دوره 14، شماره 4 - ( 5-1402 )                   جلد 14 شماره 4 صفحات 452-443 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afsartala Z, Hadjighassem M, Shirian S, Ebrahimi-Barough S, Gholami L, Hussain M F, et al . Advances in Management of Spinal Cord Injury Using Stem Cell-derived Extracellular Vesicles: A Review Study. BCN 2023; 14 (4) :443-452
URL: http://bcn.iums.ac.ir/article-1-2266-fa.html
Advances in Management of Spinal Cord Injury Using Stem Cell-derived Extracellular Vesicles: A Review Study. مجله علوم اعصاب پایه و بالینی. 1402; 14 (4) :443-452

URL: http://bcn.iums.ac.ir/article-1-2266-fa.html


چکیده:  
Introduction: Spinal cord injury (SCI) is characterized by serious both motor and sensory disability of the limbs below the injured segment. It is the most traumatic disorder among central nervous system (CNS) conditions which not only leads to psychological and physical harm to patients but also results in a dramatic loss in the life quality. Many efforts have been developed to find a therapeutic approach for SCI; however, an effective treatment has not yet been found. The lack of effective treatment approach and rehabilitation of SCI underscores the need to identify novel approaches. Tissue engineering associated with stem cells has been recently introduced as an effective treatment approaches for traumatic SCI. Although, low survival rates, immune rejection, cell dedifferentiation, and tumorigenicity have been addressed for tissue engineering. Regenerative medicine is an interdisciplinary field developing and applying tissue engineering, stem cell (SC) therapy, and SC-derived extracellular vesicle therapy that aims to provide reliable and safe ways to replace injured tissues and organs. The application of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) has recently attracted attention to improve central nervous system dysfunction such as SCI, mainly by promoting neurogenesis and angiogenesis.
Methods: In this review article the latest information of SCI improvement using stem cell-derived extracellular vesicles published data in the Web of Science, Scopus, Science Direct and Pub Med databases were collected. 
Results: The data collected show that MSC-EVs, including exosomes, alone or in combination with scaffolds can can regenerate the injured nerve in SCI.
Conclusion: This study summarizes the efficacy of MSC-EVs, including exosomes, alone or in combination with scaffolds in the treatment of SCI and then discusses the therapeutic outcomes observed in SCI experimental models following treatment with MSC-EVs alone or loaded on scaffolds in particular collagen-based scaffolds.
نوع مطالعه: Review | موضوع مقاله: Behavioral Neuroscience
دریافت: 1400/4/6 | پذیرش: 1400/9/13 | انتشار: 1402/4/10

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Basic and Clinical Neuroscience می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb