دوره 12، شماره 2 - ( 12-1399 )                   جلد 12 شماره 2 صفحات 186-177 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babaee A, Eftekhar Vaghefi S H, Dehghani Soltani S, Asadi Shekaari M, Shahrokhi N, Basiri M. Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats. BCN 2021; 12 (2) :177-186
URL: http://bcn.iums.ac.ir/article-1-822-fa.html
Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats. مجله علوم اعصاب پایه و بالینی. 1399; 12 (2) :177-186

URL: http://bcn.iums.ac.ir/article-1-822-fa.html


چکیده:  

Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal death in several models of central nervous system injury. This study aimed to investigate the effect of melatonin on astrocyte activation induced by Traumatic Brain Injury (TBI) in rat hippocampus and dentate gyrus. 
Methods: Animals were randomly divided into 5 groups; Sham group, TBI group, vehicle group, and melatonin‐treated TBI groups (TBI+Mel5, TBI+Mel20). Immunohistochemical method (GFAP marker) and TUNEL assay were used to evaluate astrocyte reactivity and neuronal death, respectively. 
Results: The results demonstrated that the astrocyte number was reduced significantly in melatonin‐treated groups compared to the vehicle group. Additionally, based on TUNEL results, melatonin administration noticeably reduced the number of apoptotic neurons in the rat hippocampus and dentate gyrus. 
Conclusion: In general, our findings suggest that melatonin treatment after brain injury reduces astrocyte reactivity as well as neuronal cell apoptosis in rat hippocampus and dentate gyrus. 

نوع مطالعه: Original | موضوع مقاله: Cellular and molecular Neuroscience
دریافت: 1398/6/6 | پذیرش: 1399/2/29 | انتشار: 1399/12/11

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Basic and Clinical Neuroscience می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb