Volume 10, Issue 2 (March & April 2019)                   BCN 2019, 10(2): 119-136 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Derafshpour L, Saboory E, Vafaei A A, Rashidy-Pour A, Roshan-Milani S, Rasmi Y, et al . Interactive Effects of Exercise, Sex Hormones, and Transient Congenital Hypothyroidism on Long-Term Potentiation in Hippocampal Slices of Rat Offspring. BCN 2019; 10 (2) :119-136
URL: http://bcn.iums.ac.ir/article-1-1074-en.html
1- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
2- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.
3- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
4- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
5- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
Abstract:  
Introduction: The long-term adverse effects of transient thyroid function abnormalities at birth on intellectual development are proven. The effect of exercise increases in the presence of sex hormones. The current study aimed at investigating the possibility that a combination of sex hormones and exercise has synergistic effects on neural plasticity in Transient Congenital Hypothyroidism (TCH) rats. 
Methods: To induce hypothyroidism in the mothers, Propylthiouracil (PTU) was added to drinking water (100 mg/L) on the 6th day of gestation and continued until the 21st Postnatal Day. From Postnatal Day (PND) 28 to 47, the female and male pups received 17β-estradiol and testosterone, respectively. The mild treadmill exercise began 30 minutes after the sex hormones or vehicle administration. On PND 48, electrophysiological experiments were performed on brain slices. 
Results: Increase of Long-Term Potentiation (LTP) was observed in sedentary-non-hormone female rats of TCH group, compared with that of the control. The exercise enhanced LTP in control rats, but the hormones showed no significant effect. The effect of exercise and sex hormone was not significant in the TCH group. The combination of exercise and testosterone enhanced LTP in TCH male rats, while the combination of exercise and estradiol or each of them individually did not produce such an effect on LTP in TCH female rats. 
Conclusion: The study findings showed an increase in excitatory transmission despite the returning of thyroid hormone levels to normal range in TCH female rats. Also a combination treatment including exercise and testosterone enhanced LTP in male rats of TCH group, which was a gender-specific event.
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2017/11/13 | Accepted: 2018/04/30 | Published: 2019/03/1

References
1. Abedelhaffez, A. S., & Hassan, A. (2013). Brain derived neurotrophic factor and oxidative stress index in pups with developmental hypothyroidism: Neuroprotective effects of selenium. Acta Physiologica Hungarica, 100(2), 197-210. [DOI:10.1556/APhysiol.100.2013.2.7] [PMID] [DOI:10.1556/APhysiol.100.2013.2.7]
2. An, L., & Sun, W. (2017). Prenatal melamine exposure impairs spatial cognition and hippocampal synaptic plasticity by presynaptic and postsynaptic inhibition of glutamatergic transmission in adolescent offspring. Toxicology Letters, 269, 55-64. [DOI:10.1016/j.toxlet.2017.02.005] [PMID] [DOI:10.1016/j.toxlet.2017.02.005]
3. Barraclough, D. J., Ingram, C. D., & Brown, M. W. (1999). Chronic treatment with oestradiol does not alter in vitro LTP in subfield CA1 of the female rat hippocampus. Neuropharmacology, 38(1), 65-71. [DOI:10.1016/S0028-3908(98)00157-9] [DOI:10.1016/S0028-3908(98)00157-9]
4. Berchtold, N. C., Castello, N., & Cotman, C. W. (2010). Exercise and time-dependent benefits to learning and memory. Neuroscience, 167(3), 588-97. [DOI:10.1016/j.neuroscience.2010.02.050] [PMID] [PMCID] [DOI:10.1016/j.neuroscience.2010.02.050]
5. Bernal, J. (2002). Action of thyroid hormone in brain. Journal of Endocrinological Investigation, 25(3), 268-88. [DOI:10.1007/BF03344003] [PMID] [DOI:10.1007/BF03344003]
6. Bhavani, N. (2011). Transient congenital hypothyroidism. Indian Journal of Endocrinology and Metabolism, 15(Suppl.2), S117-20. [DOI:10.4103/2230-8210.83345] [PMID] [PMCID] [DOI:10.4103/2230-8210.83345]
7. Bleichrodt, N., Shrestha, R. M., West, C. E., Hautvast, J. G., van de Vijver, F. J., & Born, M. P. (1996). The benefits of adequate iodine intake. Nutrition Reviews, 54(4), S72-78. [DOI:10.1111/j.1753-4887.1996.tb03901.x] [DOI:10.1111/j.1753-4887.1996.tb03901.x]
8. Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-Term Potentiation in the hippocampus. Nature, 361(6407), 31-9. [DOI:10.1038/361031a0] [PMID] [DOI:10.1038/361031a0]
9. Calaciura, F., Mendorla, G., Distefano, M., Castorina, S., Fazio, T., Motta, R. M., et al. (1995). Childhood IQ measurements in infants with transient congenital hypothyroidism. Clinical Endocrinology, 43(4), 473-7. [DOI:10.1111/j.1365-2265.1995.tb02620.x] [DOI:10.1111/j.1365-2265.1995.tb02620.x]
10. Chiao, Y. C., Lee, H. Y., Wang, S. W., Hwang, J. J., Chien, C. H., Huang, S. W., et al. (1999). Regulation of thyroid hormones on the production of testosterone in rats. Journal of Cellular Biochemistry, 73(4), 554-62. [DOI:10.1002/(SICI)1097-4644(19990615)73:43.0.CO;2-L] https://doi.org/10.1002/(SICI)1097-4644(19990615)73:4<554::AID-JCB13>3.0.CO;2-L [DOI:10.1002/(SICI)1097-4644(19990615)73:43.0.CO;2-L]
11. Ciloglu, F., Peker, I., Pehlivan, A., Karacabey, K., Ilhan, N., Saygin, O., et al. (2005). Exercise intensity and its effects on thyroid hormones. Neuroendocrinology Letters, 26(6), 830-4. [PMID] [PMID]
12. Collaer, M. L., & Hines, M. (1995). Human behavioral sex differences: A role for gonadal hormones during early development? Psychological Bulletin, 118(1), 55-107. [DOI:10.1037/0033-2909.118.1.55] [PMID] [DOI:10.1037/0033-2909.118.1.55]
13. Cooper, D. S., Kieffer, J. D., Halpern, R., Saxe, V., Mover, H., Maloof, F., et al. (1983). Propylthiouracil (PTU) pharmacology in the rat. II; Effects of PTU on thyroid function. Endocrinology, 113(3), 921-8. [DOI:10.1210/endo-113-3-921] [PMID] [DOI:10.1210/endo-113-3-921]
14. Cordoba Montoya, D. A., & Carrer, H. F. (1997). Estrogen facilitates induction of long term potentiation in the hippocampus of awake rats. Brain Research, 778(2), 430-8. [PMID] [PMID]
15. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464-72. [DOI:10.1016/j.tins.2007.06.011] [PMID] [DOI:10.1016/j.tins.2007.06.011]
16. Del Olmo, N., Higuera-Matas, A., Miguens, M., Garcia-Lecumberri, C., Borcel, E., Solis, J. M., et al. (2006). Hippocampal synaptic plasticity and water maze learning in cocaine self-administered rats. Annals of the New York Academy of Sciences, 1074(1), 427-37. [DOI:10.1196/annals.1369.043] [PMID] [DOI:10.1196/annals.1369.043]
17. Dong, J., Yin, H., Liu, W., Wang, P., Jiang, Y., & Chen, J. (2005). Congenital iodine deficiency and hypothyroidism impair LTP and decrease C-fos and C-jun expression in rat hippocampus. NeuroToxicology, 26(3), 417-26. [DOI:10.1016/j.neuro.2005.03.003] [PMID] [DOI:10.1016/j.neuro.2005.03.003]
18. Ebrahimi, L., Saboory, E., Roshan-Milani, S., & Hashemi, P. (2014). Effect of prenatal forced-swim stress and morphine co-administration on pentylentetrazol-induced epileptic behaviors in infant and prepubertal rats. Developmental Psychobiology, 56(6), 1179-86. [DOI:10.1002/dev.21198] [DOI:10.1002/dev.21198]
19. Eddy, M. C., Rifken, K. M., Toufexis, D. J., & Green, J. T. (2013). Gonadal hormones and voluntary exercise interact to improve discrimination ability in a set-shift task. Behavioral Neuroscience, 127(5), 744-54. [DOI:10.1037/a0033728] [PMID] [PMCID] [DOI:10.1037/a0033728]
20. Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109-20. [DOI:10.1016/j.neuron.2004.08.028] [PMID] [DOI:10.1016/j.neuron.2004.08.028]
21. Fasano, C., Rocchetti, J., Pietrajtis, K., Zander, J. F., Manseau, F., Sakae, D. Y., et al. (2017). Regulation of the hippocampal network by VGLUT3-positive CCK- GABAergic basket cells. Frontiers in Cellular Neuroscience, 11(140), 1-15. [DOI:10.3389/fncel.2017.00140] [DOI:10.3389/fncel.2017.00140]
22. Fester, L., Prange-Kiel, J., Jarry, H., & Rune, G. M. (2011). Estrogen synthesis in the hippocampus. Cell and Tissue Research, 345(3), 285-94. [DOI:10.1007/s00441-011-1221-7] [PMID] [DOI:10.1007/s00441-011-1221-7]
23. Gerges, N. Z., & Alkadhi, K. A. (2004). Hypothyroidism impairs late LTP in CA1 region but not in dentate gyrus of the intact rat hippocampus: MAPK involvement. Hippocampus, 14(1), 40-5. [DOI:10.1002/hipo.10165] [PMID] [DOI:10.1002/hipo.10165]
24. Gilbert, M. E. (2004). Alterations in synaptic transmission and plasticity in area CA1 of adult hippocampus following developmental hypothyroidism. Developmental Brain Research, 148(1), 11-8. [DOI:10.1016/j.devbrainres.2003.09.018] [PMID] [DOI:10.1016/j.devbrainres.2003.09.018]
25. Gottesfeld, Z., Butler, I. J., & Findley, W. E. (1985). Prenatal and postnatal hypothyroidism abolishes lesion-induced noradrenergic sprouting in the adult rat. Journal of Neuroscience Research, 14(1), 61-9. [DOI:10.1002/jnr.490140106] [PMID] [DOI:10.1002/jnr.490140106]
26. Haimov-Kochman, R., & Berger, I. (2014). Cognitive functions of regularly cycling women may differ throughout the month, depending on sex hormone status; a possible explanation to conflicting results of studies of ADHD in females. Frontiers in Human Neuroscience, 8(191), 1-6. [DOI:10.3389/fnhum.2014.00191] [PMID] [PMCID] [DOI:10.3389/fnhum.2014.00191]
27. Harrelson, A., & McEwen, B. (1987). Gonadal steroid modulation of neurotransmitter-stimulated cAMP accumulation in the hippocampus of the rat. Brain Research, 404(1-2), 89-94. [DOI:10.1016/0006-8993(87)91358-8] [DOI:10.1016/0006-8993(87)91358-8]
28. Hashemi, P., Ebrahimi, L., Saboory, E., & Roshan-Milani, S. (2013). Effect of restraint stress during gestation on pentylenetetrazol-induced epileptic behaviors in rat offspring. Iranian Journal of Basic Medical Sciences, 16(9), 979-84. [PMID] [PMCID] [PMID] [PMCID]
29. Hebbard, P. C., King, R. R., Malsbury, C. W., & Harley, C. W. (2003). Two organizational effects of pubertal testosterone in male rats: transient social memory and a shift away from Long-Term Potentiation following a tetanus in hippocampal CA1. Experimental Neurology, 182(2), 470-5. [DOI:10.1016/S0014-4886(03)00119-5] [DOI:10.1016/S0014-4886(03)00119-5]
30. Hojo, Y., Hattori, T. A., Enami, T., Furukawa, A., Suzuki, K., Ishii, H. T., et al. (2004). Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 865-70. [DOI:10.1073/pnas.2630225100] [PMID] [PMCID] [DOI:10.1073/pnas.2630225100]
31. Hojo, Y., Higo, S., Ishii, H., Ooishi, Y., Mukai, H., Murakami, G., et al. (2009). Comparison between hippocampus-synthesized and circulation-derived sex steroids in the hippocampus. Endocrinology, 150(11), 5106-12. [DOI:10.1210/en.2009-0305] [PMID] [DOI:10.1210/en.2009-0305]
32. Holland, J., Bandelow, S., & Hogervorst, E. (2011). Testosterone levels and cognition in elderly men: A review. Maturitas, 69(4), 322-37. [DOI:10.1016/j.maturitas.2011.05.012] [PMID] [DOI:10.1016/j.maturitas.2011.05.012]
33. Hosseinmardi, N., Fathollahi, Y., Naghdi, N., & Javan, M. (2009). Theta pulse stimulation: A natural stimulus pattern can trigger long-term depression but fails to reverse Long-Term Potentiation in morphine withdrawn hippocampus area CA1. Brain Research, 1296, 1-14. [DOI:10.1016/j.brainres.2009.08.020] [PMID] [DOI:10.1016/j.brainres.2009.08.020]
34. Inagaki, T., Kaneko, N., Zukin, R. S., Castillo, P. E., & Etgen, A. M. (2012). Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats. PLoS One, 7(6), e38018. [DOI:10.1371/journal.pone.0038018] [PMID] [PMCID] [DOI:10.1371/journal.pone.0038018]
35. Jeffery, K. J. (1997). LTP and spatial learning-where to next. Hippocampus, 7(1), 95-110. [DOI:10.1002/(SICI)1098-1063(1997)7:13.0.CO;2-D] https://doi.org/10.1002/(SICI)1098-1063(1997)7:1<95::AID-HIPO10>3.0.CO;2-D [DOI:10.1002/(SICI)1098-1063(1997)7:13.0.CO;2-D]
36. Jin, K., Zhu, Y., Sun, Y., Mao, X. O., Xie, L., & Greenberg, D. A. (2002). Vascular Endothelial Growth Factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11946-50. [DOI:10.1073/pnas.182296499] [PMID] [PMCID] [DOI:10.1073/pnas.182296499]
37. Juraska, J. M., Fitch, J. M., Henderson, C., & Rivers, N. (1985). Sex differences in the dendritic branching of dentate granule cells following differential experience. Brain Research, 333(1), 73-80. [DOI:10.1016/0006-8993(85)90125-8] [DOI:10.1016/0006-8993(85)90125-8]
38. Kim, D. H., Ko, I. G., Kim, B. K., Kim, T. W., Kim, S. E., Shin, M. S., et al. (2010). Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiology & Behavior, 101(5), 660-5. [DOI:10.1016/j.physbeh.2010.09.021] [PMID] [DOI:10.1016/j.physbeh.2010.09.021]
39. Kirby, E. D., Kuwahara, A. A., Messer, R. L., & Wyss-Coray, T. (2015). Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. Proceedings of the National Academy of Sciences of the United States of America, 112(13), 4128-33. [DOI:10.1073/pnas.1422448112] [PMID] [PMCID] [DOI:10.1073/pnas.1422448112]
40. Klubo-Gwiezdzinska, J., Burman, K. D., Van Nostrand, D., & Wartofsky, L. (2011). Levothyroxine treatment in pregnancy: indications, efficacy, and therapeutic regimen. Journal of Thyroid Research, 2011(843591), 1-12. [DOI:10.4061/2011/843591] [DOI:10.4061/2011/843591]
41. Korenchevsky, V., & Hall, K. (1941). Correlation between sex hormones, thyroid hormones and desoxycorticosterone as judged by their effects on the weights of organs of gonadectomized rats. Biochemical Journal, 35(5-6), 726-35. [DOI:10.1042/bj0350726] [DOI:10.1042/bj0350726]
42. Krassas, G. E. (2000). Thyroid disease and female reproduction. Fertility and Sterility, 74(6), 1063-70. [DOI:10.1016/S0015-0282(00)01589-2] [DOI:10.1016/S0015-0282(00)01589-2]
43. Kretz, O., Fester, L., Wehrenberg, U., Zhou, L., Brauckmann, S., Zhao, S., et al. (2004). Hippocampal synapses depend on hippocampal estrogen synthesis. Journal of Neuroscience, 24(26), 5913-21. [DOI:10.1523/JNEUROSCI.5186-03.2004] [PMID] [DOI:10.1523/JNEUROSCI.5186-03.2004]
44. Lasley, S. M., & Gilbert, M. E. (2011). Developmental thyroid hormone insufficiency reduces expression of Brain-Derived Neurotrophic Factor (BDNF) in adults but not in neonates. Neurotoxicology and Teratology, 33(4), 464-72. [DOI:10.1016/j.ntt.2011.04.001] [PMID] [DOI:10.1016/j.ntt.2011.04.001]
45. Leal, G., Afonso, P. M., Salazar, I. L., & Duarte, C. B. (2015). Regulation of hippocampal synaptic plasticity by BDNF. Brain Research, 1621, 82-101. [DOI:10.1016/j.brainres.2014.10.019] [PMID] [DOI:10.1016/j.brainres.2014.10.019]
46. Li, C. H., Wang, S. Z., Cai, Z. L., Liu, W. X., Xu, S. T., & Xiao, P. (2012). Effects of intrahippocampal L-NAME treatment on the behavioral Long-Term Potentiation in dentate gyrus. Neuroscience Letters, 528(2), 201-4. [DOI:10.1016/j.neulet.2012.08.056] [PMID] [DOI:10.1016/j.neulet.2012.08.056]
47. Liu, H. L., Zhao, G., Cai, K., Zhao, H. H., & Shi, L. D. (2011). Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal Long-Term Potentiation. Behavioural Brain Research, 218(2), 308-14. [DOI:10.1016/j.bbr.2010.12.030] [PMID] [DOI:10.1016/j.bbr.2010.12.030]
48. Liu, Y. F., Chen, H. I., Wu, C. L., Kuo, Y. M., Yu, L., Huang, A. M., et al. (2009). Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. The Journal of Physiology, 587(Pt.13), 3221-31. [DOI:10.1113/jphysiol.2009.173088] [PMID] [PMCID] [DOI:10.1113/jphysiol.2009.173088]
49. Louissaint, A., Jr., Rao, S., Leventhal, C., & Goldman, S. A. (2002). Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron, 34(6), 945-60. [DOI:10.1016/S0896-6273(02)00722-5] [DOI:10.1016/S0896-6273(02)00722-5]
50. Loy, R., Gerlach, J. L., & McEwen, B. S. (1988). Autoradiographic localization of estradiol-binding neurons in the rat hippocampal formation and entorhinal cortex. Brain Research, 467(2), 245-51. [DOI:10.1016/0165-3806(88)90028-4] [DOI:10.1016/0165-3806(88)90028-4]
51. Maran, R. R., Arunakaran, J., Jeyaraj, D. A., Ravichandran, K., Ravisankar, B., & Aruldhas, M. M. (2000). Transient neonatal hypothyroidism alters plasma and testicular sex steroid concentration in puberal rats. Endocrine Research, 26(3), 411-29. [DOI:10.3109/07435800009066177] [PMID] [DOI:10.3109/07435800009066177]
52. McEwen, B. S. (2001). Invited review: Estrogens effects on the brain: Multiple sites and molecular mechanisms. Journal of Applied Physiology, 91(6), 2785-801. [DOI:10.1152/jappl.2001.91.6.2785] [PMID] [DOI:10.1152/jappl.2001.91.6.2785]
53. Meiri, N., Sun, M. K., Segal, Z., & Alkon, D. L. (1998). Memory and Long-Term Potentiation (LTP) dissociated: Normal spatial memory despite CA1 LTP elimination with Kv1.4 antisense. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 15037-42. [DOI:10.1073/pnas.95.25.15037] [PMID] [DOI:10.1073/pnas.95.25.15037]
54. Moradpour, F., Fathollahi, Y., Naghdi, N., Hosseinmardi, N., & Javan, M. (2016). Prepubertal castration-associated developmental changes in sigma-1 receptor gene expression levels regulate hippocampus area CA1 activity during adolescence. Hippocampus, 26(7), 933-46. [DOI:10.1002/hipo.22576] [PMID] [DOI:10.1002/hipo.22576]
55. Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., & Malinow, R. (2014). Engineering a memory with LTD and LTP. Nature, 511(7509), 348-52. [DOI:10.1038/nature13294] [PMID] [PMCID] [DOI:10.1038/nature13294]
56. Okamoto, M., Hojo, Y., Inoue, K., Matsui, T., Kawato, S., McEwen, B. S., et al. (2012). Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 109(32), 13100-5. [DOI:10.1073/pnas.1210023109] [PMID] [PMCID] [DOI:10.1073/pnas.1210023109]
57. Onodera, H., Sato, G., & Kogure, K. (1986). Lesions to Schaffer collaterals prevent ischemic death of CA1 pyramidal cells. Neuroscience Letters, 68(2), 169-74. [DOI:10.1016/0304-3940(86)90136-9] [DOI:10.1016/0304-3940(86)90136-9]
58. Panahi, Y., Saboory, E., Rassouli, A., Sadeghi-Hashjin, G., Roshan-Milani, S., Derafshpour, L., et al. (2017). The effect of selective opioid receptor agonists and antagonists on epileptiform activity in morphine-dependent infant mice hippocampal slices. International Journal of Developmental Neuroscience, 60, 56-62. [DOI:10.1016/j.ijdevneu.2017.04.003] [PMID] [DOI:10.1016/j.ijdevneu.2017.04.003]
59. Perez, Y., Morin, F., & Lacaille, J. C. (2001). A hebbian form of Long-Term Potentiation dependent on mGluR1a in hippocampal inhibitory interneurons. Proceedings of the National Academy of Sciences, 98(16), 9401-6. [DOI:10.1073/pnas.161493498] [PMID] [PMCID] [DOI:10.1073/pnas.161493498]
60. Shafiee, S. M., Vafaei, A. A., & Rashidy-Pour, A. (2016). Effects of maternal hypothyroidism during pregnancy on learning, memory and hippocampal BDNF in rat pups: Beneficial effects of exercise. Neuroscience, 329, 151-61. [DOI:10.1016/j.neuroscience.2016.04.048] [PMID] [DOI:10.1016/j.neuroscience.2016.04.048]
61. Shin, M. S., Ko, I. G., Kim, S. E., Kim, B. K., Kim, T. S., Lee, S. H., et al. (2013). Treadmill exercise ameliorates symptoms of methimazole-induced

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb