References
Afyouni, S., & Nichols, T. E. (2018). Insight and Inference for DVARS.
NeuroImage, 172, 291-312. [DOI:10.1016/j.neuroimage.2017.12.098]
Agosta, F., Valsasina, P., Absinta, M., Sala, S., Caputo, D., & Filippi, M. (2009). Primary progressive multiple sclerosis: Tactile-associated functional MR activity in the cervical spinal cord.
Radiology, 253(1), 209-15. [DOI:10.1148/radiol.2532090187] [PMID]
Agosta, F., Valsasina, P., Caputo, D., Stroman, P. W., & Filippi, M. (2008). Tactile-associated recruitment of the cervical cord is altered in patients with multiple sclerosis.
NeuroImage, 39(4), 1542-8. [DOI:10.1016/j.neuroimage.2007.10.048] [PMID]
Agosta, F., Valsasina, P., Rocca, M., Caputo, D., Sala, S., & Judica, E., et al. (2008). Evidence for enhanced functional activity of cervical cord in relapsing multiple sclerosis.
Magnetic Resonance in Medicine, 59(5), 1035-42. [DOI:10.1002/mrm.21595] [PMID]
Alexander, M. S., Kozyrev, N., Bosma, R. L., Figley, C. R., Richards, J. S., & Stroman, P. W. (2016). fMRI localization of spinal cord processing underlying female sexual arousal.
Journal of Sex & Marital Therapy, 42(1), 36-47. [DOI:10.1080/0092623X.2015.1010674] [PMID]
Alexander, M., Kozyrev, N., Figley, C. R., & Richards, J. S. (2017). Altered spinal cord activity during sexual stimulation in women with SCI: A pilot fMRI study.
Spinal Cord Series and Cases, 3, 16041. [DOI:10.1038/scsandc.2016.41] [PMID] [PMCID]
Backes, W. H., Mess, W. H., & Wilmink, J. T. (2001). Functional MR imaging of the cervical spinal cord by use of median nerve stimulation and fist clenching.
American Journal of Neuroradiology, 22(10), 1854-9. [PMID]
Bodurka, J., Ledden, P., & Bandettini, P. (2008). SENSE optimized sixteen element receive array for cervical spinal cord imaging at 3T. Paper presented at the ISMRM 16
th Scientific Meeting & Exhibition- SMRT 17
th Annual Meeting, Toronto, Canada, 3-9 May 2008. https://cds.ismrm.org/ismrm-2008/files/01078.pdf
Bollmann, S., Kasper, L., Vannesjo, S. J., Diaconescu, A. O., Dietrich, B. E., & Gross, S., et al. (2017). Analysis and correction of field fluctuations in fMRI data using field monitoring.
NeuroImage, 154, 92-105. [DOI:10.1016/j.neuroimage.2017.01.014] [PMID]
Bosma, R. L., & Stroman, P. W. (2015). Spinal cord response to stepwise and block presentation of thermal stimuli: A functional MRI study.
Journal of Magnetic Resonance Imaging, 41(5), 1318-25. [DOI:10.1002/jmri.24656] [PMID]
Bosma, R. L., Mojarad, E. A., Leung, L., Pukall, C., Staud, R., & Stroman, P. W. (2016). FMRI of spinal and supra‐spinal correlates of temporal pain summation in fibromyalgia patients.
Human Brain Mapping, 37(4), 1349-60. [DOI:10.1002/hbm.23106] [PMID] [PMCID]
Bosma, R., & Stroman, P. (2014). Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data.
Magnetic Resonance Imaging, 32(5), 473-81. [DOI:10.1016/j.mri.2014.01.007] [PMID]
Bouwman, C. J. C., Wilmink, J. T., Mess, W. H., & Backes, W. H. (2008). Spinal cord functional MRI at 3 T: Gradient echo echo-planar imaging versus turbo spin echo.
NeuroImage, 43(2), 288-96. [DOI:10.1016/j.neuroimage.2008.07.024] [PMID]
Bowring, A., Maumet, C., & Nichols, T. T. (2018). Exploring the impact of analysis software on task fMRI results.
bioRxiv. [DOI:10.1101/285585]
Brooks, J. C. W. (2014). Physiological noise modeling and analysis for spinal cord fMRI. In J. Cohen-Adad & C. A. M. Wheeler-Kingshott (Eds.),
Quantitative MRI of the spinal cord (pp. 240-257). Cambridge, MA: Academic Press. [DOI:10.1016/B978-0-12-396973-6.00016-2]
Brooks, J. C., Beckmann, C. F., Miller, K. L., Wise, R. G., Porro, C. A., & Tracey, I., et al. (2008). Physiological noise modelling for spinal functional magnetic resonance imaging studies.
NeuroImage, 39(2), 680-92. [DOI:10.1016/j.neuroimage.2007.09.018] [PMID]
Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the BOLD fMRI signal.
NeuroImage, 154, 128-49. [DOI:10.1016/j.neuroimage.2016.12.018] [PMID] [PMCID]
Cadotte, D. W., Bosma, R., Mikulis, D., Nugaeva, N., Smith, K., & Pokrupa, R., et al. (2012). Plasticity of the injured human spinal cord: Insights revealed by spinal cord functional MRI.
PLoS One, 7(9), e45560. [DOI:10.1371/journal.pone.0045560] [PMID] [PMCID]
Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H. J., & Walter, M. (2013). Association between heart rate variability and fluctuations in resting-state functional connectivity.
Neuroimage, 68, 93-104. https://www.sciencedirect.com/science/article/abs/pii/S1053811912011500
Chen, L. M., Mishra, A., Yang, P. F., Wang, F., & Gore, J. C. (2015). Injury alters intrinsic functional connectivity within the primate spinal cord.
Proceedings of the National Academy of Sciences, 112(19), 5991-6. [DOI:10.1073/pnas.1424106112] [PMID] [PMCID]
Chen, Y., Kong, K. M., Wang, W. D., Xie, C. H., & Wu, R. H. (2007). Functional MR imaging of the spinal cord in cervical spinal cord injury patients by acupuncture at LI 4 (Hegu) and LI 11 (Quchi). Paper presented at 29
th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22-26 August 2007. [DOI:10.1109/IEMBS.2007.4353058] [PMID]
Choe, A. S. (2017). Advances in spinal functional magnetic resonance imaging in the healthy and injured spinal cords.
Current Physical Medicine and Rehabilitation Reports, 5(3), 143-50. [DOI:10.1007/s40141-017-0161-x] [PMID] [PMCID]
Cohen-Adad, J. (2017). Functional magnetic resonance imaging of the spinal cord: Current status and future developments.
Seminars in Ultrasound, CT and MRI, 38(2), 176-86. [DOI:10.1053/j.sult.2016.07.007] [PMID]
Cohen-Adad, J., Lvy, S., & Avants, B. (2015). Slice-by-slice regularized registration for spinal cord MRI: SliceReg. Paper presented at 23rd Annual Meeting & Exhibition, 30 May-5 June 2015, SMRT 24
th Annual Meeting, 30-31 May 2015, Toronto, Ontario, Canada. http://archive.ismrm.org/2015/4428.html
Cohen‐Adad, J., Mareyam, A., Keil, B., Polimeni, J. R., & Wald, L. L. (2011). 32‐channel RF coil optimized for brain and cervical spinal cord at 3 T.
Magnetic Resonance in Medicine, 66(4), 1198-208. [DOI:10.1002/mrm.22906] [PMID] [PMCID]
Cohen-Adad, J., Rossignol, S., & Hoge, R. D. (2009). Slice-by-slice motion correction in spinal cord fMRI: SliceCorr. Paper presented at 17
th Scientific Meeting & Exhibition, Honolulu, HI, USA, 18-24 April 2009. https://cds.ismrm.org/protected/09MProceedings/files/03181.pdf
Deckers, R. H., van Gelderen, P., Ries, M., Barret, O., Duyn, J. H., &Ikonomidou, V. N., et al. (2006). An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data.
Neuroimage, 33(4), 1072-1081. https://doi.org/10.1016/j.neuroimage.2006.08.006
Constable, R. T., Skudlarski, P., & Gore, J. C. (1995). An ROC approach for evaluating functional brain MR imaging and postprocessing protocols.
Magnetic Resonance in Medicine, 34(1), 57-64. [DOI:10.1002/mrm.1910340110] [PMID]
De Leener, B., Lévy, S., Dupont, S. M., Fonov, V. S., Stikov, N., & Collins, D. L., et al. (2017). SCT: Spinal cord toolbox, an open-source software for processing spinal cord MRI data.
NeuroImage, 145(Pt A), 24-43. [DOI:10.1016/j.neuroimage.2016.10.009] [PMID]
De Tillieux, P., Topfer, R., Foias, A., Leroux, I., El Maâchi, I., & Leblond, H., et al. (2018). A pneumatic phantom for mimicking respiration‐induced artifacts in spinal MRI.
Magnetic Resonance in Medicine, 79(1), 600-5. [DOI:10.1002/mrm.26679] [PMID]
Durand, E., van de Moortele, P. F., Pachot‐Clouard, M., & Le Bihan, D. (2001). Artifact due to B0 fluctuations in fMRI: Correction using the k-space central line.
Magnetic Resonance in Medicine, 46(1), 198-201. [DOI:10.1002/mrm.1177] [PMID]
Eippert, F., Kong, Y., Jenkinson, M., Tracey, I., & Brooks, J. C. (2017). Denoising spinal cord fMRI data: Approaches to acquisition and analysis.
NeuroImage, 154, 255-66. [DOI:10.1016/j.neuroimage.2016.09.065] [PMID]
Figley, C. R., & Stroman, P. W. (2009). Development and validation of retrospective spinal cord motion time-course estimates (RESPITE) for spin-echo spinal fMRI: Improved sensitivity and specificity by means of a motion-compensating general linear model analysis.
NeuroImage, 44(2), 421-7. [DOI:10.1016/j.neuroimage.2008.08.040] [PMID]
Figley, C., Yau, D., & Stroman, P. (2008). Attenuation of lower-thoracic, lumbar, and sacral spinal cord motion: Implications for imaging human spinal cord structure and function.
American Journal of Neuroradiology, 29(8), 1450-4. [DOI:10.3174/ajnr.A1154] [PMID]
Finsterbusch, J., Eippert, F., & Büchel, C. (2012). Single, slice-specific z-shim gradient pulses improve T2*-weighted imaging of the spinal cord.
NeuroImage, 59(3), 2307-15. [DOI:10.1016/j.neuroimage.2011.09.038] [PMID]
Finsterbusch, J., Sprenger, C., & Büchel, C. (2013). Combined T2*-weighted measurements of the human brain and cervical spinal cord with a dynamic shim update.
NeuroImage, 79, 153-61. [DOI:10.1016/j.neuroimage.2013.04.021] [PMID]
Fratini, M., Moraschi, M., Maraviglia, B., & Giove, F. (2014). On the impact of physiological noise in spinal cord functional MRI.
Journal of Magnetic Resonance Imaging, 40(4), 770-7. [DOI:10.1002/jmri.24467] [PMID]
Fruehwald-Pallamar, J., Szomolanyi, P., Fakhrai, N., Lunzer, A., Weber, M., & Thurnher, M., et al. (2012). Parallel imaging of the cervical spine at 3T: Optimized trade-off between speed and image quality.
American Journal of Neuroradiology, 33(10), 1867-74. [DOI:10.3174/ajnr.A3101] [PMID]
Glover, G. H. (2012). Spiral imaging in fMRI.
NeuroImage, 62(2), 706-12. [DOI:10.1016/j.neuroimage.2011.10.039] [PMID] [PMCID]
Glover, G. H., Li, T. Q., & Ress, D. (2000). Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR.
Magnetic Resonance in Medicine, 44(1), 162-7. [DOI:10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e] [PMID]
Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., & Glasser, M. F., et al. (2017). Hand classification of fMRI ICA noise components.
NeuroImage, 154, 188-205. [DOI:10.1016/j.neuroimage.2016.12.036] [PMID] [PMCID]
Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jellus, V., & Wang, J., et al. (2002). Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA).
Magnetic Resonance in Medicine, 47(6), 1202-10. [DOI:10.1002/mrm.10171] [PMID]
Hu, Y., Jin, R., Li, G., Luk, K. D., & Wu, E. X. (2018). Robust spinal cord resting-state fMRI using independent component analysis-based nuisance regression noise reduction.
Journal of Magnetic Resonance Imaging, 48(5), 1421-31. [DOI:10.1002/jmri.26048] [PMID]
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images.
NeuroImage, 17(2), 825-41. [DOI:10.1006/nimg.2002.1132] [PMID]
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL.
NeuroImage, 62(2), 782-90. [DOI:10.1016/j.neuroimage.2011.09.015] [PMID]
Kay, K., Rokem, A., Winawer, J., Dougherty, R., & Wandell, B. (2013). GLMdenoise: a fast, automated technique for denoising task-based fMRI data.
Frontiers in Neuroscience, 7, 247. https://www.frontiersin.org/articles/10.3389/fnins.2013.00247/full
Kashkouli Nejad, K., Sugiura, M., Thyreau, B., Nozawa, T., Kotozaki, Y., & Furusawa, Y., et al. (2014). Spinal fMRI of interoceptive attention/awareness in experts and novices.
Neural Plasticity, 2014, 2014, 679509. [DOI:10.1155/2014/679509] [PMID] [PMCID]
Kearney, H., Miller, D. H., & Ciccarelli, O. (2015). Spinal cord MRI in multiple sclerosis-diagnostic, prognostic and clinical value.
Nature Reviews Neurology, 11(6), 327-38. [DOI:10.1038/nrneurol.2015.80] [PMID]
Kelly Jr, R. E., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F., & Morimoto, S. S., et al. (2010). Visual inspection of independent components: Defining a procedure for artifact removal from fMRI data.
Journal of Neuroscience Methods, 189(2), 233-45. [DOI:10.1016/j.jneumeth.2010.03.028] [PMID] [PMCID]
Komisaruk, B. R., Mosier, K. M., Liu, W. C., Criminale, C., Zaborszky, L., & Whipple, B., et al. (2002). Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI.
American Journal of Neuroradiology, 23(4), 609-17. [PMID]
Kong, Y., Eippert, F., Beckmann, C. F., Andersson, J., Finsterbusch, J., & Büchel, C., et al. (2014). Intrinsically organized resting state networks in the human spinal cord.
Proceedings of the National Academy of Sciences, 111(50), 18067-72. [DOI:10.1073/pnas.1414293111] [PMID] [PMCID]
Kong, Y., Jenkinson, M., Andersson, J., Tracey, I., & Brooks, J. C. (2012). Assessment of physiological noise modelling methods for functional imaging of the spinal cord.
NeuroImage, 60(2), 1538-49. [DOI:10.1016/j.neuroimage.2011.11.077] [PMID]
Kornelsen, J., Smith, S. D., & McIver, T. A. (2014). A neural correlate of visceral emotional responses: evidence from fMRI of the thoracic spinal cord.
Social Cognitive and Affective Neuroscience, 10(4), 584-8. [DOI:10.1093/scan/nsu092] [PMID] [PMCID]
Kornelsen, J., Smith, S. D., McIver, T. A., Sboto‐Frankenstein, U., Latta, P., & Tomanek, B. (2013). Functional MRI of the thoracic spinal cord during vibration sensation.
Journal of Magnetic Resonance Imaging, 37(4), 981-5. [DOI:10.1002/jmri.23819] [PMID]
Kozyrev, N., Figley, C. R., Alexander, M. S., Richards, J. S., Bosma, R. L., & Stroman, P. W. (2012). Neural correlates of sexual arousal in the spinal cords of able-bodied men: A spinal fMRI investigation.
Journal of Sex & Marital Therapy, 38(5), 418-35. [DOI:10.1080/0092623X.2011.606887] [PMID]
Leitch, J. K., Cahill, C. M., Ghazni, N. F., Figley, C. R., & Stroman, P. W. (2009).
Spinal cord and brainstem activation in carpal tunnel syndrome patients in response to noxious stimuli: A spinal fMRI study. Paper presented at 17
th Scientific Meeting & Exhibition, Honolulu, HI, USA, 18-24 April 2009. https://cds.ismrm.org/protected/09MProceedings/files/01314.pdf
Leitch, J. K., Figley, C. R., & Stroman, P. W. (2010). Applying functional MRI to the spinal cord and brainstem.
Magnetic Resonance Imaging, 28(8), 1225-33. [DOI:10.1016/j.mri.2010.03.032] [PMID]
Li, P., Yu, X., Griffin, J., Levine, J. M., & Ji, J. (2015).
High-resolution MRI of spinal cords by compressive sensing parallel imaging. Paper presented at 37
th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25-29 August 2015. [DOI:10.1109/EMBC.2015.7319337] [PMID]
Madi, S., Flanders, A. E., Vinitski, S., Herbison, G. J., & Nissanov, J. (2001). Functional MR imaging of the human cervical spinal cord.
American Journal of Neuroradiology, 22(9), 1768-74. [PMID]
Maieron, M., Iannetti, G. D., Bodurka, J., Tracey, I., Bandettini, P. A., & Porro, C. A. (2007). Functional responses in the human spinal cord during willed motor actions: Evidence for side-and rate-dependent activity.
Journal of Neuroscience, 27(15), 4182-90. [DOI:10.1523/JNEUROSCI.3910-06.2007] [PMID] [PMCID]
Mainero, C., Zhang, W. T., Kumar, A., Rosen, B. R., & Sorensen, A. G. (2007). Mapping the spinal and supraspinal pathways of dynamic mechanical allodynia in the human trigeminal system using cardiac-gated fMRI.
NeuroImage, 35(3), 1201-10. [DOI:10.1016/j.neuroimage.2007.01.024] [PMID] [PMCID]
Moeller, S., Yacoub, E., Olman, C. A., Auerbach, E., Strupp, J., & Harel, N., et al. (2010). Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI.
Magnetic Resonance in Medicine, 63(5), 1144-53. [DOI:10.1002/mrm.22361] [PMID] [PMCID]
Nash, P., Wiley, K., Brown, J., Shinaman, R., Ludlow, D., & Sawyer, A. M., et al. (2013). Functional magnetic resonance imaging identifies somatotopic organization of nociception in the human spinal cord.
Pain, 154(6), 776-81. [DOI:10.1016/j.pain.2012.11.008] [PMID]
Ng, M. C., Wu, E. X., Lau, H. F., Hu, Y., Lam, E. Y., & Luk, K. D. (2008). Cervical spinal cord BOLD fMRI study: Modulation of functional activation by dexterity of dominant and non-dominant hands.
NeuroImage, 39(2), 825-31. [DOI:10.1016/j.neuroimage.2007.09.026] [PMID]
Parkes, L., Fulcher, B., Yücel, M., & Fornito, A. (2018). An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage, 171, 415-36. [DOI:10.1016/j.neuroimage.2017.12.073] [PMID]
Parrish, T. B., Gitelman, D. R., LaBar, K. S., & Mesulam, M. M. (2000). Impact of signal‐to‐noise on functional MRI. Magnetic Resonance in Medicine, 44(6), 925-32. [DOI:10.1002/1522-2594(200012)44:6<925::aid-mrm14>3.0.co;2-m] [PMID]
Piché, M., Cohen-Adad, J., Nejad, M. K., Perlbarg, V., Xie, G., & Beaudoin, G., et al. (2009). Characterization of cardiac-related noise in fMRI of the cervical spinal cord.
Magnetic Resonance Imaging, 27(3), 300-10. [DOI:10.1016/j.mri.2008.07.019] [PMID]
Poser, B. A., & Norris, D. G. (2007). Fast spin echo sequences for BOLD functional MRI.
Magnetic Resonance Materials in Physics, Biology and Medicine, 20(1), 11. [DOI:10.1007/s10334-006-0063-x] [PMID] [PMCID]
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI.
NeuroImage, 84, 320-41. [DOI:10.1016/j.neuroimage.2013.08.048] [PMID] [PMCID]
Raj, D., Anderson, A. W., & Gore, J. C. (2001). Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes.
Physics in Medicine & Biology, 46(12), 3331-40. [DOI:10.1088/0031-9155/46/12/318] [PMID]
Rocca, M., Absinta, M., Valsasina, P., Copetti, M., Caputo, D., & Comi, G., et al. (2012). Abnormal cervical cord function contributes to fatigue in multiple sclerosis.
Multiple Sclerosis Journal, 18(11), 1552-9. [DOI:10.1177/1352458512440516] [PMID]
Särkkä, S., Solin, A., Nummenmaa, A., Vehtari, A., Auranen, T., & Vanni, S., et al. (2012). Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER.
NeuroImage, 60(2), 1517-27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303954/
Skudlarski, P., Constable, R. T., & Gore, J. C. (1999). ROC analysis of statistical methods used in functional MRI: Individual subjects.
NeuroImage, 9(3), 311-29. [DOI:10.1006/nimg.1999.0402] [PMID]
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., & Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL.
NeuroImage, 23(Suppl 1), S208-19. [DOI:10.1016/j.neuroimage.2004.07.051] [PMID]
Sorenson, J. A., & Wang, X. (1996). ROC methods for evaluation of fMRI techniques.
Magnetic Resonance in Medicine, 36(5), 737-44. [DOI:10.1002/mrm.1910360512] [PMID]
Stroman, P. (2006). Discrimination of errors from neuronal activity in functional MRI of the human spinal cord by means of general linear model analysis.
Magnetic Resonance in Medicine, 56(2), 452-6. [DOI:10.1002/mrm.20966] [PMID]
Stroman, P. W., & Ryner, L. N. (2000).
Investigating BOLD signal intensity changes in fMRI of the human spinal cord. Paper presented at 8
th Scientific Meeting and Exhibition, Denver, Colorado, USA, 1-7 April 2000. https://cds.ismrm.org/ismrm-2000/PDF4/0941.pdf
Stroman, P. W., & Ryner, L. N. (2001). Functional MRI of motor and sensory activation in the human spinal cord.
Magnetic Resonance Imaging, 19(1), 27-32. [DOI:10.1016/S0730-725X(01)00226-0]
Stroman, P. W., Khan, H. S., Bosma, R. L., Cotoi, A. I., Leung, R., & Cadotte, D. W., et al. (2016). Changes in pain processing in the spinal cord and brainstem after spinal cord injury characterized by functional magnetic resonance imaging.
Journal of Neurotrauma, 33(15), 1450-60. [DOI:10.1089/neu.2015.4257] [PMID]
Stroman, P. W., Kornelsen, J., Bergman, A., Krause, V., Ethans, K., & Malisza, K. L., et al. (2004). Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging.
Spinal Cord, 42(2), 59-66. [DOI:10.1038/sj.sc.3101559] [PMID]
Stroman, P. W., Wheeler-Kingshott, C., Bacon, M., Schwab, J., Bosma, R., & Brooks, J., et al. (2014). The current state-of-the-art of spinal cord imaging: Methods.
NeuroImage, 84, 1070-81. [DOI:10.1016/j.neuroimage.2013.04.124] [PMID] [PMCID]
Topfer, R., Foias, A., Stikov, N., & Cohen-Adad, J. (2017). Real-time shimming of the human spinal cord using a 24-channel shim array coil. Paper presented at ISMRM 25th Annual Meeting & Exhibition, Honolulu, HI, USA, 22-27 April 2017.
Topfer, R., Germain, G., Stockmann, J. P., Metzemaekers, K., Hetherington, H., & Paquin, R., et al. (2016). Very-high order shimming in the human spinal cord using a dedicated 24-channel array coil. Paper presented at ISMRM 24
th Annual Meeting & Exhibition, Singapore, 7-13 May 2016. http://archive.ismrm.org/2016/3628.html
Topfer, R., Starewicz, P., Lo, K. M., Metzemaekers, K., Jette, D., & Hetherington, H. P., et al. (2016). A 24‐channel shim array for the human spinal cord: Design, evaluation, and application.
Magnetic Resonance in Medicine, 76(5), 1604-11. [DOI:10.1002/mrm.26354] [PMID]
Vahdat, S., Lungu, O., Cohen-Adad, J., Marchand-Pauvert, V., Benali, H., & Doyon, J. (2015). Simultaneous brain-cervical cord fMRI reveals intrinsic spinal cord plasticity during motor sequence learning.
PLoS Biology, 13(6), e1002186. [DOI:10.1371/journal.pbio.1002186] [PMID] [PMCID]
Valsasina, P., Agosta, F., Absinta, M., Sala, S., Caputo, D., & Filippi, M. (2010). Cervical cord functional MRI changes in relapse-onset MS patients.
Journal of Neurology, Neurosurgery & Psychiatry, 81(4), 405-8. [DOI:10.1136/jnnp.2009.187526] [PMID]
Valsasina, P., Rocca, M. A., Absinta, M., Agosta, F., Caputo, D., & Comi, G., et al. (2012). Cervical cord FMRI abnormalities differ between the progressive forms of multiple sclerosis.
Human Brain Mapping, 33(9), 2072-80. [DOI:10.1002/hbm.21346] [PMID] [PMCID]
van Gelderen, P., de Zwart, J. A., Starewicz, P., Hinks, R. S., & Duyn, J. H. (2007). Real‐time shimming to compensate for respiration‐induced B0 fluctuations.
Magnetic Resonance in Medicine, 57(2), 362-8. [DOI:10.1002/mrm.21136] [PMID]
Verma, T., & Cohen‐Adad, J. (2014). Effect of respiration on the B0 field in the human spinal cord at 3T.
Magnetic Resonance in Medicine, 72(6), 1629-36. [DOI:10.1002/mrm.25075] [PMID]
Verstynen, T. D., & Deshpande, V. (2011). Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal.
NeuroImage, 55(4), 1633-44. https://www.sciencedirect.com/science/article/abs/pii/S1053811911000218
Wang, J., Wang, Z., Aguirre, G. K., & Detre, J. A. (2005). To smooth or not to smooth? ROC analysis of perfusion fMRI data.
Magnetic Resonance Imaging, 23(1), 75-81. [DOI:10.1016/j.mri.2004.11.009] [PMID]
Weber II, K. A., Chen, Y., Wang, X., Kahnt, T., & Parrish, T. B. (2016). Lateralization of cervical spinal cord activity during an isometric upper extremity motor task with functional magnetic resonance imaging.
NeuroImage, 125, 233-43. [DOI:10.1016/j.neuroimage.2015.10.014] [PMID] [PMCID]
Winklhofer, S., Schoth, F., Stolzmann, P., Krings, T., Mull, M., & Wiesmann, M., et al. (2014). Spinal cord motion: Influence of respiration and cardiac cycle.
Rofo, 186(11), 1016-21. [DOI:10.1055/s-0034-1366429] [PMID]
Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data.
NeuroImage, 14(6), 1370-86. [DOI:10.1006/nimg.2001.0931] [PMID]
Worsley, K. J., Liao, C., Aston, J., Petre, V., Duncan, G., & Morales, F., et al. (2002). A general statistical analysis for fMRI data.
NeuroImage, 15(1), 1-15. [DOI:10.1006/nimg.2001.0933] [PMID]
Xie, C. H., Kong, K. M., Guan, J. T., Chen, Y. X., He, J. K., & Qi, W. L., et al. (2009). SSFSE sequence functional MRI of the human cervical spinal cord with complex finger tapping.
European Journal of Radiology, 70(1), 1-6. [DOI:10.1016/j.ejrad.2008.01.003] [PMID]
Xie, G., Piché, M., Khoshnejad, M., Perlbarg, V., Chen, J. I., & Hoge, R. D., et al. (2012). Reduction of physiological noise with independent component analysis improves the detection of nociceptive responses with fMRI of the human spinal cord.
NeuroImage, 63(1), 245-52. [DOI:10.1016/j.neuroimage.2012.06.057] [PMID]
Ye, Y., Zhuo, Y., Xue, R., & Zhou, X. J. (2010). BOLD fMRI using a modified HASTE sequence.
NeuroImage, 49(1), 457-66. [DOI:10.1016/j.neuroimage.2009.07.044] [PMID] [PMCID]
Yeo, D. T., Fessler, J. A., & Kim, B. (2008). Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.
Magnetic Resonance Imaging, 26(5), 703-14. [DOI:10.1016/j.mri.2007.11.001] [PMID] [PMCID]
Yildiz, S., Thyagaraj, S., Jin, N., Zhong, X., Heidari Pahlavian, S., & Martin, B. A., et al. (2017). Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real‐time phase‐contrast MRI.
Journal of Magnetic Resonance Imaging, 46(2), 431-9. [DOI:10.1002/jmri.25591] [PMID]
Yoshizawa, T., Nose, T., Moore, G. J., & Sillerud, L. O. (1996). Functional magnetic resonance imaging of motor activation in the human cervical spinal cord.
NeuroImage, 4(3), 174-82. [DOI:10.1006/nimg.1996.0068] [PMID]
Zhang, B., Seifert, A. C., Kim, J. W., Borrello, J., & Xu, J. (2017). 7 Tesla 22‐channel wrap‐around coil array for cervical spinal cord and brainstem imaging.
Magnetic Resonance in Medicine, 78(4), 1623-34. [DOI:10.1002/mrm.26538] [PMID]
Zhong, X. P., Chen, Y. X., Li, Z. Y., Shen, Z. W., & Kong, K. M., et al. (2017). Cervical spinal functional magnetic resonance imaging of the spinal cord injured patient during electrical stimulation.
European Spine Journal, 26(1), 71-7. [DOI:10.1007/s00586-016-4646-6] [PMID]
Zhong, Y., Zheng, G., Liu, Y., & Lu, G. (2014). Independent component analysis of instantaneous power-based fMRI.
Computational and Mathematical Methods in Medicine, 2014, 2014, 579652. [DOI:10.1155/2014/579652] [PMID] [PMCID]