Volume 9, Issue 3 (May & June 2018 2018)                   BCN 2018, 9(3): 227-235 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yadegari A, Karami M A, Daliri M R. Neural Monitoring With CMOS Image Sensors. BCN. 2018; 9 (3) :227-235
URL: http://bcn.iums.ac.ir/article-1-873-en.html
1- Department of Electrical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.
Implantable image sensors have several biomedical applications due to their miniature size, light weight, and low power consumption achieved through sub-micron standard CMOS (Complementary Metal Oxide Semiconductor) technologies. The main applications are in specific cell labeling, neural activity detection, and biomedical imaging. In this paper the recent research studies on implantable CMOS image sensors for neural activity monitoring of brain are being quantified and reviewed. Based on the results, the suitable implantable image sensors for brain neural monitoring should have high signal to noise ratio of above 60 dB, high dynamic range  of near 88 dB and low power consumption than the safety threshold of 4W/cm2. Moreover, it is found out that the next generation of implantable imaging device trend should reduce the pixel size and power consumption of CMOS image sensors to increase spatial resolution of sample images.
Type of Study: Methodological Notes | Subject: Computational Neuroscience
Received: 2017/01/26 | Accepted: 2017/10/1 | Published: 2018/05/1

1. Ahmadi, M. M., & Jullien, G. A. (2009). A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Transactions on Biomedical Circuits and Systems, 3(3), 169-180. [DOI:10.1109/TBCAS.2009.2016844] [DOI:10.1109/TBCAS.2009.2016844]
2. Al-Ashmouny, K. M., Boldt, C., Ferguson, J. E., Erdman, A. G., Redish, A. D., & Yoon, E. (2009). IBCOM (intra-brain communication) mi-crosystem: Wireless transmission of neural signals within the brain. Paper presented at The 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, Minnesota, 3-6 September 2009. [DOI:10.1109/IEMBS.2009.5334432] [PMID] [DOI:10.1109/IEMBS.2009.5334432]
3. Barretto, R. P. J., Ko, T. H., Jung, J. C., Wang, T. J., Capps, G., Waters, A. C., et al. (2011). Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nature Medicine, 17(2), 223–28. [DOI:10.1038/nm.2292] [DOI:10.1038/nm.2292]
4. Bermak, A., Bouzerdoum, A., & Eshraghian, K. (2002). A vision sensor with on-pixel ADC and in-built light adaptation mechanism. Microe-lectronics Journal, 33(12), 1091–6. [DOI:10.1016/S0026-2692(02)00114-3] [DOI:10.1016/S0026-2692(02)00114-3]
5. Brancaleon, L., & Moseley, H. (2002). Laser and non-laser light sources for photodynamic therapy. Lasers in Medical Science, 17(3), 173-186. [DOI:10.1007/s101030200027] [DOI:10.1007/s101030200027]
6. Braun, D., & Fromherz, P. (2004). Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye. Biophysical Journal, 87(2), 1351–1359. [DOI:10.1529/biophysj.104.039990] [DOI:10.1529/biophysj.104.039990]
7. Choi, M., Choi, J. W., Kim, S., Nizamoglu, S., Hahn, S. K., & Yun, S. H. (2013). Light-guiding hydrogels for cell-based sensing and optogenet-ic synthesis in vivo. Nature Photonics, 7(12), 987–94. [DOI:10.1038/nphoton.2013.278] [DOI:10.1038/nphoton.2013.278]
8. Deguchi, M., Maruyama, T., Yamasaki, F., Hamamoto, T., & Izumi, A. (1992). Microlens design using simulation program for CCD image sensor. IEEE Transactions on Consumer Electronics, 38(3), 583–89. [DOI:10.1109/30.156740] [DOI:10.1109/30.156740]
9. Dupret, A., Tchagaspanian, M., Verdant, A., Alacoque, L., & Peizerat, A. (2011). Smart imagers of the future. Paper presented at The Design, Automation & Test in Europe Conference & Exhibition (DATE),Grenoble, France, 14-18 March 2011. [DOI:10.1109/DATE.2011.5763076] [DOI:10.1109/DATE.2011.5763076]
10. El Gamal, A., & Eltoukhy, H. (2005). CMOS image sensors. IEEE Circuits and Devices Magazine, 21(3), 6–20. [DOI:10.1109/MCD.2005.1438751] [DOI:10.1109/MCD.2005.1438751]
11. El-Ali, J., Sorger, P. K., & Jensen, K. F. (2006). Cells on chips. Nature, 442(7101), 403–11. [DOI:10.1038/nature05063] [DOI:10.1038/nature05063]
12. Fenno, L., Yizhar, O., & Deisseroth, K. (2011). The development and application of optogenetics. Annual Review of Neuroscience, 34(1), 389–412. [DOI:10.1146/annurev-neuro-061010-113817] [DOI:10.1146/annurev-neuro-061010-113817]
13. Ferguson, J. E., & Redish, A. D. (2011). Wireless communication with implanted medical devices using the conductive properties of the body. Expert Review of Medical Devices, 8(4), 427–33. [DOI:10.1586/erd.11.16] [DOI:10.1586/erd.11.16]
14. Ghovanloo, M., & Atluri, S. (2007). A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multi-ple carriers. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(10), 2211-21. [DOI:10.1109/TCSI.2007.905187] [DOI:10.1109/TCSI.2007.905187]
15. Greatbatch, W., & Holmes, C. F. (1991). History of implantable devices. IEEE Engineering in Medicine and Biology Magazine, 10(3), 38–41. [DOI:10.1109/51.84185] [DOI:10.1109/51.84185]
16. Hachisuka, K., Takeda, T., Terauchi, Y., Sasaki, K., Hosaka, H., & Itao, K. (2005). Intra-body data transmission for the personal area net-work. Microsystem Technologies, 11(8-10), 1020–7. [DOI:10.1007/s00542-005-0500-1] [DOI:10.1007/s00542-005-0500-1]
17. Haruta, M., Kitsumoto, C., Sunaga, Y., Takehara, H., Noda, T., Sasagawa, K., et al. (2014). An implantable CMOS device for blood-flow imaging during experiments on freely moving rats. Japanese Journal of Applied Physics, 53(4S), 04EL05. [DOI:10.7567/JJAP.53.04EL05] [DOI:10.7567/JJAP.53.04EL05]
18. Hayami, H., Takehara, H., Nagata, K., Haruta, M., Noda, T., Sasagawa, K., et al. (2016). Wireless image-data transmission from an im-planted image sensor through a living mouse brain by intra body communication. Japanese Journal of Applied Physics, 55(4S), 04EM03. [DOI:10.7567/JJAP.55.04EM03] [DOI:10.7567/JJAP.55.04EM03]
19. Ho, J. S., Yeh, A. J., Neofytou, E., Kim, S., Tanabe, Y., Patlolla, B., et al. (2014). Wireless power transfer to deep-tissue microimplants. Pro-ceedings of the National Academy of Sciences, 111(22), 7974–79. [DOI:10.1073/pnas.1403002111] [DOI:10.1073/pnas.1403002111]
20. Kobayashi, T., Masuda, H., Kitsumoto, C., Haruta, M., Motoyama, M., Ohta, Y., et al. (2014). Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system. Biosensors and Bioelectronics, 53, 31-36. [DOI:10.1016/j.bios.2013.09.033] [DOI:10.1016/j.bios.2013.09.033]
21. Kobayashi, T., Tamura, H., Hatanaka, Y., Motoyama, M., Noda, T., Sasagawa, K.,et al. (2011). Functional neuroimaging by using an implanta-ble CMOS multimodal device in a freely-moving mouse. Paper presented at The IEEE Biomedical Circuits and Systems Conference (BioCAS), San Diego, California, USA, 10-12 November 2011. [DOI:10.1109/BioCAS.2011.6107739] [DOI:10.1109/BioCAS.2011.6107739]
22. Koppa, S., Park, D., Joo, Y., & Jung, S. (2011). A 105.6 dB DR and 65dB peak SNR self-reset CMOS image sensor using a Schmitt trigger circuit. Paper presented at The 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), Seoul, Korea, 7-10 August 2011. [DOI:10.1109/MWSCAS.2011.6026323] [DOI:10.1109/MWSCAS.2011.6026323]
23. Lee, S., Kim, T. H., & Youn, J. I. (2014). Development of the theragnostic optical system for a High-Intensity Laser Therapy (HILT). Lasers in Medical Science, 29(5), 1585–1591. [DOI:10.1007/s10103-014-1559-7] [DOI:10.1007/s10103-014-1559-7]
24. Lin, C. I., Lai, C. H., & King, Y. C. (2004). A four transistor CMOS active pixel sensor with high dynamic range operation. Paper presented at The Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, Fukuoka, Japan, 5 August 2004. [DOI:10.1109/APASIC.2004.1349425] [DOI:10.1109/APASIC.2004.1349425]
25. Loeb, G. E., Richmond, F. J. R., & Baker, L. L. (2006). The BION devices: injectable interfaces with peripheral nerves and muscles. Neurosur-gical Focus, 20(5), 1–9. [DOI:10.3171/foc.2006.20.5.3] [DOI:10.3171/foc.2006.20.5.3]
26. Manaresi, N., Romani, A., Medoro, G., Altomare, L., Leonardi, A., Tartagni, M., & Guerrieri, R. (2003). A CMOS chip for individual cell ma-nipulation and detection. IEEE Journal of Solid-State Circuits, 38(12), 2297-2305. [DOI:10.1109/ISSCC.2003.1234262] [DOI:10.1109/ISSCC.2003.1234262]
27. Nakamura, J. (2017). Image sensors and signal processing for digital still cameras. Boca Raton, Florida: CRC Press.
28. Ng, D. C., Tamura, H., Mizuno, T., Tokuda, T., Nunoshita, M., Ishikawa, Y.,et al. (2008). An implantable and fully integrated complemen-tary metal–oxide semiconductor device for in vivo neural imaging and electrical interfacing with the mouse hippocampus. Sensors and Actu-ators A: Physical, 145-146, 176–86. [DOI:10.1016/j.sna.2007.11.020] [DOI:10.1016/j.sna.2007.11.020]
29. Ng, D. C., Tokuda, T., Yamamoto, A., Matsuo, M., Nunoshita, M., Tamura, H., et al. (2006). On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification. Sensors and Actuators B: Chemical, 119(1), 262-274. [DOI:10.1016/j.snb.2005.12.020] [DOI:10.1016/j.snb.2005.12.020]
30. Nomoto, T., Fukushima, S., Kumagai, M., Machitani, K., Matsumoto, Y., Oba, M., et al. (2014). Three-layered polyplex micelle as a multi-functional nanocarrier platform for light-induced systemic gene transfer. Nature Communications, 5, 3545. [DOI:10.1038/ncomms4545] [DOI:10.1038/ncomms4545]
31. O'Sullivan, T. D., Munro, E., de la Zerda, A., Parashurama, N., Teed, R., Walls, Z., et al. (2009). Implantable optical biosensor for in vivo molecular imaging. In I. Gannot (Ed.), Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications IX (pp.7173-9). Washing-ton: International Society for Optics and Photonics. [DOI:10.1117/12.811227] [DOI:10.1117/12.811227]
32. Ohta, J. (2007). Smart CMOS image sensors and applications. Boca Raton, Florida: CRC press. [DOI:10.1201/9781420019155] [DOI:10.1201/9781420019155]
33. Ohta, J., Tokuda, T., Kagawa, K., Furumiya, T., Uehara, A., Terasawa, Y., et al. (2006). Silicon LSI-based smart stimulators for retinal pros-thesis. IEEE Engineering in Medicine and Biology Magazine, 25(5), 47-59. [DOI:10.1109/MEMB.2006.1705747] [DOI:10.1109/MEMB.2006.1705747]
34. Ohta, J., Tokuda, T., Sasagawa, K., & Noda, T. (2009). Implantable CMOS biomedical devices. Sensors, 9(11), 9073-93. [DOI:10.3390/s91109073] [DOI:10.3390/s91109073]
35. Orlov, M. V., Szombathy, T., Chaudhry, G. M., & Haffajee, C. I. (2009). Remote surveillance of implantable cardiac devices. Pacing and Clin-ical Electrophysiology, 32(7), 928-39. [DOI:10.1111/j.1540-8159.2009.02412.x] [DOI:10.1111/j.1540-8159.2009.02412.x]
36. Pang, C., Lee, C., & Suh, K. Y. (2013). Recent advances in flexible sensors for wearable and implantable devices. Journal of Applied Polymer Science, 130(3), 1429-41. [DOI:10.1002/app.39461] [DOI:10.1002/app.39461]
37. Papageorgiou, E. P., Boser, B. E., & Anwar, M. (2016 ). An angle-selective CMOS imager with on-chip micro-collimators for blur reduction in near-field cell imaging. Paper presented at The 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24-28 January 2016. [DOI:10.1109/MEMSYS.2016.7421629] [DOI:10.1109/MEMSYS.2016.7421629]
38. Park, D., Rhee, J., & Joo, Y. (2007). A wide dynamic-range CMOS image sensor using self-reset technique. IEEE Electron Device Letters, 28(10), 890-2. [DOI:10.1109/LED.2007.905396] [DOI:10.1109/LED.2007.905396]
39. Ruiz, J. A., & Shimamoto, S. (2006). Experimental evaluation of body channel response and digital modulation schemes for intra-body communications. Paper presented at 2006 IEEE International Conference on Communications, Istanbul, Turkey, 11-15 June 2006. [DOI:10.1109/ICC.2006.254752] [DOI:10.1109/ICC.2006.254752]
40. Sarkar, M., Bello, D. S. S., van Hoof, C., & Theuwissen, A. J. (2013). Biologically inspired CMOS image sensor for fast motion and polariza-tion detection. IEEE Sensors Journal, 13(3), 1065-73. [DOI:10.1109/JSEN.2012.2234101] [DOI:10.1109/JSEN.2012.2234101]
41. Sasagawa, K., Ando, K., Kobayashi, T., Noda, T., Tokuda, T., Hatanaka, Y., et al. (2011). An implantable CMOS image sensor with light guide array structure and fluorescent filter. Paper presented at The IISW 2011: International Image Sensor Workshop, Hokkaido, Japan, 8-11 June 2011.
42. Sasagawa, K., Mitani, M., Sugiyama, T., Noda, T., Tokuda, T., & Ohta, J. (2010). Implantable image sensor with light guide array plate for bioimaging. Japanese Journal of Applied Physics, 49(4S), 04DL03. [DOI:10.1143/JJAP.49.04DL03] [DOI:10.1143/JJAP.49.04DL03]
43. Sasagawa, K., Yamaguchi, T., Haruta, M., Sunaga, Y., Takehara, H., Takehara, H., et al. (2016). An implantable CMOS image sensor with self-reset pixels for functional brain imaging. IEEE Transactions on Electron Devices, 63(1), 215-22. [DOI:10.1109/TED.2015.2454435] [DOI:10.1109/TED.2015.2454435]
44. Seyedi, M., Kibret, B., Lai, D. T., & Faulkner, M. (2013). A survey on intrabody communications for body area network applications. IEEE Transactions on Biomedical Engineering, 60(8), 2067-79. [DOI:10.1109/TBME.2013.2254714] [DOI:10.1109/TBME.2013.2254714]
45. Song, Y., Hao, Q., Zhang, K., Wang, M., Chu, Y., & Kang, B. (2011). The simulation method of the galvanic coupling intrabody communica-tion with different signal transmission paths. IEEE Transactions on Instrumentation and Measurement, 60(4), 1257-66. [DOI:10.1109/TIM.2010.2087870] [DOI:10.1109/TIM.2010.2087870]
46. Tagawa, A., Higuchi, A., Sugiyama, T., Sasagawa, K., Tokuda, T., Tamura, H., et al. (2009). Development of complementary metal oxide semiconductor imaging devices for detecting green fluorescent protein in the deep brain of a freely moving mouse. Japanese Journal of Ap-plied Physics, 48(4S), 04C195. [DOI:10.1143/JJAP.48.04C195] [DOI:10.1143/JJAP.48.04C195]
47. Takehara, H., Katsuragi, Y., Ohta, Y., Motoyama, M., Takehara, H., Noda, T., et al. (2016). Implantable micro-optical semiconductor devices for optical theranostics in deep tissue. Applied Physics Express, 9(4), 047001. [DOI:10.7567/APEX.9.047001] [DOI:10.7567/APEX.9.047001]
48. Tokuda, T., Takahashi, M., Uejima, K., Masuda, K., Kawamura, T., Ohta, Y., et al. (2014). CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel. Biomedical Optics Express, 5(11), 3859. [DOI:10.1364/BOE.5.003859] [DOI:10.1364/BOE.5.003859]
49. Tokuda, T., Takehara, H., Noda, T., Sasagawa, K., & Ohta, J. (2016). CMOS-based optoelectronic on-chip neural interface device. IEICE Transactions on Electronics, 99(2), 165-72. [DOI:10.1587/transele.E99.C.165] [DOI:10.1587/transele.E99.C.165]
50. Yamagiwa, S., Ishida, M., & Kawano, T. (2015). Flexible parylene-film optical waveguide arrays. Applied Physics Letters, 107(8), 083502. [DOI:10.1063/1.4929402] [DOI:10.1063/1.4929402]
51. Yamaguchi, T., Takehara, H., Sunaga, Y., Haruta, M., Motoyama, M., Ohta, Y., et al. (2016). Implantable self-reset CMOS image sensor and its application to hemodynamic response detection in living mouse brain. Japanese Journal of Applied Physics, 55(4S), 04EM02. [DOI:10.7567/JJAP.55.04EM02] [DOI:10.7567/JJAP.55.04EM02]
52. Ye, H., Daoud-El Baba, M., Peng, R. W., & Fussenegger, M. (2011). A synthetic optogenetic transcription device enhances blood-glucose ho-meostasis in mice. Science, 332(6037), 1565-68. [DOI:10.1126/science.1203535] [DOI:10.1126/science.1203535]
53. Yuan, J., Chan, H. Y., Fung, S. W., & Liu, B. (2009). An activity-triggered 95.3 dB DR $-$75.6 dB THD CMOS imaging sensor with digital calibration. IEEE Journal of Solid-State Circuits, 44(10), 2834-43. [DOI:10.1109/JSSC.2009.2027929] [DOI:10.1109/JSSC.2009.2027929]
54. Zhang, S., & Murphy, T. H. (2007). Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biology, 5(5), e119. [DOI:10.1371/journal.pbio.0050119] [PMID] [PMCID] [DOI:10.1371/journal.pbio.0050119]
55. Zorzos, A. N., Scholvin, J., Boyden, E. S., & Fonstad, C. G. (2012). Three-dimensional multiwaveguide probe array for light delivery to dis-tributed brain circuits. Optics Letters, 37(23), 4841-3. [DOI:10.1364/OL.37.004841] [DOI:10.1364/OL.37.004841]
56. Zrenner, E. (2002). Will retinal implants restore vision? Science, 295(5557), 1022-5. [DOI:10.1126/science.1067996] [DOI:10.1126/science.1067996]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb