1. Agus, D. B., Gambhir, S. S., Pardridge, W. M., Spielholz, C., Baselga, J., Vera, J. C., et al. (1997). Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. Journal of Clinical Investigation, 100(11), 2842–48. doi: 10.1172/jci119832 [
DOI:10.1172/JCI119832]
2. Ayvaz, H. (2014). Rapid assessment of acrylamide and its precursors in potato tubers and snacks by infrared spectroscopy [PhD dissertation]. Columbus, Ohio: Ohio State University.
3. Barber, D. S., & LoPachin, R. M. (2004). Proteomic analysis of acrylamide-protein adduct formation in rat brain synaptosomes. Toxicology and Applied Pharmacology, 201(2), 120–136. doi: 10.1016/j.taap.2004.05.008 [
DOI:10.1016/j.taap.2004.05.008]
4. Behnam-Rasouli, M., Nikravesh, M. R., Mahdavi-Shahri, N., & Tehranipour, M. (2000). Post-operative time effects after sciatic nerve crush on the number of alpha motoneurons, using a stereological counting method (Disector). Iranian Biomedical Journal, 4(1), 45-9.
5. Brantsæter, A. L., Haugen, M., Mul, A. de., Bjellaas, T., Becher, G., Klaveren, J. V., et al. (2008). Exploration of different methods to assess dietary acrylamide exposure in pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Food and Chemical Toxicology, 46(8), 2808–14. doi: 10.1016/j.fct.2008.05.020 [
DOI:10.1016/j.fct.2008.05.020]
6. Clendeninn, N. J., Petraitis, M., & Simon, E. J. (1976). Ontological development of opiate receptors in rodent brain. Brain Research, 118(1), 157–60. doi: 10.1016/0006-8993(76)90852-0 [
DOI:10.1016/0006-8993(76)90852-0]
7. Duarte-Salles, T., Von Stedingk, H., Granum, B., Gützkow, K. B., Rydberg, P., Törnqvist, M., et al. (2012). Dietary acrylamide intake during pregnancy and fetal growth—results from the Norwegian mother and child cohort study (MoBa). Environmental Health Perspectives, 121(3). doi: 10.1289/ehp.1205396 [
DOI:10.1289/ehp.1205396]
8. El-Sayyad, H. I., El-Gammal, H. L., Habak, L. A., Abdel-Galil, H. M., Fernando, A., Gaur, R. L., et al. (2011). Structural and ultrastructural evidence of neurotoxic effects of fried potato chips on rat postnatal development. Nutrition, 27(10), 1066–75. doi: 10.1016/j.nut.2011.06.008 [
DOI:10.1016/j.nut.2011.06.008]
9. Fang, Y. Z., Yang, S., & Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition, 18(10), 872–79. doi: 10.1016/s0899-9007(02)00916-4. [
DOI:10.1016/S0899-9007(02)00916-4]
10. Friedman, M. (2003). Chemistry, biochemistry, and safety of acrylamide. A Review. Journal of Agricultural and Food Chemistry, 51(16), 4504-26. doi: 10.1021/jf030204 . [
DOI:10.1021/jf030204]
11. Gold, B. G., Griffin, J. W., & Price, D. (1985). Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration. Journal of Neuroscience, 5(7), 1755-68. PMID: 2410575 [
PMID]
12. Heidari, Z., & Mahmoudzadeh-Sagheb, H. (2012). Quantitative study of volumetric changes of cerebellum in male adult rat following lithium administration. International Journal of High Risk Behaviors and Addiction, 1(2), 66-70. doi: 10.5812/ijhrba.4187 [
DOI:10.5812/ijhrba.4187]
13. Jacobson, M. (2013). Developmental neurobiology. Berlin: Springer.
14. Kopańska, M., Lukáč, N., Kapusta, E., & Formicki, G. (2015). Acrylamide influence on activity of acetylcholinesterase, thiol groups, and malondialdehyde content in the brain of swiss mice. Journal of Biochemi-cal and Molecular Toxicology, 362(11), 121-34. [
DOI:10.1002/jbt.21717]
15. Lehning, E., Balaban, C., Ross, J., & LoPachin, R. (2003). Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord. Neurotoxicology. 24(1),109-23. PMID: 12564387
https://doi.org/10.1016/S0161-813X(02)00155-9 [
DOI:10.1016/S0161-813X(02)00192-4]
16. LoPachin, R. M. (2005) Acrylamide neurotoxicity: neurological, morhological and molecular endpoints in animal models. In: M. Friedman, D. Mottram (Eds.), Chemistry and Safety of Acrylamide in Food. Advances in Experimental Medicine and Biology, Vol 561 (pp. 21-37). Berlin: Springer. [
DOI:10.1007/0-387-24980-X_2]
17. Machlin, L. J., & Bendich, A. (1987). Free radical tissue damage: protective role of antioxidant nutrients. The FASEB Journal, 1(6), 441–45. doi: 10.1096/fasebj.1.6.3315807 [
DOI:10.1096/fasebj.1.6.3315807]
18. Martin, A., Janigian, D., Shukitt-Hale, B., Prior, R. L., & Joseph, J. A. (1999). Effect of vitamin E intake on levels of vitamins E and C in the central nervous system and peripheral tissues: implications for health recommendations. Brain Research, 845(1), 50–9. doi: 10.1016/s0006-8993(99)01923-x [
DOI:10.1016/S0006-8993(99)01923-X]
19. Ou, S., Shi, J., Huang, C., Zhang, G., Teng, J., Jiang, Y., et al. (2010). Effect of antioxidants on elimination and formation of acrylamide in model reaction systems. Journal of Hazardous Materials, 182(1-3), 863–68. doi: 10.1016/j.jhazmat.2010.06.124 [
DOI:10.1016/j.jhazmat.2010.06.124]
20. Raju, K. T., Venkataswamy, M., Subbaiah, K., Suman, B., Meenabai, M., & Rao, K. (2013). Depletion of vitamin-C and glutathione by acrylamide causes damage to hippocampus region of brain in chick embryo. International Journal of Advances in Pharmaceutical Research, 4(3), 1471-9.
21. Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., & Törnqvist, M. (2003). Investigations of factors that influence the acrylamide content of heated foodstuffs. Journal of Agricultural and Food Chemistry, 51(24), 7012-8. doi: 10.1021/jf034649+ [
DOI:10.1021/jf034649]
22. Sakr, S. A., Badawy, G. M., El-Sayyad, H. I., & Afify, H. S. (2011). Adverse effects of acrylamide on the developing retina of albino rats. Journal of Basic and Applied Scientific Research, 1(7), 706-12.
23. Schmitz, C., & Hof, P. R. (2005). Design-based stereology in neuroscience. Neuroscience, 130(4), 813–31. doi: 10.1016/j.neuroscience.2004.08.050 [
DOI:10.1016/j.neuroscience.2004.08.050]
24. Shuming, C., Jilin, F., & Xichun, Z. (2009). The moderating role of dark soy sauce to acrylamide-induced oxidative stress and neurophysiological perturbations in rats. Toxicology Mechanisms and Methods, 19(6-7), 434–440. doi: 10.1080/15376510903136895 [
DOI:10.1080/15376510903136895]
25. Sidman, R. L., & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62(1), 1–35. doi: 10.1016/0006-8993(73)90617-3 [
DOI:10.1016/0006-8993(73)90617-3]
26. Singhal, R. S., Kennedy, J. F., Gopalakrishnan, S. M., Kaczmarek, A., Knill, C. J., & Akmar, P. F. (2008). Industrial production, processing, and utilization of sago palm-derived products. Carbohydrate Polymers, 72(1), 1–20. doi: 10.1016/j.carbpol.2007.07.043 [
DOI:10.1016/j.carbpol.2007.07.043]
27. Sörgel, F., Weissenbacher, R., Kinzig-Schippers, M., Hofmann, A., Illauer, M., Skott, A., et al. (2002). Acrylamide: Increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy, 48(6), 267–74. doi: 10.1159/000069715 [
DOI:10.1159/000069715]
28. Tilson, H. A., & Cabe, P. A. (1978). Strategy for the assessment of neurobehavioral consequences of environmental factors. Environmental Health Perspectives, 26, 287–299. doi: 10.1289/ehp.7826287 [
DOI:10.1289/ehp.7826287]
29. Trenkner, E. (1977). Histogenesis of mouse cerebellum in microwell cultures. Cell reaggregation and migration, fiber and synapse formation. The Journal of Cell Biology, 75(3), 915–940. doi: 10.1083/jcb.75.3.915 [
DOI:10.1083/jcb.75.3.915]
30. Tunç, A. T., Turgut, M., Aslan, H., Sahin, B., Yurtseven, M. E., & Kaplan, S. (2006). Neonatal pinealectomy induces Purkinje cell loss in the cerebellum of the chick: A stereological study. Brain Research, 1067(1), 95–102. doi: 10.1016/j.brainres.2005.10.011 [
DOI:10.1016/j.brainres.2005.10.011]
31. Volterra, A., Trotti, D., Tromba, C., Floridi, S., & Racagni, G. (1994). Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. The Journal of Neuroscience, 14(5), 2924-32. PMID: 7910203 [
PMID]
32. Villringer, A., Them, A., Lindauer, U., Einhaupl, K., & Dirnagl, U. (1994). Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circulation Research, 75(1), 55–62. doi: 10.1161/01.res.75.1.55 [
DOI:10.1161/01.RES.75.1.55]
33. West, M. J., Slomianka, L., & Gundersen, H. J. G. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record, 231(4), 482–497. doi: 10.1002/ar.1092310411 [
DOI:10.1002/ar.1092310411]
34. West, M. J. (1999). Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends in Neurosciences, 22(2), 51–61. doi: 10.1016/s0166-2236(98)01362-9 [
DOI:10.1016/S0166-2236(98)01362-9]
35. Zeisel, S. H. (2004). Nutritional importance of choline for brain development. Journal of the American College of Nutrition, 23(sup6), 621S–626S. doi: 10.1080/07315724.2004.10719433 [
DOI:10.1080/07315724.2004.10719433]