Volume 9, Issue 5 (September & October 2018 2018)                   BCN 2018, 9(5): 347-356 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholamzadeh R, Eskandari M, Bigdeli M R, Mostafavi H. Erythropoietin Pretreatment Effect on Blood Glucose and Its Relationship With Inflammatory Factors After Brain Ischemic-Reperfusion Injury in Rats. BCN 2018; 9 (5) :347-356
URL: http://bcn.iums.ac.ir/article-1-1015-en.html
1- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
2- Department of Animal Science, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran.
Abstract:  
Introduction: Brain Ichemic-Reperfusion Injury (IRI) activates different pathophysiological processes. It also changes physiological parameters such as Blood Glucose (BG) level. An increase in BG after stroke is associated with poor clinical outcomes. Erythropoietin has been shown to be effective on both reducing inflammation and BG level. Therefore, in this study the erythropoietin pretreatment effect on BG and its relationship with inflammatory markers after brain IRI was investigated.
Methods: Thirty adult male Wistar rats were randomly divided into 5 groups: sham, control and 3 pretreatment groups: single dose, double dose, and triple dose that received 1000 U/kg of erythropoietin before stroke induction in different times intraperitoneally. A rat model of IRI was established by Middle Cerebral Artery Occlusion (MCAO) for 60 minutes. Infarct volume, neurological defects, Interleukin-1α (IL-1α) and IL-6 serum levels were evaluated 24 hours after reperfusion. Also BG was measured after 1, 6, and 24 hours.
Results: Single dose of erythropoietin significantly decreased infarct volume and improved neurological defects which was associated with decreased serum level of IL-1α and IL-6 but higher doses of erythropoietin administration had adverse effects on histological, neurological, and inflammatory results. In addition, erythropoietin significantly increased BG in a dose- dependent manner. 
Conclusion: Erythropoietin could reduce brain IRI by reducing inflammation and BG stabilization. The results of the present study demonstrated a relationship between inflammatory factors and hyperglycemia after IRI and suggested that erythropoietin may be useful for preventing brain IRI, but its higher doses should be used with caution due to possible side effects. 
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2017/08/31 | Accepted: 2018/04/30 | Published: 2018/09/1

References
1. Bhalla, A., Wolfe, C., & Rudd, A. (2001). Management of acute physiological parameters after stroke. An International Journal of Medicine, 94(3), 167-72. [DOI:10.1093/qjmed/94.3.167] [PMID] [DOI:10.1093/qjmed/94.3.167]
2. Bigdeli, M. R. (2008). [The threshold assessment of ischemic tolerance induced by normobaric hyperoxia in rat stroke model (Persian)]. Research in Medicine, 32(2), 95-103.
3. Bigdeli, M., Mostafavi, H., Gholamzadeh, R., & Eskandari, M. (2016). [Pretreatment effect of erythropoietin on brain tissuewater content after brain ischemia induction by Middle Cerebral Artery Occlusion (MCAO) in male wistar rats (Persian)]. International Journal of Medical Reviewes, 3(1), 389-400.
4. Bigdeli, M. R., & Mohagheghi, F. (2014). The pathophysiology of brain ischemia and ischemic preconditioning. Zahedan Journal of Research in Medical Sciences, 16(2), 1-5.
5. Ceriello, A., Novials, A., Ortega, E., La Sala, L., Pujadas, G., Testa, R., et al. (2012). Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes, 61(11), 2993-7. [DOI:10.2337/db12-0224] [PMID] [PMCID] [DOI:10.2337/db12-0224]
6. Chen, L. N., Sun, Q., Liu, S. Q., Hu, H., Lv, J., Ji, W. J., et al. (2015). Erythropoietin improves glucose metabolism and pancreatic β-cell damage in experimental diabetic rats. Molecular Medicine Reports, 12(4), 5391-8. [DOI:10.3892/mmr.2015.4006] [DOI:10.3892/mmr.2015.4006]
7. Chiang, T., Messing, R. O., & Chou, W. H. (2011). Mouse model of middle cerebral artery occlusion. Journal of Visualized Experiments, 48, e2761. [DOI:10.3791/2761] [DOI:10.3791/2761]
8. Dietrich, W. D., Alonso, O., & Busto, R. (1993). Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats. Stroke, 24(1), 111-6. [DOI:10.1161/01.STR.24.1.111] [PMID] [DOI:10.1161/01.STR.24.1.111]
9. Elshiekh, M., Kadkhodaee, M., Seifi, B., Ranjbaran, M., & Ahghari, P. (2015). Ameliorative effect of recombinant human erythropoietin and ischemic preconditioning on renal ischemia reperfusion injury in rats. Nephro-Urology Monthly, 7(6), e31152. [DOI:10.5812/numonthly.31152] [PMID] [PMCID] [DOI:10.5812/numonthly.31152]
10. Gentile, N. T., Seftchick, M. W., Huynh, T., Kruus, L. K., & Gaughan, J. (2006). Decreased mortality by normalizing blood glucose after acute ischemic stroke. Academic Emergency Medicine, 13(2), 174-80. [DOI:10.1197/j.aem.2005.08.009] [PMID] [DOI:10.1197/j.aem.2005.08.009]
11. Gholamzadeh, R., Eskandari, M., Mostafavi, H., & Bigdeli, M. R. (2016). A review on the pretreatment effect of EPO on ischemic tolerance in different tissues with an approach to the tissue protection mechanisms. International Journal of Medical Reviews, 3(1), 389-400.
12. Gul, M., Yasim, A., & Aral, M. (2009). The levels of cytokines in rats following the use of prophylactic agents in vascular graft infection. Bratislavske Lekarske Listy, 111(6), 316-20.
13. Kai-Lan, W., & Si, Z. (2015). Pretreatment with erythropoietin attenuates intestinal ischemia reperfusion injury by further promoting PI3K/Akt signaling activation. Transplantation Proceedings, 47(6), 1639-45. [DOI:10.1016/j.transproceed.2015.02.023] [PMID] [DOI:10.1016/j.transproceed.2015.02.023]
14. Liao, J. G., Li, M. Y., Wang, X. H., & Xie, Q. (2016). The protective effect of erythropoietin pretreatment on ischemic acute renal failure in rats. Journal of Acute Disease, 5(5), 408-12. [DOI:10.1016/j.joad.2016.08.008] [DOI:10.1016/j.joad.2016.08.008]
15. Lindsberg, P. J., & Roine, R. O. (2004). Hyperglycemia in acute stroke. Stroke, 35(2), 363-4. [DOI:10.1161/01.STR.0000115297.92132.84] [PMID] [DOI:10.1161/01.STR.0000115297.92132.84]
16. Liu, Q. S., Cheng, Z. W., Xiong, J. G., Cheng, S., He, X. F., & Li, X. C. (2015). Erythropoietin pretreatment exerts anti-inflammatory effects in hepatic ischemia/reperfusion-injured rats via suppression of the TLR2/NF-κB pathway. Transplantation Proceedings, 47(2), 283-9. [DOI:10.1016/j.transproceed.2014.10.045] [PMID] [DOI:10.1016/j.transproceed.2014.10.045]
17. Mehta, S. (2003). The glucose paradox of cerebral ischaemia. Journal of Postgraduate Medicine, 49(4), 299-301. [PMID] [PMID]
18. Meng, R., Zhu, D., Bi, Y., Yang, D., & Wang, Y. (2013). Erythropoietin inhibits gluconeogenesis and inflammation in the liver and improves glucose intolerance in high-fat diet-fed mice. PloS One, 8(1), e53557. [DOI:10.1371/journal.pone.0053557] [PMID] [PMCID] [DOI:10.1371/journal.pone.0053557]
19. Nandra, K. K., Collino, M., Rogazzo, M., Fantozzi, R., Patel, N. S., & Thiemermann, C. (2013). Pharmacological preconditioning with erythropoietin attenuates the organ injury and dysfunction induced in a rat model of hemorrhagic shock. Disease Models & Mechanisms, 6(3), 701-9. [DOI:10.1242/dmm.011353] [PMID] [PMCID] [DOI:10.1242/dmm.011353]
20. Niu, H. S., Chang, C. H., Niu, C. S., Cheng, J. T., & Lee, K. S. (2016). Erythropoietin ameliorates hyperglycemia in type 1-like diabetic rats. Drug Design, Development And Therapy, 10, 1877-84. [PMID] [PMCID] [PMID] [PMCID]
21. O'neill, P., Davies, I., Fullerton, K., & Bennett, D. (1991). Stress hormone and blood glucose response following acute stroke in the elderly. Stroke, 22(7), 842-7. [DOI:10.1161/01.STR.22.7.842] [PMID] [DOI:10.1161/01.STR.22.7.842]
22. Paschos, N., Lykissas, M. G., & Beris, A. E. (2008). The role of erythropoietin as an inhibitor of tissue ischemia. International Journal of Biological Sciences, 4(3), 161-8. [DOI:10.7150/ijbs.4.161] [PMID] [PMCID] [DOI:10.7150/ijbs.4.161]
23. Quinn, T., Dawson, J., & Walters, M. (2011). Sugar and stroke: Cerebrovascular disease and blood glucose control. Cardiovascular Therapeutics, 29(6), e31-e42. [DOI:10.1111/j.1755-5922.2010.00166.x] [PMID] [DOI:10.1111/j.1755-5922.2010.00166.x]
24. Radermecker, R. P., & Scheen, A. J. (2010). Management of blood glucose in patients with stroke. Diabetes & Metabolism, 36(3), S94-S9. [DOI:10.1016/S1262-3636(10)70474-2] [DOI:10.1016/S1262-3636(10)70474-2]
25. Ramirez, G., Bittle, P. A., Sanders, H., Rabb, H., & Bercu, B. B. (1994). The effects of corticotropin and growth hormone releasing hormones on their respective secretory axes in chronic hemodialysis patients before and after correction of anemia with recombinant human erythropoietin. The Journal of Clinical Endocrinology & Metabolism, 78(1), 63-9. [DOI:10.1210/jcem.78.1.8288716] [DOI:10.1210/jcem.78.1.8288716]
26. Rong, R., & Xijun, X. (2015). Erythropoietin pretreatment suppresses inflammation by activating the PI3K/Akt signaling pathway in myocardial ischemia-reperfusion injury. Experimental and Therapeutic Medicine, 10(2), 413-8. [DOI:10.3892/etm.2015.2534] [PMID] [PMCID] [DOI:10.3892/etm.2015.2534]
27. Shah, S. (2000). Stroke pathophysiology. Foundation for Education and Research in Neurological Emergencies. Retrieved from: https://pdfs.semanticscholar.org/545d/7e83d7938031a1e8179ef76757ccd34ba13c.pdf
28. Shukla, V., Shakya, A. K., Perez-Pinzon, M. A., & Dave, K. R. (2017). Cerebral ischemic damage in diabetes: An inflammatory perspective. Journal of Neuroinflammation, 14(1), 21. [DOI:10.1186/s12974-016-0774-5] [PMID] [PMCID] [DOI:10.1186/s12974-016-0774-5]
29. Wong, A. A., & Read, S. J. (2008). Early changes in physiological variables after stroke. Annals of Indian Academy of Neurology, 11(4), 207-20. [DOI:10.4103/0972-2327.44555] [PMID] [PMCID] [DOI:10.4103/0972-2327.44555]
30. Wu, H., Ren, B., Zhu, J., Dong, G., Xu, B., Wang, C., et al. (2006). Pretreatment with recombined human erythropoietin attenuates ischemia-reperfusion-induced lung injury in rats. European Journal of Cardio-Thoracic Surgery, 29(6), 902-7. [DOI:10.1016/j.ejcts.2006.02.036] [PMID] [DOI:10.1016/j.ejcts.2006.02.036]
31. Wu, S. K., Yang, M. T., Kang, K. H., Liou, H. C., Lu, D. H., Fu, et al. (2014). Targeted delivery of erythropoietin by transcranial focused ultrasound for neuroprotection against ischemia/reperfusion-induced neuronal injury: A long-term and short-term study. PloS One, 9(2), e90107. [DOI:10.1371/journal.pone.0090107] [PMID] [PMCID] [DOI:10.1371/journal.pone.0090107]
32. Yao, M., Ni, J., Zhou, L., Peng, B., Zhu, Y., & Cui, L. (2016). Elevated fasting blood glucose is predictive of poor outcome in non-diabetic stroke patients: A sub-group analysis of SMART. PloS One, 11(8), e0160674. [DOI:10.1371/journal.pone.0160674] [PMID] [PMCID] [DOI:10.1371/journal.pone.0160674]
33. Yip, H. K., Tsai, T. H., Lin, H. S., Chen, S. F., Sun, C. K., Leu, S., et al. (2011). Effect of erythropoietin on level of circulating endothelial progenitor cells and outcome in patients after acute ischemic stroke. Critical Care, 15(1), R40. [DOI:10.1186/cc10002] [PMID] [PMCID] [DOI:10.1186/cc10002]
34. Yu, D., Fan, Y., Sun, X., Yao, L., & Chai, W. (2016). Effects of erythropoietin preconditioning on rat cerebral ischemiareperfusion injury and the GLT1/GLAST pathway. Experimental and Therapeutic Medicine, 11(2), 513-8. [DOI:10.3892/etm.2015.2919] [PMID] [PMCID] [DOI:10.3892/etm.2015.2919]
35. Yuen, C. M., Sun, C. K., Lin, Y. C., Chang, L. T., Kao, Y. H., Yen, C. H., et al. (2011). Combination of cyclosporine and erythropoietin improves brain infarct size and neurological function in rats after ischemic stroke. Journal of Translational Medicine, 9(1), 141-55. [DOI:10.1186/1479-5876-9-141] [PMID] [PMCID] [DOI:10.1186/1479-5876-9-141]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb