1. Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366-75. [DOI:10.1016/0166-2236(89)90074-X] [
DOI:10.1016/0166-2236(89)90074-X]
2. Bayati, M., & Valizadeh, A. (2012). Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons. Physical Review E, 86(1), 011925. [DOI:10.1103/PhysRevE.86.011925] [PMID] [
DOI:10.1103/PhysRevE.86.011925]
3. Bayati, M., Valizadeh, A., Abbassian, A., & Cheng, S. (2015). Self-organization of synchronous activity propagation in neuronal networks driven by local excitation. Frontiers in Computational Neuroscience, 9(69), 1-15. [DOI:10.3389/fncom.2015.00069] [
DOI:10.3389/fncom.2015.00069]
4. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience?. Brain Research Reviews, 28(3), 309-69. [DOI:10.1016/S0165-0173(98)00019-8] [
DOI:10.1016/S0165-0173(98)00019-8]
5. Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464-72. [DOI:10.1523/JNEUROSCI.18-24-10464.1998] [PMID] [
DOI:10.1523/JNEUROSCI.18-24-10464.1998]
6. Biederman, J., & Faraone, S. V. (2005). Attention-deficit hyperactivity disorder. Lancet, 366(9481), 237-48. [DOI:10.1016/S0140-6736(05)66915-2] [
DOI:10.1016/S0140-6736(05)66915-2]
7. Blum, K., Chen, A. L. C., Braverman, E. R., Comings, D. E., Chen, T. J., & Arcuri, V., et al. (2008). Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatric Disease and Treatment, 4(5), 893-917. [PMID] [PMCID] [
PMID] [
PMCID]
8. Braver, T. S., Barch, D. M., & Cohen, J. D. (1999). Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biological Psychiatry, 46(3), 312-28. [DOI:10.1016/S0006-3223(99)00116-X] [
DOI:10.1016/S0006-3223(99)00116-X]
9. Buse, J., Schoenefeld, K., Münchau, A., & Roessner, V. (2013). Neuromodulation in Tourette syndrome: Dopamine and beyond. Neuroscience & Biobehavioral Reviews, 37(6), 1069-84. [DOI:10.1016/j.neubiorev.2012.10.004] [PMID] [
DOI:10.1016/j.neubiorev.2012.10.004]
10. Carlsson, A. (1959). The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacological Reviews, 11(2), 490-3. [PMID] [
PMID]
11. Carlsson, A., Lindqvist, M., Magnusson, T., & Waldeck, B. (1958). On the presence of 3-hydroxytyramine in brain. Science, 127(3296), 471-8. [DOI:10.1126/science.127.3296.471] [PMID] [
DOI:10.1126/science.127.3296.471]
12. Cepeda, C., Radisavljevic, Z., Peacock, W., Levine, M. S., & Buchwald, N. A. (1992). Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse, 11(4), 330-41. [DOI:10.1002/syn.890110408] [PMID] [
DOI:10.1002/syn.890110408]
13. Chinta, S. J., & Andersen, J. K. (2005). Dopaminergic neurons. The International Journal of Biochemistry & Cell Biology, 37(5), 942-6. [DOI:10.1016/j.biocel.2004.09.009] [PMID] [
DOI:10.1016/j.biocel.2004.09.009]
14. Cohen, M. X., & Frank, M. J. (2009). Neurocomputational models of basal ganglia function in learning, memory and choice. Behavioural Brain Research, 199(1), 141-56. [DOI:10.1016/j.bbr.2008.09.029] [PMID] [PMCID] [
DOI:10.1016/j.bbr.2008.09.029]
15. Collins, A. G., & Frank, M. J. (2014). Opponent actor Learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychological Review, 121(3), 337-66. [DOI:10.1037/a0037015] [PMID] [
DOI:10.1037/a0037015]
16. Collins, A. G., & Frank, M. J. (2016). Surprise! Dopamine signals mix action, value and error. Nature Neuroscience, 19(1), 3-5. [DOI:10.1038/nn.4207] [PMID] [
DOI:10.1038/nn.4207]
17. Cools, A. R., & Van Rossum, J. M. (1976). Excitation-mediating and inhibition-mediating dopamine-receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia, 45(3), 243-54. [DOI:10.1007/BF00421135] [PMID] [
DOI:10.1007/BF00421135]
18. Dagher, A., & Robbins, T. W. (2009). Personality, addiction, dopamine: Insights from Parkinson's disease. Neuron, 61(4), 502-10. [DOI:10.1016/j.neuron.2009.01.031] [PMID] [
DOI:10.1016/j.neuron.2009.01.031]
19. Dayan, P. (2012). Twenty-five lessons from computational neuromodulation. Neuron, 76(1), 240-56. [DOI:10.1016/j.neuron.2012.09.027] [PMID] [
DOI:10.1016/j.neuron.2012.09.027]
20. Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36(2), 285-98. [DOI:10.1016/S0896-6273(02)00963-7] [
DOI:10.1016/S0896-6273(02)00963-7]
21. DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281-5. [DOI:10.1016/0166-2236(90)90110-V] [
DOI:10.1016/0166-2236(90)90110-V]
22. Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences, 85(14), 5274-8. [DOI:10.1073/pnas.85.14.5274] [
DOI:10.1073/pnas.85.14.5274]
23. Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83(3), 1733-50. [DOI:10.1152/jn.2000.83.3.1733] [PMID] [
DOI:10.1152/jn.2000.83.3.1733]
24. Farries, M. A., & Fairhall, A. L. (2007). Reinforcement learning with modulated spike timing-dependent synaptic plasticity. Journal of Neurophysiology, 98(6), 3648-65. [DOI:10.1152/jn.00364.2007] [PMID] [
DOI:10.1152/jn.00364.2007]
25. Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., et al. (2011). A selective role for dopamine in stimulus-reward learning. Nature, 469(7328), 53-7. [DOI:10.1038/nature09588] [PMID] [PMCID] [
DOI:10.1038/nature09588]
26. Florian, R. V. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Computation, 19(6), 1468-1502. [DOI:10.1162/neco.2007.19.6.1468] [PMID] [
DOI:10.1162/neco.2007.19.6.1468]
27. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51-72. [DOI:10.1162/0898929052880093] [PMID] [
DOI:10.1162/0898929052880093]
28. Frank, M. J., Santamaria, A., O'Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32(7), 1583-99. [DOI:10.1038/sj.npp.1301278] [PMID] [
DOI:10.1038/sj.npp.1301278]
29. Frank, M. J., Seeberger, L. C., & O'reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-3. [DOI:10.1126/science.1102941] [PMID] [
DOI:10.1126/science.1102941]
30. Frémaux, N., & Gerstner, W. (2016). Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Frontiers in Neural Circuits, 9(85), 1-19. [DOI:10.3389/fncir.2015.00085] [
DOI:10.3389/fncir.2015.00085]
31. Frémaux, N., Sprekeler, H., & Gerstner, W. (2013). Reinforcement learning using a continuous time actor-critic framework with spiking neurons. PLoS Computational Biology, 9(4), e1003024. [DOI:10.1371/journal.pcbi.1003024] [PMID] [PMCID] [
DOI:10.1371/journal.pcbi.1003024]
32. Friston, K. J. (2002). Dysfunctional connectivity in schizophrenia. World Psychiatry, 1(2), 66-71. [PMID] [PMCID] [
PMID] [
PMCID]
33. Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 383(6595), 76-8. [DOI:10.1038/383076a0] [PMID] [
DOI:10.1038/383076a0]
34. Gerstner, W., Kistler, W., Naud, R., & Paninski, L. (2014). Neuronal dynamics: From single neurons to networks and cognition. Cambridge: Cambridge University Press. [DOI:10.1017/CBO9781107447615] [
DOI:10.1017/CBO9781107447615]
35. Greengard, P. (2001). The neurobiology of slow synaptic transmission. Science, 294(5544), 1024-30. [DOI:10.1126/science.294.5544.1024] [PMID] [
DOI:10.1126/science.294.5544.1024]
36. Guillin, O., Abi‐Dargham, A., & Laruelle, M. (2007). Neurobiology of dopamine in schizophrenia. International Review of Neurobiology, 78(1), 1-39. [DOI:10.1016/S0074-7742(06)78001-1] [
DOI:10.1016/S0074-7742(06)78001-1]
37. Gulledge, A. T., & Jaffe, D. B. (1998). Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. Journal of Neuroscience, 18(21), 9139-51. [DOI:10.1523/JNEUROSCI.18-21-09139.1998] [PMID] [
DOI:10.1523/JNEUROSCI.18-21-09139.1998]
38. Harris-Warrick, R. M., & Marder, E. (1991). Modulation of neural networks for behavior. Annual Review of Neuroscience, 14(1), 39-57. [DOI:10.1146/annurev.ne.14.030191.000351] [PMID] [
DOI:10.1146/annurev.ne.14.030191.000351]
39. Hebb, D. O. (1949). The organization of behavior: A neuropsychological approach. New York: John Wiley & Sons. [PMCID] [
PMCID]
40. Hepp, D. H., Foncke, E. M., Olde Dubbelink, K. T., van de Berg, W. D., Berendse, H. W., & Schoonheim, M. M. (2017). Loss of functional connectivity in patients with Parkinson disease and visual hallucinations. Radiology, 285(3), 170438. [DOI:10.1148/radiol.2017170438] [PMID] [
DOI:10.1148/radiol.2017170438]
41. Hille, B. (2001). Ion channels of excitable membranes. Sunderland: Sinauer.
42. Hoffman, R. E., & McGlashan, T. H. (2001). Book Review: Neural network models of schizophrenia. The Neuroscientist, 7(5), 441-54. [DOI:10.1177/107385840100700513] [PMID] [
DOI:10.1177/107385840100700513]
43. Howes, O. D., Kambeitz, J., Kim, E., Stahl, D., Slifstein, M., Abi-Dargham, A., et al. (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Archives of General Psychiatry, 69(8), 776-86. [DOI:10.1001/archgenpsychiatry.2012.169] [PMID] [PMCID] [
DOI:10.1001/archgenpsychiatry.2012.169]
44. Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex, 17(10), 2443-52. [DOI:10.1093/cercor/bhl152] [PMID] [
DOI:10.1093/cercor/bhl152]
45. Jay, T. M. (2003). Dopamine: A potential substrate for synaptic plasticity and memory mechanisms. Progress in Neurobiology, 69(6), 375-90. [DOI:10.1016/S0301-0082(03)00085-6] [
DOI:10.1016/S0301-0082(03)00085-6]
46. Jay, T. M., Rocher, C., Hotte, M., Naudon, L., Gurden, H., & Spedding, M. (2004). Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: importance for psychiatric diseases. Neurotoxicity Research, 6(3), 233-44. [DOI:10.1007/BF03033225] [PMID] [
DOI:10.1007/BF03033225]
47. Kaczmarek, L. K., & Levitan, I. B. (1987). Neuromodulation: The biochemical control of neuronal excitability. New York: Oxford University Press.
48. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. New York: McGraw-Hill.
49. Kita, H., Oda, K., & Murase, K. (1999). Effects of dopamine agonists and antagonists on optical responses evoked in rat frontal cortex slices after stimulation of the subcortical white matter. Experimental Brain Research, 125(3), 383-8. [DOI:10.1007/s002210050694] [PMID] [
DOI:10.1007/s002210050694]
50. Krames, E. S., Peckham, P. H., & Rezai, A. R. (2009). Neuromodulation. San Diego: Academic Press. [DOI:10.1016/B978-0-12-374248-3.00133-6] [
DOI:10.1016/B978-0-12-374248-3.00133-6]
51. Law-Tho, D., Hirsch, J. C., & Crepel, F. (1994). Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study. Neuroscience Research, 21(2), 151-60. [DOI:10.1016/0168-0102(94)90157-0] [
DOI:10.1016/0168-0102(94)90157-0]
52. Lee, D. (2013). Decision making: From neuroscience to psychiatry. Neuron, 78(2), 233-48. [DOI:10.1016/j.neuron.2013.04.008] [PMID] [PMCID] [
DOI:10.1016/j.neuron.2013.04.008]
53. Lisman, J., Grace, A. A., & Duzel, E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 34(10), 536-47. [DOI:10.1016/j.tins.2011.07.006] [PMID] [PMCID] [
DOI:10.1016/j.tins.2011.07.006]
54. Loh, M., Rolls, E. T., & Deco, G. (2007). A dynamical systems hypothesis of schizophrenia. PLoS Computational Biology, 3(11), e228. [DOI:10.1371/journal.pcbi.0030228] [PMID] [PMCID] [
DOI:10.1371/journal.pcbi.0030228]
55. Madadi Asl, M., Valizadeh, A., & Tass, P. A. (2017). Dendritic and axonal propagation delays determine emergent structures of neuronal networks with plastic synapses. Scientific Reports, 7(39682), 1-12. [DOI:10.1038/srep39682] [
DOI:10.1038/srep39682]
56. Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154-62. [DOI:10.1038/nn.2723] [PMID] [PMCID] [
DOI:10.1038/nn.2723]
57. Marder, E. (1998). From biophysics to models of network function. Annual Review of Neuroscience, 21(1), 25-45. [DOI:10.1146/annurev.neuro.21.1.25] [PMID] [
DOI:10.1146/annurev.neuro.21.1.25]
58. Marder, E. (2012). Neuromodulation of neuronal circuits: back to the future. Neuron, 76(1), 1-11. [DOI:10.1016/j.neuron.2012.09.010] [PMID] [PMCID] [
DOI:10.1016/j.neuron.2012.09.010]
59. Marder, E., & Thirumalai, V. (2002). Cellular, synaptic and network effects of neuromodulation. Neural Networks, 15(4), 479-93. [DOI:10.1016/S0893-6080(02)00043-6] [
DOI:10.1016/S0893-6080(02)00043-6]
60. Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213-5. [DOI:10.1126/science.275.5297.213] [PMID] [
DOI:10.1126/science.275.5297.213]
61. McCormick, D. A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology, 39(4), 337-88. [DOI:10.1016/0301-0082(92)90012-4] [
DOI:10.1016/0301-0082(92)90012-4]
62. McCormick, D. A., & Pape, H. C. (1990). Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. The Journal of Physiology, 431(1), 291-318. [DOI:10.1113/jphysiol.1990.sp018331] [PMID] [PMCID] [
DOI:10.1113/jphysiol.1990.sp018331]
63. Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 1936-47. [DOI:10.1523/JNEUROSCI.16-05-01936.1996] [PMID] [
DOI:10.1523/JNEUROSCI.16-05-01936.1996]
64. Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72-80. [DOI:10.1016/j.tics.2011.11.018] [PMID] [PMCID] [
DOI:10.1016/j.tics.2011.11.018]
65. Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational roles for dopamine in behavioural control. Nature, 431(7010), 760-7. [DOI:10.1038/nature03015] [PMID] [
DOI:10.1038/nature03015]
66. Nadim, F., & Bucher, D. (2014). Neuromodulation of neurons and synapses. Current Opinion in Neurobiology, 29(1), 48-56. [DOI:10.1016/j.conb.2014.05.003] [PMID] [PMCID] [
DOI:10.1016/j.conb.2014.05.003]
67. Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185-215. [DOI:10.1146/annurev.neuro.23.1.185] [PMID] [
DOI:10.1146/annurev.neuro.23.1.185]
68. Noudoost, B., & Moore, T. (2011). Control of visual cortical signals by prefrontal dopamine. Nature, 474(7351), 372-5. [DOI:10.1038/nature09995] [PMID] [PMCID] [
DOI:10.1038/nature09995]
69. Pedrosa, V., & Clopath, C. (2017). The role of neuromodulators in cortical plasticity. a computational perspective. Frontiers in Synaptic Neuroscience, 8(38), 1-9. [DOI:10.3389/fnsyn.2016.00038] [
DOI:10.3389/fnsyn.2016.00038]
70. Popovych, O. V., & Tass, P. A. (2014). Control of abnormal synchronization in neurological disorders. Frontiers in Neurology, 5(268), 1-12. [DOI:10.3389/fneur.2014.00268] [
DOI:10.3389/fneur.2014.00268]
71. Redish, A. D. (2004). Addiction as a computational process gone awry. Science, 306(5703), 1944-7. [DOI:10.1126/science.1102384] [PMID] [
DOI:10.1126/science.1102384]
72. Rezende, D. J., & Gerstner, W. (2014). Stochastic variational learning in recurrent spiking networks. Frontiers in Computational Neuroscience, 8(38), 1-14.
73. Rolls, E. T., Loh, M., Deco, G., & Winterer, G. (2008). Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nature Reviews Neuroscience, 9(9), 696-709. [DOI:10.1038/nrn2462] [PMID] [
DOI:10.1038/nrn2462]
74. Sawaguchi, T., Matsumura, M., & Kubota, K. (1990). Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. Journal of Neurophysiology, 63(6), 1385-1400. [DOI:10.1152/jn.1990.63.6.1401] [PMID] [
DOI:10.1152/jn.1990.63.6.1401]
75. Sawaguchi, T., Matsumura, M., & Kubota, K. (1990). Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. Journal of Neurophysiology, 63(6), 1401-12. [DOI:10.1152/jn.1990.63.6.1401] [
DOI:10.1152/jn.1990.63.6.1401]
76. Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241-63. [DOI:10.1016/S0896-6273(02)00967-4] [
DOI:10.1016/S0896-6273(02)00967-4]
77. Schultz, W. (2016).