Volume 9, Issue 1 (January & February 2018 2018)                   BCN 2018, 9(1): 27-34 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dortaj H, Yadegari M, Hosseini Sharif Abad M, Abbasi Sarcheshmeh A, Anvari M. Stereological Method for Assessing the Effect of Vitamin C Administration on the Reduction of Acrylamide-induced Neurotoxicity. BCN 2018; 9 (1) :27-34
URL: http://bcn.iums.ac.ir/article-1-740-en.html
1- Department of Anatomy and Cell Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
Abstract:  

Introduction: Acrylamide (ACR) consumption is increasing all over the world. There are some evidence on the literature about its neurotoxic effect on mature animals, but the effects of ACR on postnatal development have been less studied. The purpose of this study was to evaluate the effects of ACR on development of cortical layer, white matter, and number of Purkinje cells of the cerebellum in rat newborns.
Methods: This study was carried out on 20 female Wistar rats (average weight: 180 g, aged: two months). The rats were divided into four groups. Pregnant rats were orally fed with ACR 10 mg/kg and vitamin C 200 mg/kg. In this study, 6 infants of each group (weighting 32-35 g) were randomly selected at day 21 after birth and placed under deep anesthesia and transcardial perfusion. Their cerebellums were fixed and histopathological changes were evaluated with Hematoxylin and Eosin (H&E) staining and cresyl violet method. The volume of cerebellar cortical layers and number of Purkinje cells were investigated by Cavalieri’s principle and physical dissector methods. The obtained data were analyzed by 1-way ANOVA and LSD test using SPSS. P<0.05 considered as statistically significant.
Results: The results showed that newborns of ACR-treated female rats have decreased cerebellar weight (P≤0.05) and lower than average number of Purkinje cells (P≤0.001). ACR also decreased the volume of granular and molecular layer and increased the volume of white matter. While the results showed decreased in white matter volume in vitamin C group (P≤0.001).
Conclusion: ACR induces structural changes in the development of the cerebellar cortical layers in rat newborns, but these changes may be prevented by vitamin C as an antioxidant. 

Type of Study: Original | Subject: Computational Neuroscience
Received: 2016/12/28 | Accepted: 2017/04/30 | Published: 2018/01/1

References
1. Agus, D. B., Gambhir, S. S., Pardridge, W. M., Spielholz, C., Baselga, J., Vera, J. C., et al. (1997). Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. Journal of Clinical Investigation, 100(11), 2842–48. doi: 10.1172/jci119832 [DOI:10.1172/JCI119832]
2. Ayvaz, H. (2014). Rapid assessment of acrylamide and its precursors in potato tubers and snacks by infrared spectroscopy [PhD dissertation]. Columbus, Ohio: Ohio State University.
3. Barber, D. S., & LoPachin, R. M. (2004). Proteomic analysis of acrylamide-protein adduct formation in rat brain synaptosomes. Toxicology and Applied Pharmacology, 201(2), 120–136. doi: 10.1016/j.taap.2004.05.008 [DOI:10.1016/j.taap.2004.05.008]
4. Behnam-Rasouli, M., Nikravesh, M. R., Mahdavi-Shahri, N., & Tehranipour, M. (2000). Post-operative time effects after sciatic nerve crush on the number of alpha motoneurons, using a stereological counting method (Disector). Iranian Biomedical Journal, 4(1), 45-9.
5. Brantsæter, A. L., Haugen, M., Mul, A. de., Bjellaas, T., Becher, G., Klaveren, J. V., et al. (2008). Exploration of different methods to assess dietary acrylamide exposure in pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Food and Chemical Toxicology, 46(8), 2808–14. doi: 10.1016/j.fct.2008.05.020 [DOI:10.1016/j.fct.2008.05.020]
6. Clendeninn, N. J., Petraitis, M., & Simon, E. J. (1976). Ontological development of opiate receptors in rodent brain. Brain Research, 118(1), 157–60. doi: 10.1016/0006-8993(76)90852-0 [DOI:10.1016/0006-8993(76)90852-0]
7. Duarte-Salles, T., Von Stedingk, H., Granum, B., Gützkow, K. B., Rydberg, P., Törnqvist, M., et al. (2012). Dietary acrylamide intake during pregnancy and fetal growth—results from the Norwegian mother and child cohort study (MoBa). Environmental Health Perspectives, 121(3). doi: 10.1289/ehp.1205396 [DOI:10.1289/ehp.1205396]
8. El-Sayyad, H. I., El-Gammal, H. L., Habak, L. A., Abdel-Galil, H. M., Fernando, A., Gaur, R. L., et al. (2011). Structural and ultrastructural evidence of neurotoxic effects of fried potato chips on rat postnatal development. Nutrition, 27(10), 1066–75. doi: 10.1016/j.nut.2011.06.008 [DOI:10.1016/j.nut.2011.06.008]
9. Fang, Y. Z., Yang, S., & Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition, 18(10), 872–79. doi: 10.1016/s0899-9007(02)00916-4. [DOI:10.1016/S0899-9007(02)00916-4]
10. Friedman, M. (2003). Chemistry, biochemistry, and safety of acrylamide. A Review. Journal of Agricultural and Food Chemistry, 51(16), 4504-26. doi: 10.1021/jf030204 . [DOI:10.1021/jf030204]
11. Gold, B. G., Griffin, J. W., & Price, D. (1985). Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration. Journal of Neuroscience, 5(7), 1755-68. PMID: 2410575 [PMID]
12. Heidari, Z., & Mahmoudzadeh-Sagheb, H. (2012). Quantitative study of volumetric changes of cerebellum in male adult rat following lithium administration. International Journal of High Risk Behaviors and Addiction, 1(2), 66-70. doi: 10.5812/ijhrba.4187 [DOI:10.5812/ijhrba.4187]
13. Jacobson, M. (2013). Developmental neurobiology. Berlin: Springer.
14. Kopańska, M., Lukáč, N., Kapusta, E., & Formicki, G. (2015). Acrylamide influence on activity of acetylcholinesterase, thiol groups, and malondialdehyde content in the brain of swiss mice. Journal of Biochemi-cal and Molecular Toxicology, 362(11), 121-34. [DOI:10.1002/jbt.21717]
15. Lehning, E., Balaban, C., Ross, J., & LoPachin, R. (2003). Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord. Neurotoxicology. 24(1),109-23. PMID: 12564387 https://doi.org/10.1016/S0161-813X(02)00155-9 [DOI:10.1016/S0161-813X(02)00192-4]
16. LoPachin, R. M. (2005) Acrylamide neurotoxicity: neurological, morhological and molecular endpoints in animal models. In: M. Friedman, D. Mottram (Eds.), Chemistry and Safety of Acrylamide in Food. Advances in Experimental Medicine and Biology, Vol 561 (pp. 21-37). Berlin: Springer. [DOI:10.1007/0-387-24980-X_2]
17. Machlin, L. J., & Bendich, A. (1987). Free radical tissue damage: protective role of antioxidant nutrients. The FASEB Journal, 1(6), 441–45. doi: 10.1096/fasebj.1.6.3315807 [DOI:10.1096/fasebj.1.6.3315807]
18. Martin, A., Janigian, D., Shukitt-Hale, B., Prior, R. L., & Joseph, J. A. (1999). Effect of vitamin E intake on levels of vitamins E and C in the central nervous system and peripheral tissues: implications for health recommendations. Brain Research, 845(1), 50–9. doi: 10.1016/s0006-8993(99)01923-x [DOI:10.1016/S0006-8993(99)01923-X]
19. Ou, S., Shi, J., Huang, C., Zhang, G., Teng, J., Jiang, Y., et al. (2010). Effect of antioxidants on elimination and formation of acrylamide in model reaction systems. Journal of Hazardous Materials, 182(1-3), 863–68. doi: 10.1016/j.jhazmat.2010.06.124 [DOI:10.1016/j.jhazmat.2010.06.124]
20. Raju, K. T., Venkataswamy, M., Subbaiah, K., Suman, B., Meenabai, M., & Rao, K. (2013). Depletion of vitamin-C and glutathione by acrylamide causes damage to hippocampus region of brain in chick embryo. International Journal of Advances in Pharmaceutical Research, 4(3), 1471-9.
21. Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., & Törnqvist, M. (2003). Investigations of factors that influence the acrylamide content of heated foodstuffs. Journal of Agricultural and Food Chemistry, 51(24), 7012-8. doi: 10.1021/jf034649+ [DOI:10.1021/jf034649]
22. Sakr, S. A., Badawy, G. M., El-Sayyad, H. I., & Afify, H. S. (2011). Adverse effects of acrylamide on the developing retina of albino rats. Journal of Basic and Applied Scientific Research, 1(7), 706-12.
23. Schmitz, C., & Hof, P. R. (2005). Design-based stereology in neuroscience. Neuroscience, 130(4), 813–31. doi: 10.1016/j.neuroscience.2004.08.050 [DOI:10.1016/j.neuroscience.2004.08.050]
24. Shuming, C., Jilin, F., & Xichun, Z. (2009). The moderating role of dark soy sauce to acrylamide-induced oxidative stress and neurophysiological perturbations in rats. Toxicology Mechanisms and Methods, 19(6-7), 434–440. doi: 10.1080/15376510903136895 [DOI:10.1080/15376510903136895]
25. Sidman, R. L., & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62(1), 1–35. doi: 10.1016/0006-8993(73)90617-3 [DOI:10.1016/0006-8993(73)90617-3]
26. Singhal, R. S., Kennedy, J. F., Gopalakrishnan, S. M., Kaczmarek, A., Knill, C. J., & Akmar, P. F. (2008). Industrial production, processing, and utilization of sago palm-derived products. Carbohydrate Polymers, 72(1), 1–20. doi: 10.1016/j.carbpol.2007.07.043 [DOI:10.1016/j.carbpol.2007.07.043]
27. Sörgel, F., Weissenbacher, R., Kinzig-Schippers, M., Hofmann, A., Illauer, M., Skott, A., et al. (2002). Acrylamide: Increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy, 48(6), 267–74. doi: 10.1159/000069715 [DOI:10.1159/000069715]
28. Tilson, H. A., & Cabe, P. A. (1978). Strategy for the assessment of neurobehavioral consequences of environmental factors. Environmental Health Perspectives, 26, 287–299. doi: 10.1289/ehp.7826287 [DOI:10.1289/ehp.7826287]
29. Trenkner, E. (1977). Histogenesis of mouse cerebellum in microwell cultures. Cell reaggregation and migration, fiber and synapse formation. The Journal of Cell Biology, 75(3), 915–940. doi: 10.1083/jcb.75.3.915 [DOI:10.1083/jcb.75.3.915]
30. Tunç, A. T., Turgut, M., Aslan, H., Sahin, B., Yurtseven, M. E., & Kaplan, S. (2006). Neonatal pinealectomy induces Purkinje cell loss in the cerebellum of the chick: A stereological study. Brain Research, 1067(1), 95–102. doi: 10.1016/j.brainres.2005.10.011 [DOI:10.1016/j.brainres.2005.10.011]
31. Volterra, A., Trotti, D., Tromba, C., Floridi, S., & Racagni, G. (1994). Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. The Journal of Neuroscience, 14(5), 2924-32. PMID: 7910203 [PMID]
32. Villringer, A., Them, A., Lindauer, U., Einhaupl, K., & Dirnagl, U. (1994). Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circulation Research, 75(1), 55–62. doi: 10.1161/01.res.75.1.55 [DOI:10.1161/01.RES.75.1.55]
33. West, M. J., Slomianka, L., & Gundersen, H. J. G. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record, 231(4), 482–497. doi: 10.1002/ar.1092310411 [DOI:10.1002/ar.1092310411]
34. West, M. J. (1999). Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends in Neurosciences, 22(2), 51–61. doi: 10.1016/s0166-2236(98)01362-9 [DOI:10.1016/S0166-2236(98)01362-9]
35. Zeisel, S. H. (2004). Nutritional importance of choline for brain development. Journal of the American College of Nutrition, 23(sup6), 621S–626S. doi: 10.1080/07315724.2004.10719433 [DOI:10.1080/07315724.2004.10719433]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb