1. Akaika, A., Takada-Takatori, Y., Kume, T., Izumi, Y. (2010). Mechanisms of neuroprotective effects of nicotine and acetylcholinestrase inhibitors: role of α4 and α7 receptors in neuroprotection. Journal Molecular Neuroscience, 40(1-2), 211-6. [DOI:10.1007/s12031-009-9236-1] [
DOI:10.1007/s12031-009-9236-1]
2. Andra´ Sfalvy, B. K., Makara, J. K., Johnston, D., Magee, J. C. (2008). Alteredsynaptic and non-synaptic properties of CA1 pyramidal neurons in Kv4.2 knockout mice. The Journal of Physiology, 586(16), 3881–92. [DOI:10.1113/jphysiol.2008.154336] [
DOI:10.1113/jphysiol.2008.154336]
3. Arias, E., Gallego-Sandin, S., Villarroya, M., Garcia, A. C., & Lopez, M. G. (2005). Unequal neuroprotection afforded by the acetylcholineestrase inhibitors galantamine, donepezil and rivastigmine in SH-SY5Y neuroblastoma cells: Role of nicotinic receptors. The Journal of Pharmacology and Experimental Therapeutics, 315(3), 1349-53. [DOI:10.1124/jpet.105.090365] [
DOI:10.1124/jpet.105.090365]
4. Bloodgood, B. L., Giessel, A. J., & Sabatini, B. L. (2009). Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biology, 7(9), e1000190. [DOI:10.1371/journal.pbio.1000190] [
DOI:10.1371/journal.pbio.1000190]
5. Buchanan, K. A, Petrovic, M. M., Chamberlain, S. E., Marrion, N. V., & Mellor, J. R. (2010). Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron, 68(5), 963-84. [DOI:10.1016/j.neuron.2010.11.018] [
DOI:10.1016/j.neuron.2010.11.018]
6. Cutuli, D., Foti, F., Mandolesi, L., De Bartolo, P., Bgelfo, F., & Federice, F. (2009). Cognitive performance of cholinergically depleted rats following chronic donepezil administration. Journal of Alzheimerʻs Disease, 17(1), 161-76. [DOI:10.3233/JAD-2009-1040] [
DOI:10.3233/JAD-2009-1040]
7. Donald, R., Humphrey, D. R., & Schmidt, E. M. (1990). Extracellular single-unit recording methods. Neurophysiological Techniques, 15(2), 1-64. [DOI:10.1385/0-89603-185-3:1.] [
DOI:10.1385/0-89603-185-3:1]
8. Dutar, P., Bassant, M. H., Senut, M. C., & Lamour, Y. (1995). The septohippocampal pathway: structure and function of a central cholinergic system. Physiological Review, 75(2), 393–427. [DOI:10.1152/physrev.1995.75.2.393] [
DOI:10.1152/physrev.1995.75.2.393]
9. Easton, A., Sankarana, S., Tanghe, A., Terwel, D., Lin, A., & Hoane, N. (2013) Effects of sub-chronic donepezil on brain Aβ and cognition in a mouse model of alzheimerʻs disease. Psychopharmacology, 230(2), 279-89. [DOI:10.1007/s00213-013-3152-3] [
DOI:10.1007/s00213-013-3152-3]
10. Faber, E. S., Delaney, A. J., Power, J. M., Sedlak, P. L., Crane, J. W., & Sah, P. (2008). Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala. Journal of Neuroscience, 28(43), 10803–13. [DOI:10.1523/JNEUROSCI.1796-08.2008.] [
DOI:10.1523/JNEUROSCI.1796-08.2008]
11. Fernandez, D., Nun, A., Borde, M., Malinow, R., & Bun, O. W. (2008). Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. Journal of Neuroscience, 28(6), 1469–78. [DOI:10.1523/JNEUROSCI.2723-07.2008] [
DOI:10.1523/JNEUROSCI.2723-07.2008]
12. Giessel, A. J., & Sabatini, B. L. (2010). M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron, 68(5), 936–47. [DOI:10.1016/j.neuron.2010.09.004] [
DOI:10.1016/j.neuron.2010.09.004]
13. Ginani, G. E., Tufik, S., Bueno, O. F., Pradella-Hallinan, M., Rusted, J., & Pompeia, S. (2011). Acute effects of donepezil in healthy young adults underline the fractionation of executive functioning. Journal Psychopharmacology, 25(11), 1508-16. [DOI:10.1177/0269881110391832] [
DOI:10.1177/0269881110391832]
14. Green, J. T., & Arenos, J. D. (2007). Hippocampal and cerebellar single unit recording during delay and trace eyeblink conditioning in the rat. Neurobiology of Learning and Memory, 87(2), 269-84. [DOI:10.1016/j.nlm.2006.08.014] [
DOI:10.1016/j.nlm.2006.08.014]
15. Grothe, M. G., Schuster, C., Bauer, F. Heinsen, H., Prudlo, J., & Teipel, S. J. (2014). Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer's disease dementia. Journal of Neurology, 261(10), 1939–48. [DOI:10.1007/s00415-014-7439-z] [
DOI:10.1007/s00415-014-7439-z]
16. Kapai, N., & Bukanova, J. (2012). Donepezil in a narrow concentration range augments control and impaired by beta-amyloid peptide hippocampal LTP in NMDAR-independent manner. Cellular and Molecular Neurobiology, 32(2), 219-26. [DOI:10.1007/s10571-011-9751-9] [
DOI:10.1007/s10571-011-9751-9]
17. Kapai, N., Solentseva, E., & Skrebitskii, V. G. (2012). Donepezil eliminates suppressive of β-amyloid peptid on long term potentiation in the hippocampus. Bulletin of Experimental Biology and Medicine, 149(1), 33-6. [DOI:10.1007/s10517-010-0868-5] [
DOI:10.1007/s10517-010-0868-5]
18. Kimura, M., Akasofu, S., Ogura, H., & Sawada, K. (2005). Protective effect of donepezil against A beta(1-40) neurotoxicity in rat septal neurons. Brain Research, 1047(1), 72-84. [DOI:10.1016/j.brainres.2005.04.014] [
DOI:10.1016/j.brainres.2005.04.014]
19. Kume, T., Sugimoto, M., Takada, Y., Yamaguchi, T., Yonezawa, A., & Katsuki, H. (2005). Up-regulation of nicotinic acetylcholine receptors by central-type acetylcholineestrase inhibitors in ratcortical neurons. European Journal of Pharmacology, 527(1-3), 77-85. [DOI:10.1016/j.ejphar.2005.10.028] [
DOI:10.1016/j.ejphar.2005.10.028]
20. Lin, M. T., Luja, R., Watanabe, M., Adelman, J. P., & Maylie, J. (2008). SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses. Nature Neuroscience, 11(1), 170–7. [DOI:10.1038/nn2041] [
DOI:10.1038/nn2041]
21. Meuneir, J., Jeni, J., & Maurice, T. (2006). The anti-amnestic and neuroprotective effects of donepezil against amyloid beta 25-35 peptide induced toxicity in mice involve an interaction with the sigma 1 receptor. British Journal of Pharmacology, 149(8), 998-1012. [DOI:10.1038/sj.bjp.0706927] [
DOI:10.1038/sj.bjp.0706927]
22. Meyer, E. M., Arendash, G. W., Judkins, J. H., Ying, L., Wade, C., & Kem, W. R. (1987). Effects of nucleus basalis lesions on the muscarinic and nicotinic modulation of [3H] acetylcholine release in the rat cerebral cortex. Journal of Neurochemistry, 49(6), 1758-62. [DOI:10.1111/j.1471-4159.1987.tb02433.x] [
DOI:10.1111/j.1471-4159.1987.tb02433.x]
23. Moriguch, S., Shioda, N., Han, F., Yeh, J. Z., & Narahashi, T. (2005). Modulation of N-methyl-D-aspartate receptors by donepezil in rat cortical neurons. Journal of Pharmacology and Experimental Therapeutics, 315(1), 125-35. [DOI:10.1124/jpet.105.087908] [
DOI:10.1124/jpet.105.087908]
24. Ngo-Anh, T. J., Bloodgood, B. L., Lin, M., Sabatini, B. L., Maylie, J., & Adelman, J. P. (2005). SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neuroscience, 8(5), 642–9. [DOI:10.1038/nn1449] [
DOI:10.1038/nn1449]
25. Noetzli, M., & Eap, C. (2013). Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimerʻs disease. Clinical Pharmacokinetics, 52(4), 225-41. [DOI:10.1007/s40262-013-0038-9] [
DOI:10.1007/s40262-013-0038-9]
26. Park, J. Y., & Spruston, N. (2012). Synergistic actions of metabotropic acetylcholine and glutamate receptors on the excitability of hippocampal CA1 pyramidal neurons. Journal of Neuroscience, 32(18), 6081–91. [DOI:10.1523/JNEUROSCI.6519-11.2012] [
DOI:10.1523/JNEUROSCI.6519-11.2012]
27. Rabiei, Z., Rafieian-Kopaei, M., Heidarian, E., Saghaei, E., & Mokhtari, S. H. (2014). Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus basalis of meynert in rat. Neurochemical Research, 39(2), 353–60. [DOI:10.1007/s11064-013-1232-8] [
DOI:10.1007/s11064-013-1232-8]
28. Stackman, R. W., Hammond, R. S., Linardatos, E., Gerlach, A., Maylie, J., Adelman, J. P., et al. (2002). Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. Journal of Neuroscience, 22(23), 10163–71. [DOI:10.1523/JNEUROSCI.22-23-10163.2002] [
DOI:10.1523/JNEUROSCI.22-23-10163.2002]
29. Umont, D., & Beal, M. F. (2011). Neurorotective strategies involving ROS in alzheimerʻs disease. Free Radical Biology & Medicine, 51(5), 1014-26. [DOI:10.1016/j.freeradbiomed.2010.11.026] [
DOI:10.1016/j.freeradbiomed.2010.11.026]
30. Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., & DeLong, M. R. (1981). Alzheimer's disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Annals of Neurology, 10(2), 122-6. [DOI:10.1002/ana.410100203] [
DOI:10.1002/ana.410100203]
31. Wu, C. K., Thal, L., Pizzo, D., Hansen, L., Masliah, E., & Geula, C. (2005). Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer's disease. Experimental Neurology, 195(2), 484-96. [DOI:10.1016/j.expneurol.2005.06.020] [
DOI:10.1016/j.expneurol.2005.06.020]
32. Yamada-Hanff, J., & Bean, B. (2013). Persistent sodium current drives conditional pacemaking in CA1 pyramidal neurons under muscarinic stimulation. Journal of Neuroscience, 33(38), 15011–21. [DOI:10.1523/JNEUROSCI.0577-13.2013] [
DOI:10.1523/JNEUROSCI.0577-13.2013]
33. Zhang, Z., Chen, R., An, W., Wang, C., Liao, G., & Dong, X. (2016). A novel acetylcholinesterase inhibitor and calcium channel blocker SCR-1693 improves Aβ25-35 impaired mouse cognitive function. Psychopharmacology, 233(4), 599-613. [DOI:10.1007/s00213-015-4133-5] [
DOI:10.1007/s00213-015-4133-5]