Volume 10, Issue 2 (March & April 2019)                   BCN 2019, 10(2): 109-118 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandary A, Moazedi A A, Najaph Zade H, Akhond M R. Effects of Donepezil Hydrochloride on Neuronal Response of Pyramidal Neuron of the CA1 Hippocampus in Rat Model of Alzheimer's Disease. BCN 2019; 10 (2) :109-118
URL: http://bcn.iums.ac.ir/article-1-1175-en.html
1- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3- Department of Statistics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Abstract:  
Introduction: Donepezil (DON), an Acetylcholinesterase Inhibitor (AChEI), is widely used in the treatment of Alzheimer’s Disease (AD). The current study aimed at evaluating the effect of donepezil hydrochloride on pyramidal neuron response in CA1 region of a rat model of AD.
Methods: In the current experimental study, adult male Wistar rats were randomly divided into four groups: Nucleus Basalis Magnocellularis (NBM) lesion (the lesions were induced by an electrical method of 0.5 m A, for 3 s in NBM) and three donepezil groups (lesions plus 5, 10, and 15 mg/kg donepezil intraperitoneal injection). Neuronal spontaneous activity to injection of the donepezil and saline were recorded in CA1 region of hippocampal.
Results: The obtained results showed that IntraPeritoneal (IP) injection of donepezil (10 and 15 mg/kg) increased neuronal spontaneous activity in the rat model of AD.
Conclusion: The current study results suggested that acute IP injection of donepezil increased neuronal response in CA1 region of hippocampal in a rat model of AD. 
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2018/04/30 | Accepted: 2018/11/10 | Published: 2019/03/1

References
1. Akaika, A., Takada-Takatori, Y., Kume, T., Izumi, Y. (2010). Mechanisms of neuroprotective effects of nicotine and acetylcholinestrase inhibitors: role of α4 and α7 receptors in neuroprotection. Journal Molecular Neuroscience, 40(1-2), 211-6. [DOI:10.1007/s12031-009-9236-1] [DOI:10.1007/s12031-009-9236-1]
2. Andra´ Sfalvy, B. K., Makara, J. K., Johnston, D., Magee, J. C. (2008). Alteredsynaptic and non-synaptic properties of CA1 pyramidal neurons in Kv4.2 knockout mice. The Journal of Physiology, 586(16), 3881–92. [DOI:10.1113/jphysiol.2008.154336] [DOI:10.1113/jphysiol.2008.154336]
3. Arias, E., Gallego-Sandin, S., Villarroya, M., Garcia, A. C., & Lopez, M. G. (2005). Unequal neuroprotection afforded by the acetylcholineestrase inhibitors galantamine, donepezil and rivastigmine in SH-SY5Y neuroblastoma cells: Role of nicotinic receptors. The Journal of Pharmacology and Experimental Therapeutics, 315(3), 1349-53. [DOI:10.1124/jpet.105.090365] [DOI:10.1124/jpet.105.090365]
4. Bloodgood, B. L., Giessel, A. J., & Sabatini, B. L. (2009). Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biology, 7(9), e1000190. [DOI:10.1371/journal.pbio.1000190] [DOI:10.1371/journal.pbio.1000190]
5. Buchanan, K. A, Petrovic, M. M., Chamberlain, S. E., Marrion, N. V., & Mellor, J. R. (2010). Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron, 68(5), 963-84. [DOI:10.1016/j.neuron.2010.11.018] [DOI:10.1016/j.neuron.2010.11.018]
6. Cutuli, D., Foti, F., Mandolesi, L., De Bartolo, P., Bgelfo, F., & Federice, F. (2009). Cognitive performance of cholinergically depleted rats following chronic donepezil administration. Journal of Alzheimerʻs Disease, 17(1), 161-76. [DOI:10.3233/JAD-2009-1040] [DOI:10.3233/JAD-2009-1040]
7. Donald, R., Humphrey, D. R., & Schmidt, E. M. (1990). Extracellular single-unit recording methods. Neurophysiological Techniques, 15(2), 1-64. [DOI:10.1385/0-89603-185-3:1.] [DOI:10.1385/0-89603-185-3:1]
8. Dutar, P., Bassant, M. H., Senut, M. C., & Lamour, Y. (1995). The septohippocampal pathway: structure and function of a central cholinergic system. Physiological Review, 75(2), 393–427. [DOI:10.1152/physrev.1995.75.2.393] [DOI:10.1152/physrev.1995.75.2.393]
9. Easton, A., Sankarana, S., Tanghe, A., Terwel, D., Lin, A., & Hoane, N. (2013) Effects of sub-chronic donepezil on brain Aβ and cognition in a mouse model of alzheimerʻs disease. Psychopharmacology, 230(2), 279-89. [DOI:10.1007/s00213-013-3152-3] [DOI:10.1007/s00213-013-3152-3]
10. Faber, E. S., Delaney, A. J., Power, J. M., Sedlak, P. L., Crane, J. W., & Sah, P. (2008). Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala. Journal of Neuroscience, 28(43), 10803–13. [DOI:10.1523/JNEUROSCI.1796-08.2008.] [DOI:10.1523/JNEUROSCI.1796-08.2008]
11. Fernandez, D., Nun, A., Borde, M., Malinow, R., & Bun, O. W. (2008). Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. Journal of Neuroscience, 28(6), 1469–78. [DOI:10.1523/JNEUROSCI.2723-07.2008] [DOI:10.1523/JNEUROSCI.2723-07.2008]
12. Giessel, A. J., & Sabatini, B. L. (2010). M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron, 68(5), 936–47. [DOI:10.1016/j.neuron.2010.09.004] [DOI:10.1016/j.neuron.2010.09.004]
13. Ginani, G. E., Tufik, S., Bueno, O. F., Pradella-Hallinan, M., Rusted, J., & Pompeia, S. (2011). Acute effects of donepezil in healthy young adults underline the fractionation of executive functioning. Journal Psychopharmacology, 25(11), 1508-16. [DOI:10.1177/0269881110391832] [DOI:10.1177/0269881110391832]
14. Green, J. T., & Arenos, J. D. (2007). Hippocampal and cerebellar single unit recording during delay and trace eyeblink conditioning in the rat. Neurobiology of Learning and Memory, 87(2), 269-84. [DOI:10.1016/j.nlm.2006.08.014] [DOI:10.1016/j.nlm.2006.08.014]
15. Grothe, M. G., Schuster, C., Bauer, F. Heinsen, H., Prudlo, J., & Teipel, S. J. (2014). Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer's disease dementia. Journal of Neurology, 261(10), 1939–48. [DOI:10.1007/s00415-014-7439-z] [DOI:10.1007/s00415-014-7439-z]
16. Kapai, N., & Bukanova, J. (2012). Donepezil in a narrow concentration range augments control and impaired by beta-amyloid peptide hippocampal LTP in NMDAR-independent manner. Cellular and Molecular Neurobiology, 32(2), 219-26. [DOI:10.1007/s10571-011-9751-9] [DOI:10.1007/s10571-011-9751-9]
17. Kapai, N., Solentseva, E., & Skrebitskii, V. G. (2012). Donepezil eliminates suppressive of β-amyloid peptid on long term potentiation in the hippocampus. Bulletin of Experimental Biology and Medicine, 149(1), 33-6. [DOI:10.1007/s10517-010-0868-5] [DOI:10.1007/s10517-010-0868-5]
18. Kimura, M., Akasofu, S., Ogura, H., & Sawada, K. (2005). Protective effect of donepezil against A beta(1-40) neurotoxicity in rat septal neurons. Brain Research, 1047(1), 72-84. [DOI:10.1016/j.brainres.2005.04.014] [DOI:10.1016/j.brainres.2005.04.014]
19. Kume, T., Sugimoto, M., Takada, Y., Yamaguchi, T., Yonezawa, A., & Katsuki, H. (2005). Up-regulation of nicotinic acetylcholine receptors by central-type acetylcholineestrase inhibitors in ratcortical neurons. European Journal of Pharmacology, 527(1-3), 77-85. [DOI:10.1016/j.ejphar.2005.10.028] [DOI:10.1016/j.ejphar.2005.10.028]
20. Lin, M. T., Luja, R., Watanabe, M., Adelman, J. P., & Maylie, J. (2008). SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses. Nature Neuroscience, 11(1), 170–7. [DOI:10.1038/nn2041] [DOI:10.1038/nn2041]
21. Meuneir, J., Jeni, J., & Maurice, T. (2006). The anti-amnestic and neuroprotective effects of donepezil against amyloid beta 25-35 peptide induced toxicity in mice involve an interaction with the sigma 1 receptor. British Journal of Pharmacology, 149(8), 998-1012. [DOI:10.1038/sj.bjp.0706927] [DOI:10.1038/sj.bjp.0706927]
22. Meyer, E. M., Arendash, G. W., Judkins, J. H., Ying, L., Wade, C., & Kem, W. R. (1987). Effects of nucleus basalis lesions on the muscarinic and nicotinic modulation of [3H] acetylcholine release in the rat cerebral cortex. Journal of Neurochemistry, 49(6), 1758-62. [DOI:10.1111/j.1471-4159.1987.tb02433.x] [DOI:10.1111/j.1471-4159.1987.tb02433.x]
23. Moriguch, S., Shioda, N., Han, F., Yeh, J. Z., & Narahashi, T. (2005). Modulation of N-methyl-D-aspartate receptors by donepezil in rat cortical neurons. Journal of Pharmacology and Experimental Therapeutics, 315(1), 125-35. [DOI:10.1124/jpet.105.087908] [DOI:10.1124/jpet.105.087908]
24. Ngo-Anh, T. J., Bloodgood, B. L., Lin, M., Sabatini, B. L., Maylie, J., & Adelman, J. P. (2005). SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neuroscience, 8(5), 642–9. [DOI:10.1038/nn1449] [DOI:10.1038/nn1449]
25. Noetzli, M., & Eap, C. (2013). Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimerʻs disease. Clinical Pharmacokinetics, 52(4), 225-41. [DOI:10.1007/s40262-013-0038-9] [DOI:10.1007/s40262-013-0038-9]
26. Park, J. Y., & Spruston, N. (2012). Synergistic actions of metabotropic acetylcholine and glutamate receptors on the excitability of hippocampal CA1 pyramidal neurons. Journal of Neuroscience, 32(18), 6081–91. [DOI:10.1523/JNEUROSCI.6519-11.2012] [DOI:10.1523/JNEUROSCI.6519-11.2012]
27. Rabiei, Z., Rafieian-Kopaei, M., Heidarian, E., Saghaei, E., & Mokhtari, S. H. (2014). Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus basalis of meynert in rat. Neurochemical Research, 39(2), 353–60. [DOI:10.1007/s11064-013-1232-8] [DOI:10.1007/s11064-013-1232-8]
28. Stackman, R. W., Hammond, R. S., Linardatos, E., Gerlach, A., Maylie, J., Adelman, J. P., et al. (2002). Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. Journal of Neuroscience, 22(23), 10163–71. [DOI:10.1523/JNEUROSCI.22-23-10163.2002] [DOI:10.1523/JNEUROSCI.22-23-10163.2002]
29. Umont, D., & Beal, M. F. (2011). Neurorotective strategies involving ROS in alzheimerʻs disease. Free Radical Biology & Medicine, 51(5), 1014-26. [DOI:10.1016/j.freeradbiomed.2010.11.026] [DOI:10.1016/j.freeradbiomed.2010.11.026]
30. Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., & DeLong, M. R. (1981). Alzheimer's disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Annals of Neurology, 10(2), 122-6. [DOI:10.1002/ana.410100203] [DOI:10.1002/ana.410100203]
31. Wu, C. K., Thal, L., Pizzo, D., Hansen, L., Masliah, E., & Geula, C. (2005). Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer's disease. Experimental Neurology, 195(2), 484-96. [DOI:10.1016/j.expneurol.2005.06.020] [DOI:10.1016/j.expneurol.2005.06.020]
32. Yamada-Hanff, J., & Bean, B. (2013). Persistent sodium current drives conditional pacemaking in CA1 pyramidal neurons under muscarinic stimulation. Journal of Neuroscience, 33(38), 15011–21. [DOI:10.1523/JNEUROSCI.0577-13.2013] [DOI:10.1523/JNEUROSCI.0577-13.2013]
33. Zhang, Z., Chen, R., An, W., Wang, C., Liao, G., & Dong, X. (2016). A novel acetylcholinesterase inhibitor and calcium channel blocker SCR-1693 improves Aβ25-35 impaired mouse cognitive function. Psychopharmacology, 233(4), 599-613. [DOI:10.1007/s00213-015-4133-5] [DOI:10.1007/s00213-015-4133-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb