In summary, results of the current study showed that pretest intra CA1 injection of SCO fully reversed pre-training morphine-induced amnesia in step-down passive avoidance in mice and vice versa, which indicated the existence of cross state-dependency learning between morphine and SCO. To explain the findings, the following hypotheses are suggested: (i) SCO and morphine can affect and simulate the functions of each other via bidirectional interaction in CA1 area or (ii) SCO and morphine can simulate the effects of each other by indirect interactions via GABAergic system, and hence, shape a cross state-dependent memory effect between each other.
The current study was financially supported by Shahed University, Tehran, Iran. Authors wish to thank Mr. Fariborz Didaran for his assistance in editing of the manuscripts.
The authors declared no conflicts of interest.
Jafari-Sabet, M. (2011). Involvement of dorsal hippocampal muscarinic cholinergic receptors on muscimol state-depend
ent memory of passive avoidance in mice. Life Sciences, 88(25-26), 1136–41. doi: 10.1016/j.lfs.2011.04.013
Jamali-Raeufy, N., Nasehi, M., Ebrahimi-ghiri, M., & Zarrindast, M. R. (2011). Cross state-dependency of learning between WIN55, 212-2 and scopolamine in rat dorsal hippocampus. Neuroscience Letters, 491(3), 227–31. doi: 10.1016/j.neulet.2011.01.056
Jang, C. G., Lee, S. Y., Yoo, J. H., Yan, J. J., Song, D. K., Loh, H. H., et al. (2003). Impaired water maze learning performance in μ-opioid receptor knockout mice. Molecular Brain Research, 117(1), 68–72. doi: 10.1016/s0169-328x(03)00291-2
Kearns, I. R., Morton, R. A., Bulters, D. O., & Davies, C. H. (2001). Opioid receptor regulation of muscarinic acetylcholine receptor-mediated synaptic responses in the hippocampus. Neuropharmacology, 41(5), 565–73. doi: 10.1016/s0028-3908(01)00108-3
Klinkenberg, I., & Blokland, A. (2010). The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neuroscience & Biobehavioral Reviews, 34(8), 1307–50. doi: 10.1016/j.neubiorev.2010.04.001
Leung, L. S., & Peloquin, P. (2009). Cholinergic modulation differs between basal and apical dendritic excitation of hippocampal CA1 pyramidal cells. Cerebral Cortex, 20(8), 1865–77. doi: 10.1093/cercor/bhp251
Li, X., Li, J. X., & France, C. P. (2010). Interactions between morphine, scopolamine and nicotine: Schedule-controlled responding in rats. Pharmacology Biochemistry and Behavior, 96(1), 91–5. doi: 10.1016/j.pbb.2010.04.011
Lo, A. C., De Maeyer, J. H., Vermaercke, B., Callaerts-Vegh, Z., Schuurkes, J. A., & D’Hooge, R. (2014). SSP-002392, a new 5-HT4 receptor agonist, dose-dependently reverses scopolamine-induced learning and memory impairments in C57Bl/6 mice. Neuropharmacology 85, 178-89. doi: 10.1016/j.neuropharm.2014.05.013
Mahmoodi, G., Ahmadi, S., pourmotabbed, A., Oryan, S., & Zarrindast, M. R. (2010). Inhibitory avoidance memory deficit induced by scopolamine: Interaction of cholinergic and glutamatergic systems in the ventral tegmental area. Neurobiology of Learning and Memory, 94(1), 83–90. doi: 10.1016/j.nlm.2010.04.004
Mitsushima, D., Sano, A., & Takahashi, T. (2013). A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nature Communications, 4. doi: 10.1038/ncomms3760
McQuiston, A. R. (2007). Effects of opioid receptor modulation on GABAB receptor synaptic function in hippocampal CA1. Journal of Neurophysiology, 97(3), 2301–11. doi: 10.1152/jn.01179.2006
Nasehi, M., Nasehi, M., Rahmani-Nia, F., Mirzaei, B., Torabi-Nami, M., & Zarrindast, M. R. (2014). Swimming improves the emotional memory deficit by scopolamine via mu opioid receptors. Physiology & Behavior, 128, 237–46. doi: 10.1016/j.physbeh.2014.02.011
Parsaei, L., Rangchiyan, M., Ahmadi, S., & Zarrindast, M. R. (2011). GABAA receptors in the dorsal hippocampus are involved in sate-dependent learning induced by lithium in mice. Iranian Journal of Pharmaceutical Research, 10(1), 127-34. PMCID: PMC3869577
Patti, C. L., Kameda, S. R., Carvalho, R. C., Takatsu-Coleman, A. L., Lopez, G. B., Niigaki, S. T., et al. (2005). Effects of morphine on the plus-maze discriminative avoidance task: Role of state-dependent learning. Psychopharmacology, 184(1), 1–12. doi: 10.1007/s00213-005-0238-6
Paxinos, G., & Franklin, K. B. J. (2001). The mouse brain in stereotaxic coordinates (2nd Ed.) New York: Academic Press.
Petersen, R. C. (1979). Scopolamine state-dependent memory processes in man. Psychopharmacology, 64(3), 309–14. doi: 10.1007/bf00427515
Piri, M., Rostampour, M., Nasehi, M., & Zarrindast, M. R. (2013). Blockade of the dorsal hippocampal dopamine D1 receptors inhibits the scopolamine-induced state-dependent learning in rats. Neuroscience, 252, 460–7. doi: 10.1016/j.neuroscience.2013.08.003
Ramakrishnan, L., Amatya, C., DeSaer, C. J., Dalhoff, Z., & Eggerichs, M. R. (2014). Galantamine reverses scopolamine-induced behavioral alterations in Dugesia tigrina. Invertebrate Neuroscience, 14(2), 91–101. doi: 10.1007/s10158-013-0167-8
Rezayof, A., Amini, R., Rassouli, Y., & Zarrindast, M. R. (2006). Influence of nitric oxide on morphine-induced amnesia and interactions with dopaminergic receptor agents. Physiology & Behavior, 88(1-2), 124–31. doi: 10.1016/j.physbeh.2006.03.017
Rezayof, A., Razavi, S., Haeri-Rohani, A., Rassouli, Y., & Zarrindast, M. R. (2007). GABAA receptors of hippocampal CA1 regions are involved in the acquisition and expression of morphine-induced place preference. European Neuropsychopharmacology, 17(1), 24–31. doi: 10.1016/j.euroneuro.2006.02.003
Roldán, G., Cobos-Zapiain, G., Quirarte, G. L., & Prado-Alcalá, R. A. (2001). Dose- and time-dependent scopolamine-induced recovery of an inhibitory avoidance response after its extinction in rats. Behavioural Brain Research, 121(1-2), 173–9. doi: 10.1016/s0166-4328(01)00157-7
Sakaguchi, M., Koseki, M., Wakamatsu, M., & Matsumura, E. (2003). Effects of β-Casomorphin-5 on Passive Avoidance Response in Mice. Bioscience, Biotechnology, and Biochemistry, 67(11), 2501–4. doi: 10.1271/bbb.67.2501
Shiigi, Y., Takahashi, M., & Kaneto, H. (1990). Facilitation of memory retrieval by pretest morphine mediated by μ but not δ and κ opioid receptors. Psychopharmacology, 102(3), 329–32. doi: 10.1007/bf02244099
Souza, A. C. G., Bruning, C. A., Acker, C. I., Neto, J. S. S., & Nogueira, C. W. (2013). 2-Phenylethynyl-butyltellurium enhances learning and memory impaired by scopolamine in mice. Behavioural Pharmacology, 24(4), 249–54. doi: 10.1097/fbp.0b013e32836353a5
Telegdy, G., Bagosi, Z., & Jaszberenyi, M. (2014). Transmitter-mediated action of neuromedin S on Passive avoidance learning in rats. Journal of Neurobehavioral Sciences, 1(2), 41. doi: 10.5455/jnbs.1398170234
Tzavara, E. T., Bymaster, F. P., Felder, C. C., Wade, M., Gomeza, J., Wess, J., et al. (2003). Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Molecular Psychiatry, 8(7), 673–9. doi: 10.1038/sj.mp.4001270
Vega-Flores, G., Gruart, A., & Delgado-García, J. M. (2014). Involvement of the GABAergic Septo-Hippocampal Pathway
in Brain Stimulation Reward. PLoS ONE, 9(11), 113787. doi: 10.1371/journal.pone.0113787
Whitlock, J. R. (2006). Learning Induces Long-Term Potentiation in the Hippocampus. Science, 313(5790), 1093–7. doi: 10.1126/science.1128134
Xiang, X. H., Wang, H. L., Wu, W. R., Guo, Y., Cao, D. Y., Wang, H. S., et al. (2006). Ethological analysis of scopolamine treatment or pretreatment in morphine dependent rats. Physiology & Behavior, 88(1-2), 183–90. doi: 10.1016/j.physbeh.2006.03.029
Young, A. M. (2014). State-dependent learning and memory. In I. P. Stolerman (Ed.), Encyclopedia of Psychopharmacology (pp. 1648-1659). Philadelphia: Springer.
Zarrindast, M. R., & Rezayof, A. (2004). Morphine state-dependent learning: sensitization and interactions with dopamine receptors. European Journal of Pharmacology, 497(2), 197–204. doi: 10.1016/j.ejphar.2004.06.041
Zarrindast, M. R., Fazli-Tabaei, S., Ahmadi, S., & Yahyavi, S. H. (2006a). Effect of lithium on morphine state-dependent memory of passive avoidance in mice. Physiology & Behavior, 87(2), 409–15. doi: 10.1016/j.physbeh.2005.11.005
Zarrindast, M. R., Kangarlu-Haghighi, K., Khalilzadeh, A., & Fazli-Tabaei, S. (2006b). Influence of intracerebroventricular administration of cannabinergic drugs on morphine state-dependent memory in the step-down passive avoidance test. Behavioural Pharmacology, 17(3), 231–7. doi: 10.1097/00008877-200605000-00004
Zarrindast, M. R., Farahmandfar, M., Rostami, P., & Rezayof, A. (2006c). The influence of central administration of dopaminergic and cholinergic agents on morphine-induced amnesia in morphine-sensitized mice. Journal of Psychopharmacology, 20(1), 59–66. doi: 10.1177/0269881105057003
Zarrindast, M. R., Ardjmand, A., Rezayof, A., & Ahmadi, S. (2013). The time profile of morphine effect on different phases of inhibitory avoidance memory in rat. Archive of Iranian Medicine, 16(1), 34-7. doi: 013161/AIM.0011
Zarrindast, M. R., Ownegh, V., Rezayof, A., & Ownegh, F. (2014). The involvement of dorsal hippocampus in dextromethorphan-induced state-dependent learning in mice. Pharmacology Biochemistry and Behavior, 116, 90–5. doi: 10.1016/j.pbb.2013.11.015
Zhai, H., Wu, P., Chen, S., Li, F., Liu, Y., & Lu, L. (2008). Effects of scopolamine and ketamine on reconsolidation of morphine conditioned place preference in rats. Behavioural Pharmacology, 19(3), 211–6. doi: 10.1097/fbp.0b013e3282fe88a0
Zhu, Z., Bowman, H. R., Baghdoyan, H. A., & Lydic, R. (2008). Morphine increases acetylcholine release in the trigeminal nuclear complex. Sleep, 31(12), 1629–37. doi: 10.1093/sleep/31.12.1629