Volume 12, Issue 5 (September & October 2021)                   BCN 2021, 12(5): 587-596 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aliyari H, Sahraei H, Golabi S, Kazemi M, Daliri M R, Minaei-Bidgoli B. The Effect of Brain Teaser Games on the Attention of Players Based on Hormonal and Brain Signals Changes. BCN. 2021; 12 (5) :587-596
URL: http://bcn.iums.ac.ir/article-1-1635-en.html
1- Center for Human-Engaged Computing, Kochi University of Technology, Kochi, Japan.
2- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
3- Department of Medical Physiology, School of Medicine, Abadan University of Medical sciences, Abadan, Iran.
4- Department of Electrical Engineering, School of Electrical Engineering, University of Science and Technology, Tehran, Iran.
5- Departmentl of Computer Engineering, School of Computer Engineering, University of Science and Technology, Tehran, Iran.
Abstract:  
Introduction: Computer games as an interactive media play a significant role in the cognitive and behavioral health of the players. Computer games have either positive or negative effects on cognitive indices among players. They also directly influence the lifestyle and quality of life of children, adolescents, and young adults. The present study aimed to evaluate the short-term effects of the brain teaser game on players.
Methods: Among 45 male volunteers, 40 subjects with an average age of 20 years were recruited and divided into two groups: the experimental group and the control group. All required tests were conducted before and after the intervention (playing the game) on the experimental group. Also, the same tests were performed on the control group, in which the participants were not allowed to play the game. All participants completed a questionnaire comprised demographic characteristics and specific information regarding the game (e.g., game style and hours spent on playing the game). The saliva samples were collected to measure levels of cortisol and α-amylase. The salivary α-amylase (sAA) and cortisol levels were analyzed using the relevant ELISA kits. The cognitive tests were performed using PASAT software before and after the game to assess the perceptual-cognitive abilities of the players. The brain waveforms were acquired by a 14-channel Emotiv brain signal recording device before and after the game. Data analysis was conducted in R and MATLAB software.
Results: PASAT test suggested that mental health and sustained attention were significantly improved after the intervention. In addition, the sAA and salivary cortisol levels were significantly higher before the intervention. The results of the brainwave analysis revealed that stress index and attention were significantly higher before the intervention.
Conclusion: Findings of the present study suggest that brain teaser games positively influence the central nervous system and activate stress path, leading to changes in brain signals and subsequently improved cognitive elements, such as attention among players.
Full-Text [PDF 683 kb]   |   |   Full-Text (HTML)   
Type of Study: Original | Subject: Computational Neuroscience
Received: 2019/10/21 | Accepted: 2020/08/2 | Published: 2021/09/1

References
1. Boskey, A.L. and R. Coleman, Aging and bone. Journal of dental research, 2010. 89(12): p. 1333-1348. [DOI:10.1177/0022034510377791] [PMID] [PMCID]
2. Tommasini, S.M., P. Nasser, and K.J. Jepsen, Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties. Bone, 2007. 40(2): p. 498-505. [DOI:10.1016/j.bone.2006.08.012] [PMID]
3. Bonewald, L.F., The amazing osteocyte. Journal of bone and mineral research, 2011. 26(2): p. 229-238. [DOI:10.1002/jbmr.320] [PMID] [PMCID]
4. Bijeh, N., et al., Effect of aerobic exercises on markers of bone metabolism in middle-aged women. Kowsar Medical Journal, 2011. 16(2): p. 129-135.
5. Frost, H., The biology of fracture healing. An overview for clinicians. Part II. Clinical orthopaedics and related research, 1989(248): p. 294-309. [DOI:10.1097/00003086-198911000-00046]
6. Ellies, D.L., et al., Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. Journal of Bone and Mineral Research, 2006. 21(11): p. 1738-1749. [DOI:10.1359/jbmr.060810] [PMID]
7. Schoppet, M., K.T. Preissner, and L.C. Hofbauer, RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arteriosclerosis, thrombosis, and vascular biology, 2002. 22(4): p. 549-553. [DOI:10.1161/01.ATV.0000012303.37971.DA] [PMID]
8. Niu, T. and C.J. Rosen, The insulin-like growth factor-I gene and osteoporosis: a critical appraisal. Gene, 2005. 361: p. 38-56. [DOI:10.1016/j.gene.2005.07.016] [PMID]
9. Jilka, R.L. and C.A. O'Brien, The role of osteocytes in age-related bone loss. Current osteoporosis reports, 2016. 14(1): p. 16-25. [DOI:10.1007/s11914-016-0297-0] [PMID]
10. Brahm H, Piehl - Aulin K, Liunghall S. Bone Metabolism during Exercise and Recovery:The influence of plasona volume and physical Fithness. J Am Geratr soc. 1996. p. 756-62.
11. Palmas S , Hinton R, Scohrector T, Thomas R. weight-bearing aerobic exercise increase markers of bone formation during short term weight loss in overweight and oboes men and woman. J Metabolism. 2006. p.1616-1618. [DOI:10.1016/j.metabol.2006.07.023] [PMID]
12. Gianni F, Maddalozzo et al. The effect of hormone replacement therapy and resistance training on spine bone mineral density postmenopausal women.bone. 2006. p. 1244-125. [DOI:10.1016/j.bone.2006.12.059] [PMID]
13. Marques, E.A., et al., Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Experimental gerontology, 2011. 46(7): p. 524-532. [DOI:10.1016/j.exger.2011.02.005] [PMID]
14. West, S.L., J.L. Scheid, and M.J. De Souza, The effect of exercise and estrogen on osteoprotegerin in premenopausal women. Bone, 2009. 44(1): p. 137-144. [DOI:10.1016/j.bone.2008.09.008] [PMID]
15. Shimamura, C., et al., Effect of decreased physical activity on bone mass in exercise-trained young rats. Journal of orthopaedic science, 2002. 7(3): p. 358-363. [DOI:10.1007/s007760200060] [PMID]
16. Sinaki, M., et al., Three-year controlled, randomized trial of the effect of dose-specified loading and strengthening exercises on bone mineral density of spine and femur in nonathletic, physically active women. Bone, 1996. 19(3): p. 233-244. [DOI:10.1016/8756-3282(96)00174-3]
17. Turner, C., Functional determinants of bone structure: beyond Wolff's law of bone transformation. 1992, Elsevier. [DOI:10.1016/8756-3282(92)90082-8]
18. Banfi, G., M. Corsi, and E. Galliera, Osteoprotegerin, RANK and RANKL are not modified by acute exercise in elite rugby players. The Journal of sports medicine and physical fitness, 2012. 52(2): p. 198-201.
19. Aido, M.I.F.d., The Influence of Age and Mechanical Loading on Bone Structure and Material Properties. 2015, Technische Universität Berlin.
20. Marques, E.A., et al., Response of bone mineral density, inflammatory cytokines, and biochemical bone markers to a 32-week combined loading exercise programme in older men and women. Archives of Gerontology and Geriatrics, 2013. 57(2): p. 226-233. [DOI:10.1016/j.archger.2013.03.014] [PMID]
21. Bailey C, Brooke-Wavell K. Exercise for optimising peak bone mass in women: Postgraduate symposium. Proceedings of the Nutrition Society. 2008;67(1):9-18. [DOI:10.1017/S0029665108005971] [PMID]
22. Kiuchi A, Shimegi S, Tanaka I, Izumo N, Fukuyama R, Nakamuta H, et al. Dose-response effects of exercise intensity on bone in ovariectomized rats. International Journal of Sport and Health Science. 2006;4:10-8. [DOI:10.5432/ijshs.4.10]
23. Song F, Jiang D, Wang T, Wang Y, Lou Y, Zhang Y, et al. Mechanical stress regulates osteogenesis and adipogenesis of rat mesenchymal stem cells through PI3K/Akt/GSK-3β/β-catenin signaling pathway. BioMed research international. 2017;2017. [DOI:10.1155/2017/6027402] [PMID] [PMCID]
24. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. Physical activity and bone health. Medicine & Science in Sports & Exercise. 2004;36(11):1985-96. [DOI:10.1249/01.MSS.0000142662.21767.58] [PMID]
25. Cui, S.F., et al., Similar responses of circulating microRNAs to acute high-intensity interval exercise and vigorous-intensity continuous exercise. Frontiers in physiology, 2016. [DOI:10.3389/fphys.2016.00102]
26. Markou KB, Mylonas P, Theodoropoulou A, Kontogiannis A, Leglise M, Vagenakis AG, et al. The influence of intensive physical exercise on bone acquisition in adolescent elite female and male artistic gymnasts. The Journal of Clinical Endocrinology & Metabolism. 2004;89(9):4383-7. [DOI:10.1210/jc.2003-031865] [PMID]
27. Maddalozzo G, Snow C. High intensity resistance training: effects on bone in older men and women. Calcified tissue international. 2000;66(6):399-404. [DOI:10.1007/s002230010081] [PMID]
28. Ziegler S, Niessner A, Richter B, Wirth S, Billensteiner E, Woloszczuk W, et al. Endurance running acutely raises plasma osteoprotegerin and lowers plasma receptor activator of nuclear factor κ B ligand. Metabolism. 2005;54(7):935-8. [DOI:10.1016/j.metabol.2005.02.009] [PMID]
29. Leandro CG, Levada AC, Hirabara SM, MANHAS-DE-CASTRO R, De-Castro CB, Curi R, et al. A program of moderate physical training for wistar rats based on maximal oxygen consumption. J Strength Cond Res. 2007;21(3):751-6. https://doi.org/10.1519/00124278-200708000-00016 [DOI:10.1519/R-20155.1] [PMID]
30. Fahrleitner A, Prenner G, Leb G, TscheliessniggKH, Piswanger-Sölkner C, ObermayerPietsch B,et al. Serum osteoprotegerin is a major determinantof bone density development andprevalentvertebral fracture status following cardiac transplantationBone 2003;32(1):96-106 [DOI:10.1016/S8756-3282(02)00926-2]
31. Ardawi MSM, Al‐Kadi HA, Rouzi AA, Qari MH. Determinants of serum sclerostin in healthy pre‐and postmenopausal women. Journal of Bone and Mineral Research. 2011;26(12):2812-22. [DOI:10.1002/jbmr.479] [PMID]
32. Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, ZwartSR, Smith SM. Serum sclerostin increases in healthy adult men during bedrest. J Clin Endocrinol Metab. 2012;97(9):E1736-40. [DOI:10.1210/jc.2012-1579] [PMID] [PMCID]
33. Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA,Pulvirenti I, Hawa G, Tringali G, Fiore CE. Increased sclerostin serum levelsassociated with bone formation and resorption markers in patients withimmobilization-induced bone loss. J Clin Endocrinol Metab. 2010;95(5):2248-53. [DOI:10.1210/jc.2010-0067] [PMID]
34. Lombardi G, Lanteri P, Colombini A, Mariotti M, Banfi G. Sclerostinconcentrations in athletes: role of load and gender. J Biol Regul HomeostAgents. 2012;26(1):157-63.
35. Sheng Z, Tong D, Ou Y, Zhang H, Zhang Z, Li S, Zhou J, Zhang J, Liao E.Serum sclerostin levels were positively correlated with fat mass and bonemineral density in central south Chinese postmenopausal women. ClinEndocrinol. 2012;76(6):797-801. [DOI:10.1111/j.1365-2265.2011.04315.x] [PMID]
36. Xu XJ, Shen L, Yang YP, Lu FR, Zhu R, Shuai B, Li CG, Wu MX. Serumsclerostin levels associated with lumbar spine bone mineral density andbone turnover markers in patients with postmenopausal osteoporosis. ChinMed J. 2013;126(13):2480-4. [DOI:10.1155/2013/534352] [PMID] [PMCID]
37. Silverman SL. Sclerostin. J Osteoporos. 2010;2010:941419. [DOI:10.4061/2010/941419] [PMID] [PMCID]
38. Compton JT, Lee FY. A review of osteocyte function and the emergingimportance of sclerostin. J Bone Joint Surg Am. 2014;96(19):1659-68. [DOI:10.2106/JBJS.M.01096] [PMID] [PMCID]
39. Shimamura C, Iwamoto J, Takeda T, Ichimura S, Abe H, Toyama Y. Effect of decreased physical activity on bone mass in exercise-trained young rats.J Orthop Sci. 2002;7(3):358-63. [DOI:10.1007/s007760200060] [PMID]
40. Bergström I, Parini P,Gustafsson SA,Andersson G, Brinck J. Physical training increases osteoprotegerin in postmenopausal women. Journal of bone and mineral metabolism. 2012;30(2):202-7. [DOI:10.1007/s00774-011-0304-6] [PMID]
41. Ardawi M-SM, Rouzi AA, Qari MH. Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. The Journal of Clinical Endocrinology & Metabolism. 2012;97(10):3691-9. [DOI:10.1210/jc.2011-3361] [PMID]
42. Gombos GC, Bajsz V, Pék E, Schmidt B, Sió E, Molics B, et al. Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskeletal Disorders. 2016;17(1):254. [DOI:10.1186/s12891-016-1109-5] [PMID] [PMCID]
43. Karaarslan S, Büyükyazi G, Taneli F, Ulman C, Tikiz C, GÜMÜŞER G, et al. Effects of different intensity resistance exercise programs on bone turnover markers, osteoprotegerin and receptor activator of nuclear factor kappa β ligand in postmenopausal women. Turkiye Klinikleri Journal of Medical Sciences. 2010;30(1):123-34. [DOI:10.5336/medsci.2008-8721]
44. Marques EA, Wanderley F, Machado L, Sousa F, Viana JL, Moreira-Gonçalves D, et al. Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Experimental gerontology. 2011;46(7):524-32. [DOI:10.1016/j.exger.2011.02.005] [PMID]
45. Ziegler S, Niessner A, Richter B, Wirth S, Billensteiner E, Woloszczuk W, et al. Endurance running acutely raises plasma osteoprotegerin and lowers plasma receptor activator of nuclear factor κ B ligand. Metabolism. 2005;54(7):935-8. [DOI:10.1016/j.metabol.2005.02.009] [PMID]
46. Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD. The effect of training status on the metabolic response of bone to an acute bout of exhaustive treadmill running. The Journal of Clinical Endocrinology & Metabolism. 2010;95(8):3918-25. [DOI:10.1210/jc.2009-2516] [PMID]
47. Dekker J, Nelson K, Kurgan N, Falk B, Josse A, Klentrou P. Wnt signaling-related osteokines and transforming growth factors before and after a single bout of plyometric exercise in child and adolescent females. Pediatric exercise science. 2017;29(4):504-12. [DOI:10.1123/pes.2017-0042] [PMID]
48. Kim TH, Chang JS, Park K-S, Park J, Kim N, Lee JI, et al. Effects of exercise training on circulating levels of Dickkpof-1 and secreted frizzled-related protein-1 in breast cancer survivors: A pilot single-blind randomized controlled trial. PLoS One. 2017;12(2):e0171771. [DOI:10.1371/journal.pone.0171771] [PMID] [PMCID]
49. Rahimi Saghand M, Rajabi H, Dehkhoda M, Hosseini A. The Effects of Eight Weeks High-Intensity Interval Training vs. Continuous Moderate-Intensity Training on Plasma Dickkopf-1 and Glycemic Control in Patients with Type 2 Diabetes. Annals of Applied Sport Science. 2020;8(2):0-.
50. Salehikiya A. Effect of endurance and resistance training on the improvement of bone: A densitometric and histomorphometric study in male osteoprotic rats. scientific journal of ilam university of medical sciences. 2016;23(7):90-100.
51. Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends in Endocrinology & Metabolism. 2009;20(5):230-6. [DOI:10.1016/j.tem.2009.02.001] [PMID]
52. Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers. Archives of biochemistry and biophysics. 2014;561:3-12. [DOI:10.1016/j.abb.2014.05.003] [PMID]
53. Marks Jr SC, Popoff SN. Bone cell biology: the regulation of development, structure, and function in the skeleton. American Journal of Anatomy. 1988;183(1):1-44. [DOI:10.1002/aja.1001830102] [PMID]
54. Yano K, Tsuda E, Washida N, Kobayashi F,Goto M, Harada A, et al. Immunological characterizationof circulating osteoprotegerin/osteoclastogenesisinhibitory factor: increasedserum concentrations in postmenopausalwomen with osteoporosis. J Bone Miner Res199914(4):518-27. [DOI:10.1359/jbmr.1999.14.4.518] [PMID]
55. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL,Spelsberg TC, Riggs BL. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999;140(9):4367-70. [DOI:10.1210/endo.140.9.7131] [PMID]
56. Liu JM, Zhao HY, Ning G, Zhao YJ, Chen Y,Zhang Zh, et al. Relationships between the changes of serum levels of OPG and RANKL with age, menopause, bone biochemical markers and bone mineral density in Chinese women aged 20-75. Calcif Tissue Int 2005;76(1):1-6. [DOI:10.1007/s00223-004-0007-2] [PMID]
57. Indridason OS, Franzson L, Sigurdsson G.Serum osteoprotegerin and its relationship with bone mineral density and markers of bone turnover. Osteoporos Int 2005;16(4):417-23.35. Khosla S, Arrighi HM, Melton LJ 3rd, Atkinson EJ, O'Fallon WM, Dunstan C, et al. Correlates of osteoprotegerin levels in women and men. Osteoporos Int 2002;13(5):394-9. [DOI:10.1007/s001980200045] [PMID]
58. Khosla S, Arrighi HM, Melton LJ 3rd, Atkinson EJ, O'Fallon WM, Dunstan C, et al. Correlates of osteoprotegerin levels in women and men. Osteoporos Int 2002;13(5):394-9. [DOI:10.1007/s001980200045] [PMID]
59. Franchimont N, Reenaers C, Lambert C, Belaiche J, Bours V, Malaise M, et al. Increased expression of receptor activator of NF-kappaB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn's disease patients. Clin Exp Immunol 2004;138(3):491-8. [DOI:10.1111/j.1365-2249.2004.02643.x] [PMID] [PMCID]
60. Uemura H, Yasui T, Miyatani Y, Yamada M, Hiyoshi M, Arisawa K, et al. Circulating profiles of osteoprotegerin and soluble receptor activator of nuclear factor kappaB ligand in postmenopausal women. J Endocrinol Invest 2008;31(2):163-8. [DOI:10.1007/BF03345584] [PMID]
61. Oh KW, Rhee EJ, Lee WY, Kim SW, Baek KH, Kang MI, et al. Circulating osteoprotegerin and receptor activator of NF-kappaB ligand system are associated with bone metabolism in middle-aged males. Clin Endocrinol (Oxf) 2005;62(1):92-8. [DOI:10.1111/j.1365-2265.2004.02179.x] [PMID]
62. Herrmann M, Herrmann W. The assessment of bone metabolism in female elite endurance athletes by biochemical bone markers. Clin Chem Lab Med 2004;42(12):1384-9. [DOI:10.1515/CCLM.2004.258] [PMID]
63. Hinton PS, Rector RS, Thomas TR. Weight-bearing, aerobic exercise increases markers of bone formation during short-term weight loss in overweight and obese men and women. Metabolism 2006;55(12):1616-8. [DOI:10.1016/j.metabol.2006.07.023] [PMID]
64. Daniel W.D.West,Nicholas A.Burd Aaron W.Staples. Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process. September 2010, Pages 1371-1375. [DOI:10.1016/j.biocel.2010.05.012] [PMID]
65. Hinton PS, Rector RS, Thomas TR. Weight-bearing, aerobic exercise increases markers of bone formation during short-term weight loss in overweight and obese men and women. Metabolism. 2006;55(12):1616-8. [DOI:10.1016/j.metabol.2006.07.023] [PMID]
66. Jemtland R, Holden M, Reppe S, Olstad OK, Reinholt FP, Gautvik VT, et al. Molecular disease map of bone characterizing the postmenopausal osteoporosis phenotype. Journal of bone and mineral research. 2011;26(8):1793-801. [DOI:10.1002/jbmr.396] [PMID]
67. Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross T, Lanyon L, et al. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporosis International. 2012;23(4):1225-34. [DOI:10.1007/s00198-011-1656-4] [PMID] [PMCID]
68. Bilezikian JP. Primer on the metabolic bone diseases and disorders of mineral metabolism: John Wiley & Sons; 2018.
69. Wieczorek-Baranowska A, Nowak A, Pilaczyńska-Szcześniak Ł. Osteocalcin and glucose metabolism in postmenopausal women subjected to aerobic training program for 8 weeks. Metabolism. 2012;61(4):542-5. [DOI:10.1016/j.metabol.2011.08.011] [PMID]
70. An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, et al. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life sciences. 2016;147:46-58. [DOI:10.1016/j.lfs.2016.01.024] [PMID]
71. Jilka RL, O'Brien CA. The role of osteocytes in age-related bone loss. Current osteoporosis reports. 2016;14(1):16-25. [DOI:10.1007/s11914-016-0297-0] [PMID]
72. Khosla S. Minireview: The opg/rankl/rank system. Endocrinology. 2001;142(12):5050-5. [DOI:10.1210/endo.142.12.8536] [PMID]
73. Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol. 2005;5(6 SPEC. ISS.):618-25. [DOI:10.1016/j.coph.2005.06.005] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb