Search published articles


Showing 2 results for Ellagic Acid

Yaghoob Farbood, Alireza Sarkaki, Mojtaba Dolatshahi, Seyed Mohammad Taqhi Mansouri, Ali Khodadadi,
Volume 6, Issue 2 (4-2015)
Abstract

Introduction: Neuroinflammation may play as an important risk factor in progressive degeneration of dopaminergic cells. Antioxidants have protective effects against free radicalsinduced neural damage in Parkinson’s disease (PD). In the present study, we examined the effects of ellagic acid (EA) on locomotion and neuroinflammatory biomarkers in a rat model of PD induced by 6-hydroxidopamine (6-OHDA). 
Methods: 6-OHDA (16 μg/2 μl) was injected into the right medial forebrain bundle (MFB) in MFB-lesioned rat’s brain. Sham group received vehicle instead of 6-OHDA. PD-model was confirmed by rotational test using apomorphine injection. EA (50 mg/kg/2 ml, by gavages) was administered in PD+EA group. One group of MFB-lesioned rats received pramipexole (PPX 2 mg/kg/2 ml, by gavages) as positive control group (PD+PPX group). Motor activity was assessed by stride length and cylinder tests. The levels of TNF-α and IL-1β were measured in both striatum and hippocampus tissues. 
Results: MFB lesion caused significant reduction of stride-length (P<0.001) and also increased the contralateral rotations (P<0.001) and score of the cylinder test (P<0.001). Use of 6-OHDA to induce the PD significantly increased the levels of TNF-α (P<0.001) and IL-1β (P<0.001) in MFB-lesioned rats. EA significantly restored all of the above parameters. 
Discussion: EA can improve the motor impairments in the MFB-lesioned rats via reducing the neuroinflammatory biomarkers and protect the brain against free radicals-induced neural damage. The results suggest that EA can be helpful in management of PD treatment.

Siamak Shahidi, Alireza Komaki, Safoura Raoufi, Iraj Salehi, Mohammad Zarei, Mohamadreza Mahdian,
Volume 12, Issue 6 (11-2021)
Abstract

Introduction: Hyperalgesia is among the current complications of diabetes mellitus; oxidative stress and inflammation were influential in its development. As an herbal component, Ellagic Acid (EA) has some biological activities, including antioxidant and anti-inflammatory effects. This study was designed to evaluate the possible beneficial effect of EA on hypernociception in Streptozotocin (STZ)-induced hyperglycemic rats.
Methods: Forty-eight male Wistar rats were divided into the control (receiving vehicle), hyperglycemic, EA (25 mg/kg)-treated control, EA (50 mg/kg)-treated control, EA (25 mg/kg)-treated hyperglycemic, and EA (50 mg/kg)-treated hyperglycemic groups. Hyperglycemia was induced by a single Intraperitoneal (IP) injection of STZ (60 mg/Kg). EA was administered daily by oral gavage for four weeks. The nociceptive response was assessed using Tail-Flick (TF) and Hot-Plate (HP) tests. Also, oxidative stress markers, including Malondialdehyde (MDA), Total Oxidant Status (TOS), and Total Antioxidant Capacity (TAC) in the serum, were evaluated.
Results: Hyperglycemic animals were found with significant changes, including a reduction in TF and HP latencies, an elevation in serum MDA level and TOS, and a decrease in serum TAC compared with controls. The treatment of hyperglycemic rats with EA facilitated the reduction of TF latency at the dose of 25 mg/kg and HP latency at 50 mg/kg. Furthermore, EA significantly increased TAC and decreased MDA level at a 50 mg/kg dose and reduced TOS at both doses in the serum of hyperglycemic animals. No significant alterations were found in the parameters studied in EA-treated normal rats.
Conclusion: These results displayed the antinociceptive effect of EA in hyperglycemic rats via attenuating oxidative stress. Therefore, EA appears to be a promising agent for managing. Hyperglycemic hypernociception.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb