Volume 10, Issue 2 (March & April 2019)                   BCN 2019, 10(2): 175-184 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taheri F, Sepehri G, Sheibani V, Sharififar F. Amelioration of Prenatal Lead-Induced Learning and Memory Impairments by Methanolic Extract of Zataria Multiflora in Male Rats. BCN. 2019; 10 (2) :175-184
URL: http://bcn.iums.ac.ir/article-1-927-en.html
1- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
2- Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.

Introduction: The current study aimed at evaluating the effects of Zataria Multiflora (ZM) on learning and memory of adult male offspring rats with prenatal lead-exposure.
Methods: Pregnant rats in the case group received tap water containing 0.2% lead acetate throughout the gestation period. Control rats had free access to lead-free tap water. Two male offspring (two-month-old, weighing 180-200 g) from each mother were randomly selected and treated with either Z. Multiflora (50, 200, 400, and 800 mg/kg/ Intraperitoneally (I.P) /20 day) or saline. Spatial memory of the control, saline, and ZM-treated rats was evaluated by a training trial and probe test using Morris water maze (6-8 rat/group).
Results: The obtained results showed memory deficits including increased escape latency, and a greater traveled distance, as well as decrements in the frequency of crossings into target quadrants in prenatally lead-exposed male offspring compared with the controls. ZM treatment (200 mg/kg/i.p) ameliorated the memory deficits in male offspring by increasing the time spent and traveled distance in the trigger zone (P<0.01 vs. saline).There was no significant difference in swimming speed between the groups.
Conclusion: The results showed memory deficits in prenatally lead-exposed male offspring. ZM treatment (especially 200 mg/kg) had beneficial effects on cognitive behavior and was indicated as the improvement of lead-induced memory deficits in prenatally lead-exposed male rats. The exact mechanism(s) is not determined yet, but it could be mediated through the anticholinesterase and antioxidant effects and also alterations in Central Nervous System (CNS) and neurotransmission in the central nervous system.

Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2017/03/13 | Accepted: 2017/08/29 | Published: 2019/03/1

1. Azizi, Z., Ebrahimi, S., Saadatfar, E., Kamalinejad, M., & Majlessi, N. (2012). Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behavioural Pharmacology, 23(3), 241-9. [DOI:10.1097/FBP.0b013e3283534301] [DOI:10.1097/FBP.0b013e3283534301]
2. Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47-58. [DOI:10.2478/v10102-012-0009-2] [DOI:10.2478/v10102-012-0009-2]
3. Gardella, C. (2001). Lead exposure in pregnancy: A review of the literature and argument for routine prenatal screening. Obstetrical & Gynecological Survey, 56(4), 231-8. [DOI:10.1097/00006254-200104000-00024] [DOI:10.1097/00006254-200104000-00024]
4. Glass, T. A., Bandeen-Roche, K., McAtee, M., Bolla, K., Todd, A. C., & Schwartz, B. S. (2009). Neighborhood psychosocial hazards and the association of cumulative lead dose with cognitive function in older adults. American Journal of Epidemiology, 169(6), 683-92. [DOI:10.1093/aje/kwn390] [DOI:10.1093/aje/kwn390]
5. Hajali, V., Sheibani, V., Esmaeili-Mahani, S., & Shabani, M. (2012). Female rats are more susceptible to the deleterious effects of paradoxical sleep deprivation on cognitive performance. Behavioural Brain Research, 228(2), 311-8. [DOI:10.1016/j.bbr.2011.12.008] [DOI:10.1016/j.bbr.2011.12.008]
6. Hassanshahi, J., Roghani, M., & Raoufi, S. (2014). Protective effect of carvacrol in 6-hydroxydopamine hemi-parkinsonian rat model. Journal of Basic and Clinical Pathophysiology, 2(2), 29-34.
7. Hosseinzadeh, H., Ramezani, M., & Salmani, G. A. (2000). Antinociceptive, anti-inflammatory and acute toxicity effects of Zataria Multiflora Boiss extracts in mice and rats. Journal of Ethnopharmacology, 73(3), 379-85. [DOI:10.1016/S0378-8741(00)00238-5] [DOI:10.1016/S0378-8741(00)00238-5]
8. Hsu, P. C., & Guo, Y. L. (2002). Antioxidant nutrients and lead toxicity. Toxicology, 180(1), 33-44. [DOI:10.1016/S0300-483X(02)00380-3] [DOI:10.1016/S0300-483X(02)00380-3]
9. Hu, H., Shih, R., Rothenberg, S., & Schwartz, B. S. (2007). The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environmental Health Perspectives, 115(3), 455-462. [DOI:10.1289/ehp.9783] [DOI:10.1289/ehp.9783]
10. Hu, H., Téllez-Rojo, M. M., Bellinger, D., Smith, D., Ettinger, A. S., Lamadrid-Figueroa, H., et al. (2006). Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environmental Health Perspectives, 1730-1735. [DOI:10.1289/ehp.9067] [DOI:10.1289/ehp.9067]
11. Jedrychowski, W., Perera, F., Jankowski, J., Mrozek-Budzyn, D., Mroz, E., Flak, E., et al. (2009). Gender specific differences in neurodevelopmental effects of prenatal exposure to very low-lead levels: the prospective cohort study in three-year olds. Early Human Development, 85(8), 503-10. [DOI:10.1016/j.earlhumdev.2009.04.006] [DOI:10.1016/j.earlhumdev.2009.04.006]
12. Jukic, M., Politeo, O., Maksimovic, M., Milos, M., & Milos, M. (2007). In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytotherapy Research, 21(3), 259-61. [DOI:10.1002/ptr.2063] [DOI:10.1002/ptr.2063]
13. Karimian, P., Kavoosi, G., & Saharkhiz, M. J. (2012). Antioxidant, nitric oxide scavenging and malondialdehyde scavenging activities of essential oils from different chemotypes of Zataria Multiflora. Natural Product Research, 26(22), 2144-7. [PMID]
14. Kavoosi, G., Rahmatollahi, A., Dadfar, S. M. M., & Purfard, A. M. (2014). Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT-Food Science and Technology, 57(2), 556-61. [DOI:10.1016/j.lwt.2014.02.008] [DOI:10.1016/j.lwt.2014.02.008]
15. Kavoosi, G., & Rowshan, V. (2013). Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: Effect of collection time. Food Chemistry, 138(4), 2180-7. [DOI:10.1016/j.foodchem.2012.11.131] [DOI:10.1016/j.foodchem.2012.11.131]
16. Kavoosi, G., Teixeira da Silva, J. A., & Saharkhiz, M. J. (2012). Inhibitory effects of Zataria Multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in lipopolysaccharide stimulated macrophages. Journal of Pharmacy and Pharmacology, 64(10), 1491-500. [DOI:10.1111/j.2042-7158.2012.01510.x] [PMID] [DOI:10.1111/j.2042-7158.2012.01510.x]
17. Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Reports, 115(6), 521-5. [DOI:10.1093/phr/115.6.521] [DOI:10.1093/phr/115.6.521]
18. Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., et al. (2005). Low-level environmental lead exposure and children's intellectual function: An international pooled analysis. Environmental Health Perspectives, 13(7), 894-9. [DOI:10.1289/ehp.7688] [DOI:10.1289/ehp.7688]
19. Majlessi, N., Choopani, S., Kamalinejad, M., & Azizi, Z. (2011). Thymol as a main constituent of Zataria Multiflora boiss: essential oil attenuates amyloid β-induced cognitive deficits in a rat model of Alzheimer's disease. Alzheimer's & Dementia, 7(4), 770-4. [DOI:10.1016/j.jalz.2011.05.2214] [DOI:10.1016/j.jalz.2011.05.2214]
20. Majlessi, N., Choopani, S., Kamalinejad, M., & Azizi, Z. (2012). Amelioration of Amyloid β Induced Cognitive Deficits by Zataria Multiflora Boiss. Essential Oil in a Rat Model of Alzheimer's Disease. CNS Neuroscience & Therapeutics, 18(4), 295-301. [DOI:10.1111/j.1755-5949.2011.00237.x] [DOI:10.1111/j.1755-5949.2011.00237.x]
21. Morris, R. G. (2008). Morris water maze. Scholarpedia, 3(8), 6315-7. [DOI:10.4249/scholarpedia.6315] [DOI:10.4249/scholarpedia.6315]
22. NourEddine, D., Miloud, S., & Abdelkader, A. (2005). Effect of lead exposure on dopaminergic transmission in the rat brain. Toxicology, 207(3), 363-8. [DOI:10.1016/j.tox.2004.10.016] [DOI:10.1016/j.tox.2004.10.016]
23. Parasuraman, S., Raveendran, R., & Kesavan, R. (2010). Blood sample collection in small laboratory animals. Journal of Pharmacology and Pharmacotherapeutics, 1(2), 87-92. [DOI:10.4103/0976-500X.72350] [DOI:10.4103/0976-500X.72350]
24. Ramezani, M., Hosseinzadeh, H., & Samizadeh, S. (2004). Antinociceptive effects of Zataria Multiflora Boiss fractions in mice. Journal of Ethnopharmacology, 91(1), 167-70. [DOI:10.1016/j.jep.2003.12.016] [DOI:10.1016/j.jep.2003.12.016]
25. Reddy, G. R., Devi, B. C., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology, 28(2), 402-7. [DOI:10.1016/j.neuro.2006.03.018] [DOI:10.1016/j.neuro.2006.03.018]
26. Rossouw, J., Offermeier, J., & Van Rooyen, J. (1987). Apparent central neurotransmitter receptor changes induced by low-level lead exposure during different developmental phases in the rat. Toxicology and Applied Pharmacology, 91(1), 132-139. ] [DOI:10.1016/0041-008X(87)90200-6] [DOI:10.1016/0041-008X(87)90200-6]
27. Saei-Dehkordi, S. S., Tajik, H., Moradi, M., & Khalighi-Sigaroodi, F. (2010). Chemical composition of essential oils in Zataria Multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food and Chemical Toxicology, 48(6), 1562-7. [DOI:10.1016/j.fct.2010.03.025] [DOI:10.1016/j.fct.2010.03.025]
28. Schnaas, L., Rothenberg, S. J., Flores, M. F., Martinez, S., Hernandez, C., Osorio, E., et al. (2006). Reduced intellectual development in children with prenatal lead exposure. Environmental health Perspectives, 114(5), 791-7. [DOI:10.1289/ehp.8552] [PMID] [PMCID] [DOI:10.1289/ehp.8552]
29. Sharififar, F., Mirtajadini, M., Azampour, M. J., & Zamani, E. (2012). Essential oil and methanolic extract of Zataria Multiflora Boiss with anticholinesterase effect. Pakistan Journal of Biological Sciences, 15(1), 49-55. [DOI:10.3923/pjbs.2012.49.53] [DOI:10.3923/pjbs.2012.49.53]
30. Sharififar, F., Moshafi, M., Mansouri, S., Khodashenas, M., & Khoshnoodi, M. (2007). In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria Multiflora Boiss. Food Control, 18(7), 800-5. [DOI:10.1016/j.foodcont.2006.04.002] [DOI:10.1016/j.foodcont.2006.04.002]
31. Sidhu, P., & Nehru, B. (2003). Relationship between lead-induced biochemical and behavioral changes with trace element concentrations in rat brain. Biological Trace Element Research, 92(3), 245-56. [DOI:10.1385/BTER:92:3:245] [DOI:10.1385/BTER:92:3:245]
32. Yang, H., Huo, X., Yekeen, T. A., Zheng, Q., Zheng, M., & Xu, X. (2013). Effects of lead and cadmium exposure from electronic waste on child physical growth. Environmental Science and Pollution Research, 20(7), 4441-7. [DOI:10.1007/s11356-012-1366-2] [DOI:10.1007/s11356-012-1366-2]
33. Yedjou, C. G., Milner, J. N., Howard, C. B., & Tchounwou, P. B. (2010). Basic apoptotic mechanisms of lead toxicity in human leukemia (HL-60) cells. International Journal of Environmental Research and Public Health, 7(5), 2008-17. [DOI:10.3390/ijerph7052008] [DOI:10.3390/ijerph7052008]
34. Zhi-wei, Z., Ru-Lai, Y., Gui-juan, D., & Zheng-yan, Z. (2005). Study on the neurotoxic effects of low-level lead exposure in rats. Journal of Zhejiang University Science B, 6(7), 686-92.
35. Zomorodian, K., Saharkhiz, M., Rahimi, M., Bandegi, A., Shekarkhar, G., Bandegani, A., et al. (2011). Chemical composition and antimicrobial activities of the essential oils from three ecotypes of Zataria Multiflora. Pharmacognosy Magazine, 7(25), 53-9. [DOI:10.4103/0973-1296.75902] [DOI:10.4103/0973-1296.75902]
36. Zotti, M., Colaianna, M., Morgese, M. G., Tucci, P., Schiavone, S., Avato, P., et al. (2013). Carvacrol: From ancient flavoring to neuromodulatory agent. Molecules, 18(6), 6161-72. [DOI:10.3390/molecules18066161] [DOI:10.3390/molecules18066161]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2020 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb