Accepted Articles                   Back to the articles list | Back to browse issues page


XML Print


1- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
Abstract:  
Dementia is a progressive disorder that leads to memory loss and cognition impairment and affects daily function. Alzheimer disease (AD) is the main cause of dementia that characterized by loss of memory and cognition. AD pathologically is demonstrated by neuronal atrophy, synapse loss and the unusual reposition of amyloid-β protein (Aβ) as senile plaques and hyperphosphorylated tau protein as neurofibrillary tangles (NFT). Tau is a microtubule associated protein mostly expressed in neurons. Site-specific phosphorylation regulates Tau function. In AD, the six adult tau isoforms are unusually phosphorylated that cause to form the paired helical filament. The different conditions of tau phosphorylation eventuate from the function of specific kinases and phosphatases. In recent years some biomarkers such as phospho tau 181, 199 and 231 had been assessed in cerebrospinal fluid   (CSF) and blood and had been showed their elevation in AD. This article provides an overview of tau structure, functions, and its involvement in AD and its role as a CSF biomarker.
 
Type of Study: Review | Subject: Cellular and molecular Neuroscience
Received: 2018/03/14 | Accepted: 2019/08/1 | Published: 2018/03/15

References
1. Juarez M, Schcolnik-Cabrera A, Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. American journal of cancer research. 2018;8(2):317.
2. Zhang Y, Luo M, Xu W, Yang M, Wang B, Gao J, et al. Avermectin confers its cytotoxic effects by inducing DNA damage and mitochondria-associated apoptosis. Journal of agricultural and food chemistry. 2016;64(36):6895-902. [DOI:10.1021/acs.jafc.6b02812] [PMID]
3. Albérich M, Ménez C, Sutra J-F, Lespine A. Ivermectin exposure leads to up-regulation of detoxification genes in vitro and in vivo in mice. European journal of pharmacology. 2014;740:428-35. [DOI:10.1016/j.ejphar.2014.06.052] [PMID]
4. Zhang Y, Wu J, Xu W, Gao J, Cao H, Yang M, et al. Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays. Environmental Pollution. 2017;220:1127-37. [DOI:10.1016/j.envpol.2016.11.022] [PMID]
5. Crump A. Ivermectin: enigmatic multifaceted 'wonder'drug continues to surprise and exceed expectations. The Journal of antibiotics. 2017;70(5):495-505. [DOI:10.1038/ja.2017.11] [PMID]
6. Gloeckner C, Garner AL, Mersha F, Oksov Y, Tricoche N, Eubanks LM, et al. Repositioning of an existing drug for the neglected tropical disease Onchocerciasis. Proceedings of the National Academy of Sciences. 2010;107(8):3424-9. [DOI:10.1073/pnas.0915125107] [PMID] [PMCID]
7. Bai SH, Ogbourne S. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere. 2016;154:204-14. [DOI:10.1016/j.chemosphere.2016.03.113] [PMID]
8. Kircik LH, Del Rosso JQ, Layton AM, Schauber J. Over 25 years of clinical experience with ivermectin: an overview of safety for an increasing number of indications. Journal of drugs in dermatology: JDD. 2016;15(3):325-32.
9. Canga AG, Prieto AMS, Liébana MJD, Martínez NF, Vega MS, Vieitez JJG. The pharmacokinetics and interactions of ivermectin in humans-a mini-review. The AAPS journal. 2008;10(1):42-6. [DOI:10.1208/s12248-007-9000-9] [PMID] [PMCID]
10. Kaur H, Shekhar N, Sharma S, Sarma P, Prakash A, Medhi B. Ivermectin as a potential drug for treatment of COVID-19: an in-sync review with clinical and computational attributes. Pharmacological Reports. 2021:1-14. [DOI:10.1007/s43440-020-00195-y] [PMID] [PMCID]
11. Ottesen EA, Campbell W. Ivermectin in human medicine. Journal of antimicrobial chemotherapy. 1994;34(2):195-203. [DOI:10.1093/jac/34.2.195] [PMID]
12. Crump A, Omura S. Ivermectin,'wonder drug'from Japan: the human use perspective. Proceedings of the Japan Academy, Series B. 2011;87(2):13-28. [DOI:10.2183/pjab.87.13] [PMID] [PMCID]
13. Van Wyk J, Malan F, Randles J. How long before resistance makes it impossible to control some field strains of Haemonchus contortus in South Africa with any of the modern anthelmintics? Veterinary parasitology. 1997;70(1-3):111-22. [DOI:10.1016/S0304-4017(96)01147-8]
14. McKellar Q, Benchaoui H. Avermectins and milbemycins. Journal of veterinary pharmacology and therapeutics. 1996;19(5):331-51. [DOI:10.1111/j.1365-2885.1996.tb00062.x] [PMID]
15. Burkhart CN. Ivermectin: an assessment of its pharmacology, microbiology and safety. Veterinary and human toxicology. 2000;42(1):30-5.
16. Umbenhauer DR, Lankas GR, Pippert TR, Wise LD, Cartwright ME, Hall SJ, et al. Identification of a P-glycoprotein-deficient subpopulation in the CF-1 mouse strain using a restriction fragment length polymorphism. Toxicology and applied pharmacology. 1997;146(1):88-94. [DOI:10.1006/taap.1997.8225] [PMID]
17. Dourmishev AL, Dourmishev LA, Schwartz RA. Ivermectin: pharmacology and application in dermatology. International journal of dermatology. 2005;44(12):981-8. [DOI:10.1111/j.1365-4632.2004.02253.x] [PMID]
18. De Sole G, Awadzi K, Remme J, Dadzie K, Ba O, Giese J, et al. A community trial of ivermectin in the onchocerciasis focus of Asubende, Ghana. II. Adverse reactions. Tropical medicine and parasitology: official organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ). 1989;40(3):375-82.
19. Ashour DS. Ivermectin: From theory to clinical application. International journal of antimicrobial agents. 2019;54(2):134-42. [DOI:10.1016/j.ijantimicag.2019.05.003] [PMID]
20. El-Azzouni M. Effect of ivermectin on experimental trichinosis. Journal of the Egyptian Society of Parasitology. 1997;27(2):331-40.
21. Ōmura S, Crump A. Ivermectin and malaria control. Malaria journal. 2017;16(1):1-3. [DOI:10.1186/s12936-017-1825-9] [PMID] [PMCID]
22. Osorio J, Moncada L, Molano A, Valderrama S, Gualtero S, Franco-Paredes C. Role of ivermectin in the treatment of severe orbital myiasis due to Cochliomyia hominivorax. Clinical infectious diseases. 2006;43(6):e57-e9. [DOI:10.1086/507038] [PMID]
23. Kadir M, Aswad H, Al-Samarai A, Al-Mula G. Comparison between the efficacy of ivermectin and other drugs in treatment of cutaneous leishmaniasis. Iraqi Journal of Veterinary Sciences. 2009;23.
24. Alsharif A, Sodhi A, Murillo LC, Headley AS, Kadaria D. Wait!!! no steroids for this asthma…. The American journal of case reports. 2015;16:398. [DOI:10.12659/AJCR.893729] [PMID] [PMCID]
25. Colebunders R, Mandro M, Mukendi D, Dolo H, Suykerbuyk P, Van Oijen M. Ivermectin treatment in patients with onchocerciasis-associated epilepsy: protocol of a randomized clinical trial. JMIR research protocols. 2017;6(8):e137. [DOI:10.2196/resprot.7186] [PMID] [PMCID]
26. Udensi UK, Fagbenro-Beyioku A. Effect of ivermectin on Trypanosoma brucei brucei in experimentally infected mice. Journal of vector borne diseases. 2012;49(3):143.
27. Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. The Journal of antibiotics. 2020;73(9):593-602. [DOI:10.1038/s41429-020-0336-z] [PMID] [PMCID]
28. Yang SN, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral research. 2020;177:104760. [DOI:10.1016/j.antiviral.2020.104760] [PMID]
29. Csóka B, Németh ZH, Szabó I, Davies DL, Varga ZV, Pálóczi J, et al. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI insight. 2018;3(11). [DOI:10.1172/jci.insight.99431] [PMID] [PMCID]
30. Kane NS, Hirschberg B, Qian S, Hunt D, Thomas B, Brochu R, et al. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proceedings of the National Academy of Sciences. 2000;97(25):13949-54. [DOI:10.1073/pnas.240464697] [PMID] [PMCID]
31. Njoo F, Hack C, Oosting J, Luyendijk L, Stilma J, Kijlstra A. C-reactive protein and interleukin-6 are elevated in onchocerciasis patients after ivermectin treatment. Journal of Infectious Diseases. 1994;170(3):663-8. [DOI:10.1093/infdis/170.3.663] [PMID]
32. Choudhary R, Sharma AK. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New microbes and new infections. 2020:100684. [DOI:10.1016/j.nmni.2020.100684] [PMID] [PMCID]
33. Scheim D. Ivermectin for COVID-19 treatment: clinical response at quasi-threshold doses via hypothesized alleviation of CD147-mediated vascular occlusion. Available at SSRN 3636557. 2020. [DOI:10.2139/ssrn.3636557]
34. Rizzo E. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. Naunyn-schmiedeberg's Archives of Pharmacology. 2020;393:1153-6. [DOI:10.1007/s00210-020-01902-5] [PMID] [PMCID]
35. Priel A, Silberberg SD. Mechanism of ivermectin facilitation of human P2X4 receptor channels. The Journal of general physiology. 2004;123(3):281-93. [DOI:10.1085/jgp.200308986] [PMID] [PMCID]
36. Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Frontiers in pharmacology. 2017;8:291. [DOI:10.3389/fphar.2017.00291] [PMID] [PMCID]
37. Shinohara EH, Martini MZ, Oliveira Neto HGd, Takahashi A. Oral myiasis treated with ivermectin: case report. Brazilian dental journal. 2004;15:79-81. [DOI:10.1590/S0103-64402004000100015] [PMID]
38. Pandey TR, Shrestha GB, Shah DN. A Case of orbital myiasis in recurrent eyelid basal cell carcinoma invasive into the orbit. Case reports in ophthalmological medicine. 2016;2016. [DOI:10.1155/2016/2904346] [PMID] [PMCID]
39. Basyoni MM, El-Sabaa A-AA. Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. The Korean journal of parasitology. 2013;51(3):297. [DOI:10.3347/kjp.2013.51.3.297] [PMID] [PMCID]
40. Tesh RB, Guzman H. Mortality and infertility in adult mosquitoes after the ingestion of blood containing ivermectin. The American journal of tropical medicine and hygiene. 1990;43(3):229-33. [DOI:10.4269/ajtmh.1990.43.229] [PMID]
41. Chaccour C, Lines J, Whitty CJ. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: the potential of oral insecticides in malaria control. The Journal of infectious diseases. 2010;202(1):113-6. [DOI:10.1086/653208] [PMID]
42. Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, da Silva IM, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta tropica. 2010;116(2):119-26. [DOI:10.1016/j.actatropica.2010.06.001] [PMID] [PMCID]
43. Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. The American journal of tropical medicine and hygiene. 2011;85(1):3. [DOI:10.4269/ajtmh.2011.11-0160] [PMID] [PMCID]
44. Panchal M, Rawat K, Kumar G, Kibria K, Singh S, Kalamuddin M, et al. Plasmodium falciparum signal recognition particle components and anti-parasitic effect of ivermectin in blocking nucleo-cytoplasmic shuttling of SRP. Cell death & disease. 2014;5(1):e994-e. [DOI:10.1038/cddis.2013.521] [PMID] [PMCID]
45. Foy BD, Kobylinski KC, da Silva IM, Rasgon JL, Sylla M. Endectocides for malaria control. Trends in parasitology. 2011;27(10):423-8. [DOI:10.1016/j.pt.2011.05.007] [PMID] [PMCID]
46. Mascari T, Mitchell M, Rowton E, Foil L. Ivermectin as a rodent feed-through insecticide for control of immature sand flies (Diptera: Psychodidae). Journal of the American Mosquito Control Association. 2008;24(2):323-6. [DOI:10.2987/5678.1] [PMID]
47. Hanafi HA, Szumlas DE, Fryauff DJ, El-Hossary SS, Singer GA, Osman SG, et al. Effects of ivermectin on blood-feeding Phlebotomus papatasi, and the promastigote stage of Leishmania major. Vector-Borne and Zoonotic Diseases. 2011;11(1):43-52. [DOI:10.1089/vbz.2009.0030] [PMID]
48. Rasheid K, Morsy TA. Efficacy of ivermectin on the infectivity of Leishmania major promastigotes. Journal of the Egyptian Society of Parasitology. 1998;28(1):207-12.
49. Opara W, Ameh I. Cutaneous leishmaniasis: a report of its treatment with Mectizan in Sokoto, Nigeria. J Med Sci. 2005;5:186-8. [DOI:10.3923/jms.2005.186.188]
50. Distelmans W, d'Haeseleer F, Mortelmans J. Efficacy of systemic administration of ivermectin against tsetse flies. Ann Soc belge Méd trop. 1983;63:119-25.
51. Pooda SH, Mouline K, De Meeûs T, Bengaly Z, Solano P. Decrease in survival and fecundity of Glossina palpalis gambiensis vanderplank 1949 (Diptera: Glossinidae) fed on cattle treated with single doses of ivermectin. Parasites & vectors. 2013;6(1):1-6. [DOI:10.1186/1756-3305-6-165] [PMID] [PMCID]
52. Dias JCP, Schofield CJ, Machado EM, Fernandes AJ. Ticks, ivermectin, and experimental Chagas disease. Memórias do Instituto Oswaldo Cruz. 2005;100:829-32. [DOI:10.1590/S0074-02762005000800002] [PMID]
53. Fallon PG, Doenhoff MJ. Drug-resistant schistosomiasis: resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. The American journal of tropical medicine and hygiene. 1994;51(1):83-8. [DOI:10.4269/ajtmh.1994.51.83] [PMID]
54. Ismail M, Botros S, Metwally A, William S, Farghally A, Tao L-F, et al. Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. The American journal of tropical medicine and hygiene. 1999;60(6):932-5. [DOI:10.4269/ajtmh.1999.60.932] [PMID]
55. Mendonça-Silva DL, Pessôa RF, Noël F. Evidence for the presence of glutamatergic receptors in adult Schistosoma mansoni. Biochemical pharmacology. 2002;64(9):1337-44. [DOI:10.1016/S0006-2952(02)01358-8]
56. Lynagh T, Lynch JW. Ivermectin binding sites in human and invertebrate Cys-loop receptors. Trends in pharmacological sciences. 2012;33(8):432-41. [DOI:10.1016/j.tips.2012.05.002] [PMID]
57. Taman A, Ribeiro P. Characterization of a truncated metabotropic glutamate receptor in a primitive metazoan, the parasitic flatworm Schistosoma mansoni. PLoS One. 2011;6(11):e27119. [DOI:10.1371/journal.pone.0027119] [PMID] [PMCID]
58. Taman A, El-Beshbishi S, El-Tantawy N, El-Hawary A, Azab M. Evaluation of the in vivo effect of ivermectin on Schistosoma mansoni in experimentally-infected mice. J Coast Life Med. 2014;2:817-23.
59. Alves SN, de MELO AL. Effects of benzodiazepine and ivermectin on Girardiatigrina (Platyhelminthes: Turbellaria). Bioscience Journal. 2013;29(1).
60. Matha V, Weiser J. Molluscicidal effect of ivermectin on Biomphalaria glabrata. Journal of invertebrate pathology (Print). 1988;52(2):354-5. [DOI:10.1016/0022-2011(88)90146-2]
61. Sheele JM, Anderson JF, Tran TD, Teng YA, Byers PA, Ravi BS, et al. Ivermectin causes Cimex lectularius (bedbug) morbidity and mortality. The Journal of emergency medicine. 2013;45(3):433-40. [DOI:10.1016/j.jemermed.2013.05.014] [PMID]
62. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral research. 2020;178:104787. [DOI:10.1016/j.antiviral.2020.104787] [PMID] [PMCID]
63. Ahmed S, Karim MM, Ross AG, Hossain MS, Clemens JD, Sumiya MK, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. International Journal of Infectious Diseases. 2021;103:214-6. [DOI:10.1016/j.ijid.2020.11.191] [PMID] [PMCID]
64. Hellwig MD, Maia A. A COVID-19 prophylaxis? Lower incidence associated with prophylactic administration of ivermectin. International journal of antimicrobial agents. 2021;57(1):106248. [DOI:10.1016/j.ijantimicag.2020.106248] [PMID] [PMCID]
65. de Castro Jr CG, Gregianin LJ, Burger JA. Continuous high-dose ivermectin appears to be safe in patients with acute myelogenous leukemia and could inform clinical repurposing for COVID-19 infection. Leukemia & Lymphoma. 2020;61(10):2536-7. [DOI:10.1080/10428194.2020.1786559] [PMID]
66. Popp M, Stegemann M, Metzendorf M-I, Gould S, Kranke P, Meybohm P, et al. Ivermectin for preventing and treating COVID‐19. Cochrane Database of Systematic Reviews. 2021(7). [DOI:10.1002/14651858.CD015017]
67. Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, et al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell host & microbe. 2016;20(2):259-70. [DOI:10.1016/j.chom.2016.07.004] [PMID] [PMCID]
68. Ketkar H, Yang L, Wormser GP, Wang P. Lack of efficacy of ivermectin for prevention of a lethal Zika virus infection in a murine system. Diagnostic microbiology and infectious disease. 2019;95(1):38-40. [DOI:10.1016/j.diagmicrobio.2019.03.012] [PMID] [PMCID]
69. Ji W, Luo G. Zika virus NS5 nuclear accumulation is protective of protein degradation and is required for viral RNA replication. Virology. 2020;541:124-35. [DOI:10.1016/j.virol.2019.10.010] [PMID]
70. Tay M, Fraser JE, Chan W, Moreland NJ, Rathore AP, Wang C, et al. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral research. 2013;99(3):301-6. [DOI:10.1016/j.antiviral.2013.06.002] [PMID]
71. Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal. 2012;443(3):851-6. [DOI:10.1042/BJ20120150] [PMID] [PMCID]
72. Surnar B, Kamran MZ, Shah AS, Basu U, Kolishetti N, Deo S, et al. Orally administrable therapeutic synthetic nanoparticle for Zika virus. ACS nano. 2019;13(10):11034-48. [DOI:10.1021/acsnano.9b02807] [PMID] [PMCID]
73. Mastrangelo E, Pezzullo M, De Burghgraeve T, Kaptein S, Pastorino B, Dallmeier K, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. Journal of Antimicrobial Chemotherapy. 2012;67(8):1884-94. [DOI:10.1093/jac/dks147] [PMID] [PMCID]
74. Wagstaff KM, Rawlinson SM, Hearps AC, Jans DA. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. Journal of biomolecular screening. 2011;16(2):192-200. [DOI:10.1177/1087057110390360] [PMID]
75. Azeem S, Ashraf M, Rasheed MA, Anjum AA, Hameed R. Evaluation of cytotoxicity and antiviral activity of ivermectin against Newcastle disease virus. Pakistan journal of pharmaceutical sciences. 2015;28(2).
76. Ashraf S, Chaudhry U, Raza A, Ghosh D, Zhao X. In vitro activity of ivermectin against Staphylococcus aureus clinical isolates. Antimicrobial Resistance & Infection Control. 2018;7(1):1-6. [DOI:10.1186/s13756-018-0314-4] [PMID] [PMCID]
77. Tan X, Xie H, Zhang B, Zhou J, Dou Z, Wang X, et al. A Novel Ivermectin-Derived Compound D4 and Its Antimicrobial/Biofilm Properties against MRSA. Antibiotics. 2021;10(2):208. [DOI:10.3390/antibiotics10020208] [PMID] [PMCID]
78. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68-75. [DOI:10.4161/org.4.2.5851] [PMID] [PMCID]
79. Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, et al. The p21‐activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. British journal of pharmacology. 2018;175(8):1362-74. [DOI:10.1111/bph.13872] [PMID] [PMCID]
80. Allegra A, Pioggia G, Innao V, Musolino C, Gangemi S. New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers. 2021;13(8):1981. [DOI:10.3390/cancers13081981] [PMID] [PMCID]
81. Dou Q, Chen H-N, Wang K, Yuan K, Lei Y, Li K, et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer research. 2016;76(15):4457-69. [DOI:10.1158/0008-5472.CAN-15-2887] [PMID]
82. Diao H, Cheng N, Zhao Y, Xu H, Dong H, Thamm DH, et al. Ivermectin inhibits canine mammary tumor growth by regulating cell cycle progression and WNT signaling. BMC veterinary research. 2019;15(1):1-10. [DOI:10.1186/s12917-019-2026-2] [PMID] [PMCID]
83. Nambara S, Masuda T, Nishio M, Kuramitsu S, Tobo T, Ogawa Y, et al. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget. 2017;8(64):107666. [DOI:10.18632/oncotarget.22587] [PMID] [PMCID]
84. Melotti A, Mas C, Kuciak M, Lorente‐Trigos A, Borges I, Ruiz i Altaba A. The river blindness drug I vermectin and related macrocyclic lactones inhibit WNT‐TCF pathway responses in human cancer. EMBO molecular medicine. 2014;6(10):1263-78. [DOI:10.15252/emmm.201404084] [PMID] [PMCID]
85. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proceedings of the National Academy of Sciences. 2016;113(1):E71-E80. [DOI:10.1073/pnas.1517188113] [PMID] [PMCID]
86. Zhu M, Li Y, Zhou Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochemical and biophysical research communications. 2017;492(3):373-8. [DOI:10.1016/j.bbrc.2017.08.097] [PMID]
87. Nappi L, Aguda AH, Al Nakouzi N, Lelj-Garolla B, Beraldi E, Lallous N, et al. Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. The Journal of clinical investigation. 2020;130(2):699-714. [DOI:10.1172/JCI130819] [PMID] [PMCID]
88. Sharmeen S, Skrtic M, Sukhai MA, Hurren R, Gronda M, Wang X, et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood, The Journal of the American Society of Hematology. 2010;116(18):3593-603. [DOI:10.1182/blood-2010-01-262675] [PMID]
89. Zhang P, Zhang Y, Liu K, Liu B, Xu W, Gao J, et al. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell proliferation. 2019;52(2):e12543. [DOI:10.1111/cpr.12543] [PMID] [PMCID]
90. Gallardo F, Teiti I, Rochaix P, Demilly E, Jullien D, Mariamé B, et al. Macrocyclic lactones block melanoma growth, metastases development and potentiate activity of anti-BRAF V600 inhibitors. Clinical Skin Cancer. 2016;1(1):4-14. e3. [DOI:10.1016/j.clsc.2016.05.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb