1. Azizi, Z., Ebrahimi, S., Saadatfar, E., Kamalinejad, M., & Majlessi, N. (2012). Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behavioural Pharmacology, 23(3), 241-9. [DOI:10.1097/FBP.0b013e3283534301] [
DOI:10.1097/FBP.0b013e3283534301]
2. Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47-58. [DOI:10.2478/v10102-012-0009-2] [
DOI:10.2478/v10102-012-0009-2]
3. Gardella, C. (2001). Lead exposure in pregnancy: A review of the literature and argument for routine prenatal screening. Obstetrical & Gynecological Survey, 56(4), 231-8. [DOI:10.1097/00006254-200104000-00024] [
DOI:10.1097/00006254-200104000-00024]
4. Glass, T. A., Bandeen-Roche, K., McAtee, M., Bolla, K., Todd, A. C., & Schwartz, B. S. (2009). Neighborhood psychosocial hazards and the association of cumulative lead dose with cognitive function in older adults. American Journal of Epidemiology, 169(6), 683-92. [DOI:10.1093/aje/kwn390] [
DOI:10.1093/aje/kwn390]
5. Hajali, V., Sheibani, V., Esmaeili-Mahani, S., & Shabani, M. (2012). Female rats are more susceptible to the deleterious effects of paradoxical sleep deprivation on cognitive performance. Behavioural Brain Research, 228(2), 311-8. [DOI:10.1016/j.bbr.2011.12.008] [
DOI:10.1016/j.bbr.2011.12.008]
6. Hassanshahi, J., Roghani, M., & Raoufi, S. (2014). Protective effect of carvacrol in 6-hydroxydopamine hemi-parkinsonian rat model. Journal of Basic and Clinical Pathophysiology, 2(2), 29-34.
7. Hosseinzadeh, H., Ramezani, M., & Salmani, G. A. (2000). Antinociceptive, anti-inflammatory and acute toxicity effects of Zataria Multiflora Boiss extracts in mice and rats. Journal of Ethnopharmacology, 73(3), 379-85. [DOI:10.1016/S0378-8741(00)00238-5] [
DOI:10.1016/S0378-8741(00)00238-5]
8. Hsu, P. C., & Guo, Y. L. (2002). Antioxidant nutrients and lead toxicity. Toxicology, 180(1), 33-44. [DOI:10.1016/S0300-483X(02)00380-3] [
DOI:10.1016/S0300-483X(02)00380-3]
9. Hu, H., Shih, R., Rothenberg, S., & Schwartz, B. S. (2007). The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environmental Health Perspectives, 115(3), 455-462. [DOI:10.1289/ehp.9783] [
DOI:10.1289/ehp.9783]
10. Hu, H., Téllez-Rojo, M. M., Bellinger, D., Smith, D., Ettinger, A. S., Lamadrid-Figueroa, H., et al. (2006). Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environmental Health Perspectives, 1730-1735. [DOI:10.1289/ehp.9067] [
DOI:10.1289/ehp.9067]
11. Jedrychowski, W., Perera, F., Jankowski, J., Mrozek-Budzyn, D., Mroz, E., Flak, E., et al. (2009). Gender specific differences in neurodevelopmental effects of prenatal exposure to very low-lead levels: the prospective cohort study in three-year olds. Early Human Development, 85(8), 503-10. [DOI:10.1016/j.earlhumdev.2009.04.006] [
DOI:10.1016/j.earlhumdev.2009.04.006]
12. Jukic, M., Politeo, O., Maksimovic, M., Milos, M., & Milos, M. (2007). In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytotherapy Research, 21(3), 259-61. [DOI:10.1002/ptr.2063] [
DOI:10.1002/ptr.2063]
13. Karimian, P., Kavoosi, G., & Saharkhiz, M. J. (2012). Antioxidant, nitric oxide scavenging and malondialdehyde scavenging activities of essential oils from different chemotypes of Zataria Multiflora. Natural Product Research, 26(22), 2144-7. [
PMID]
14. Kavoosi, G., Rahmatollahi, A., Dadfar, S. M. M., & Purfard, A. M. (2014). Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT-Food Science and Technology, 57(2), 556-61. [DOI:10.1016/j.lwt.2014.02.008] [
DOI:10.1016/j.lwt.2014.02.008]
15. Kavoosi, G., & Rowshan, V. (2013). Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: Effect of collection time. Food Chemistry, 138(4), 2180-7. [DOI:10.1016/j.foodchem.2012.11.131] [
DOI:10.1016/j.foodchem.2012.11.131]
16. Kavoosi, G., Teixeira da Silva, J. A., & Saharkhiz, M. J. (2012). Inhibitory effects of Zataria Multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in lipopolysaccharide stimulated macrophages. Journal of Pharmacy and Pharmacology, 64(10), 1491-500. [DOI:10.1111/j.2042-7158.2012.01510.x] [PMID] [
DOI:10.1111/j.2042-7158.2012.01510.x]
17. Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Reports, 115(6), 521-5. [DOI:10.1093/phr/115.6.521] [
DOI:10.1093/phr/115.6.521]
18. Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., et al. (2005). Low-level environmental lead exposure and children's intellectual function: An international pooled analysis. Environmental Health Perspectives, 13(7), 894-9. [DOI:10.1289/ehp.7688] [
DOI:10.1289/ehp.7688]
19. Majlessi, N., Choopani, S., Kamalinejad, M., & Azizi, Z. (2011). Thymol as a main constituent of Zataria Multiflora boiss: essential oil attenuates amyloid β-induced cognitive deficits in a rat model of Alzheimer's disease. Alzheimer's & Dementia, 7(4), 770-4. [DOI:10.1016/j.jalz.2011.05.2214] [
DOI:10.1016/j.jalz.2011.05.2214]
20. Majlessi, N., Choopani, S., Kamalinejad, M., & Azizi, Z. (2012). Amelioration of Amyloid β Induced Cognitive Deficits by Zataria Multiflora Boiss. Essential Oil in a Rat Model of Alzheimer's Disease. CNS Neuroscience & Therapeutics, 18(4), 295-301. [DOI:10.1111/j.1755-5949.2011.00237.x] [
DOI:10.1111/j.1755-5949.2011.00237.x]
21. Morris, R. G. (2008). Morris water maze. Scholarpedia, 3(8), 6315-7. [DOI:10.4249/scholarpedia.6315] [
DOI:10.4249/scholarpedia.6315]
22. NourEddine, D., Miloud, S., & Abdelkader, A. (2005). Effect of lead exposure on dopaminergic transmission in the rat brain. Toxicology, 207(3), 363-8. [DOI:10.1016/j.tox.2004.10.016] [
DOI:10.1016/j.tox.2004.10.016]
23. Parasuraman, S., Raveendran, R., & Kesavan, R. (2010). Blood sample collection in small laboratory animals. Journal of Pharmacology and Pharmacotherapeutics, 1(2), 87-92. [DOI:10.4103/0976-500X.72350] [
DOI:10.4103/0976-500X.72350]
24. Ramezani, M., Hosseinzadeh, H., & Samizadeh, S. (2004). Antinociceptive effects of Zataria Multiflora Boiss fractions in mice. Journal of Ethnopharmacology, 91(1), 167-70. [DOI:10.1016/j.jep.2003.12.016] [
DOI:10.1016/j.jep.2003.12.016]
25. Reddy, G. R., Devi, B. C., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology, 28(2), 402-7. [DOI:10.1016/j.neuro.2006.03.018] [
DOI:10.1016/j.neuro.2006.03.018]
26. Rossouw, J., Offermeier, J., & Van Rooyen, J. (1987). Apparent central neurotransmitter receptor changes induced by low-level lead exposure during different developmental phases in the rat. Toxicology and Applied Pharmacology, 91(1), 132-139. ] [DOI:10.1016/0041-008X(87)90200-6] [
DOI:10.1016/0041-008X(87)90200-6]
27. Saei-Dehkordi, S. S., Tajik, H., Moradi, M., & Khalighi-Sigaroodi, F. (2010). Chemical composition of essential oils in Zataria Multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food and Chemical Toxicology, 48(6), 1562-7. [DOI:10.1016/j.fct.2010.03.025] [
DOI:10.1016/j.fct.2010.03.025]
28. Schnaas, L., Rothenberg, S. J., Flores, M. F., Martinez, S., Hernandez, C., Osorio, E., et al. (2006). Reduced intellectual development in children with prenatal lead exposure. Environmental health Perspectives, 114(5), 791-7. [DOI:10.1289/ehp.8552] [PMID] [PMCID] [
DOI:10.1289/ehp.8552]
29. Sharififar, F., Mirtajadini, M., Azampour, M. J., & Zamani, E. (2012). Essential oil and methanolic extract of Zataria Multiflora Boiss with anticholinesterase effect. Pakistan Journal of Biological Sciences, 15(1), 49-55. [DOI:10.3923/pjbs.2012.49.53] [
DOI:10.3923/pjbs.2012.49.53]
30. Sharififar, F., Moshafi, M., Mansouri, S., Khodashenas, M., & Khoshnoodi, M. (2007). In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria Multiflora Boiss. Food Control, 18(7), 800-5. [DOI:10.1016/j.foodcont.2006.04.002] [
DOI:10.1016/j.foodcont.2006.04.002]
31. Sidhu, P., & Nehru, B. (2003). Relationship between lead-induced biochemical and behavioral changes with trace element concentrations in rat brain. Biological Trace Element Research, 92(3), 245-56. [DOI:10.1385/BTER:92:3:245] [
DOI:10.1385/BTER:92:3:245]
32. Yang, H., Huo, X., Yekeen, T. A., Zheng, Q., Zheng, M., & Xu, X. (2013). Effects of lead and cadmium exposure from electronic waste on child physical growth. Environmental Science and Pollution Research, 20(7), 4441-7. [DOI:10.1007/s11356-012-1366-2] [
DOI:10.1007/s11356-012-1366-2]
33. Yedjou, C. G., Milner, J. N., Howard, C. B., & Tchounwou, P. B. (2010). Basic apoptotic mechanisms of lead toxicity in human leukemia (HL-60) cells. International Journal of Environmental Research and Public Health, 7(5), 2008-17. [DOI:10.3390/ijerph7052008] [
DOI:10.3390/ijerph7052008]
34. Zhi-wei, Z., Ru-Lai, Y., Gui-juan, D., & Zheng-yan, Z. (2005). Study on the neurotoxic effects of low-level lead exposure in rats. Journal of Zhejiang University Science B, 6(7), 686-92.
35. Zomorodian, K., Saharkhiz, M., Rahimi, M., Bandegi, A., Shekarkhar, G., Bandegani, A., et al. (2011). Chemical composition and antimicrobial activities of the essential oils from three ecotypes of Zataria Multiflora. Pharmacognosy Magazine, 7(25), 53-9. [DOI:10.4103/0973-1296.75902] [
DOI:10.4103/0973-1296.75902]
36. Zotti, M., Colaianna, M., Morgese, M. G., Tucci, P., Schiavone, S., Avato, P., et al. (2013). Carvacrol: From ancient flavoring to neuromodulatory agent. Molecules, 18(6), 6161-72. [DOI:10.3390/molecules18066161] [
DOI:10.3390/molecules18066161]