, Levenberg-

Marquardt backpropa-
gation NN

Niknazar et al. (2013) 98.67 - - - - 36 23.6
RQA on EEG signal and 
its wavelet-based sub-

bands-ECOC

Kumar et al. (2014) - - 100 97.38 95.85 6 23.6 DWT-Fuzzy ApEn-SVM

Guo et al. (2011) - 93.5 99.2 - - 3 23.6 Genetic algorithm-KNN 

Orhan et al. (2011) 

95.6 - 56

23.6
DWT-K-means 

clustering-probability 
distribution-MLPNN

96.67 56

100 4

99.6 18

Iscan et al. (2011) - - 100 - - 10 1.475 Combined time and 
frequency features

Wang et al. (2011) - - 99.44 - - 4 1.475
Wavelet packet 

entropy-hierarchical
EEG classification

Naghsh-Nilchi et al. 
(2010) - 97.49 - - - 27 23.6 Eigen-system spectral 

estimation-MLPNN

Subasi et al. (2010) - - 100 - - 24 2.95 DWT-PCA, ICA, LDA and 
SVM

Guo et al. (2010) - - 99.6 97.77 - 5 23.6 DWT-line length 
feature-MLPNN

Übeyli (2009) - 96.33 - - - 9 1.475 DWT-Lyapunov expo-
nents, Eigenvector-MLP

Tzallas et al. (2009) - 100 100 - - 3 23.6 Time-Frequency analy-
sis- neural network

Ghosh-Dastidar et al. 
(2008) - 96.6 - - - 9 23.6 Wavelet-chaos, PCA-NN

Subasi (2007) - - 94.5 - - 16 2.95 DWT-mixture of expert 
model

Güler et al. (2005) - 96.79 - - - 4 1.475 Lyapunov exponent-Re-
current neural network

The current study 100 100 100 100 100 5 1.475 RQA, mutual informa-
tion, neural network
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RPDE Trans and have been introduced as the features 
for the EEG classification. These measures are very im-
portant for detecting the dynamic transitions and mea-
suring the complexity.

Moreover, a systematic approach based on MI has 
been proposed to select the most relevant features. The 
first selected feature in all cases was Lmax. Deterministic 
processes have longer diagonals and less single, iso-
lated recurrence points, whereas chaotic signals cause 
the short diagonal lines. The diagonal lines for periodic 
signals are long and for stochastic signals are absent 
(Webber & Marwan, 2015).

During the interictal state, the EEG signals have lower 
amplitude and are less rhythmic and more irregular in 
morphology. During ictal state, an abrupt change in the 
amplitude, frequency, and morphology of the EEG sig-
nals occurs, and rhythmicity increases and a synchroni-
zation of activity happens across widespread areas of the 
cerebral cortex. Therefore, diagonal lines can provide a 
suitable measure for prediction of rhythmic and periodic 
EEG patterns. As it can be seen in Figure 3e and 3f, the 
RP of the brain signals during ictal state has the check-
erboard structures indicating periodic behavior whereas 
such structures have not been observed during healthy 
and interictal states.

The second selected feature is Vmax, which indicates the 
vertical line structure in the RP. RP of the healthy signal 
(Figure 3a and 3b) contains vertical and horizontal lines 
that form rectangles. This structure indicates that some 
states do not change or change slowly for some time 
(laminar states) or the process is halted at a singularity in 
which the dynamic is stuck in paused states. 

Another selected feature is DET, which is a measure 
of determinism. In the seizure state, excessive synchro-
nization of large neuronal populations occurs, leading 
to a hypersynchronous state which implies an increas-
ing determinism of EEG data. Therefore, DET can be 
a suitable measure for seizure detection. Trans and 
RPDE are other complexity measures which were se-
lected as the features.

The results of this study show that a robust accurate 
seizure detection with a short period of time (1.475 s) 
can be obtained using the proposed method. The method 
could distinguish healthy, ictal, and interictal states with 
100% accuracy.
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