دوره 15، شماره 3 - ( 3-1403 )                   جلد 15 شماره 3 صفحات 402-393 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vafaei E, Rahatabad F N, Setarehdan S K, Azadfallah P. Feature Extraction With Stacked Autoencoders for EEG Channel Reduction in Emotion Recognition. BCN 2024; 15 (3) :393-402
URL: http://bcn.iums.ac.ir/article-1-2646-fa.html
Feature Extraction With Stacked Autoencoders for EEG Channel Reduction in Emotion Recognition. مجله علوم اعصاب پایه و بالینی. 1403; 15 (3) :393-402

URL: http://bcn.iums.ac.ir/article-1-2646-fa.html


چکیده:  
Introduction: Emotion recognition by electroencephalogram (EEG) signals is one of the complex methods because the extraction and recognition of the features hidden in the signal are sophisticated and require a significant number of EEG channels. Presenting a method for feature analysis and an algorithm for reducing the number of EEG channels fulfills the need for research in this field.
Methods: Accordingly, this study investigates the possibility of utilizing deep learning to reduce the number of channels while maintaining the quality of the EEG signal. A stacked autoencoder network extracts optimal features for emotion classification in valence and arousal dimensions. Autoencoder networks can extract complex features to provide linear and non- linear features which are a good representative of the signal.
Results: The accuracy of a conventional emotion recognition classifier (support vector machine) using features extracted from SAEs was obtained at 75.7% for valence and 74.4% for arousal dimensions, respectively.
Conclusion: Further analysis also illustrates that valence dimension detection with reduced EEG channels has a different composition of EEG channels compared to the arousal dimension. In addition, the number of channels is reduced from 32 to 12, which is an excellent development for designing a small-size EEG device by applying these optimal features.
نوع مطالعه: Original | موضوع مقاله: Cognitive Neuroscience
دریافت: 1401/10/18 | پذیرش: 1401/12/1 | انتشار: 1403/2/12

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Basic and Clinical Neuroscience می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb