Volume 9, Issue 2 (March & April 2018(Issue in Progress) 2018)                   BCN 2018, 9(2): 135-146 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaffari H, Yoonessi A, Darvishi M J, Ahmadi A. Normal Electrical Activity of the Brain in Obsessive-Compulsive Patients After Anodal Stimulation of the Left Dorsolateral Prefrontal Cortex. BCN. 2018; 9 (2) :135-146
URL: http://bcn.iums.ac.ir/article-1-862-en.html
1- MSc. Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
2- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
3- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran.

Introduction: Transcranial Direct Current Stimulation (tDCS) has been used as a non-invasive method to increase the plasticity of brain. Growing evidence has shown several brain disorders such as depression, anxiety disorders, and chronic pain syndrome are improved following tDCS. In patients with Obsessive-Compulsive Disorder (OCD), increased brain rhythm activity particularly in the frontal lobe has been reported in several studies using Eectroencephalogram (EEG). To our knowledge, no research has been done on the effects of electrical stimulation on brain signals of patients with OCD. We measured the electrical activity of the brain using EEG in patients with OCD before and after tDCS and compared it to normal participants.
Methods: Eight patients with OCD (3 males) and 8 matched healthy controls were recruited. A 64-channel EEG was used to record a 5-min resting state before and after application of tDCS in both groups. The intervention of tDCS was applied for 15 minutes with 2 mA amplitude where anode was placed on the left Dorsolateral Prefrontal Cortex (DLPFC) and cathode on the right DLPFC.
Results: In line with previous studies, the results showed that the power of Delta frequency band in OCD patients are significantly higher than the normal group. Following anodal tDCS, hyperactivity in Delta and Theta bands declined in most channels, particularly in DLPFC (F3, F4) and became similar to normal signals pattern. The reduction in Delta band was significantly more than the other bands.
Conclusion: Anodal tDCS over the left DLPFC significantly decreased the power of frequency bands of Delta and Theta in Patients with OCD. The pattern of EEG activity after tDCS became particularly similar to normal, so tDCS may have potential clinical application in these patients.

Type of Study: Original | Subject: Computational Neuroscience
Received: 2016/11/5 | Accepted: 2017/11/14 | Published: 2018/03/3

1. American Psychiatric Association. (1994). Diagnostic and Statistical Manual of mental disorders, Fourth Edition (DSM-IV). Washington D.C.: American Psychiatric Press.
2. Assenza, G., Pellegrino, G., Tombini, M., Di Pino, G., & Di Lazzaro, V. (2015). Wakefulness delta waves increase after cortical plasticity induction. Clinical Neurophysiology, 126(6), 1221–7. doi: 10.1016/j.clinph.2014.09.029 [DOI:10.1016/j.clinph.2014.09.029]
3. Bais, M., Figee, M., & Denys, D. (2014). Neuromodulation in obsessive-compulsive disorder. Psychiatric Clinics of North America, 37(3), 393–413. doi: 10.1016/j.psc.2014.06.003 [DOI:10.1016/j.psc.2014.06.003]
4. Başar, E., Başar Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39(2-3), 241–8. doi: 10.1016/s0167-8760(00)00145-8 [DOI:10.1016/S0167-8760(00)00145-8]
5. Bation, R., Poulet, E., Haesebaert, F., Saoud, M., & Brunelin, J. (2016). Transcranial direct current stimulation in treatment-resistant obsessive–compulsive disorder: An open-label pilot study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 65, 153–7. doi: 10.1016/j.pnpbp.2015.10.001 [DOI:10.1016/j.pnpbp.2015.10.001]
6. Benninger, D. H., Lomarev, M., Lopez, G., Wassermann, E. M., Li, X., Considine, E., et al. (2010). Transcranial direct current stimulation for the treatment of Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(10), 1105-11. doi: 10.1136/jnnp.2009.202556 [DOI:10.1136/jnnp.2009.202556]
7. Bindman, L. J., Lippold, O. C. J., Redfearn. (1962). Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature, 196(4854), 584–5. doi: 10.1038/196584a0 [DOI:10.1038/196584a0]
8. Boggio, P. S., Rigonatti, S. P., Ribeiro, R. B., Myczkowski, M. L., Nitsche, M. A., Pascual Leone, A., et al. (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. International Journal of Neuropsychopharmacology, 11(2), 249–54. doi: 10.1017/s1461145707007833 [DOI:10.1017/S1461145707007833]
9. Boggio, P. S., Zaghi, S., Villani, A. B., Fecteau, S., Pascual Leone, A., & Fregni, F. (2010). Modulation of risk-taking in marijuana users by Transcranial Direct Current Stimulation (tDCS) of the Dorsolateral Prefrontal Cortex (DLPFC). Drug and Alcohol Dependence, 112(3), 220–5. doi: 10.1016/j.drugalcdep.2010.06.019 [DOI:10.1016/j.drugalcdep.2010.06.019]
10. Bolwig, T. G., Hansen, E. S., Hansen, A., Merkin, H., & Prichep, L. S. (2007). Toward a better understanding of the pathophysiology of OCD SSRI responders: QEEG source localization. Acta Psychiatrica Scandinavica, 115(3), 237–42. doi: 10.1111/j.1600-0447.2006.00889.x [DOI:10.1111/j.1600-0447.2006.00889.x]
11. Brunelin, J., Mondino, M., Gassab, L., Haesebaert, F., Gaha, L., Suaud-Chagny, M. F., et al. (2012). Examining Transcranial Direct-Current Stimulation (tDCS) as a treatment for hallucinations in schizophrenia. American Journal of Psychiatry, 169(7), 719–24. doi: 10.1176/appi.ajp.2012.11071091 [DOI:10.1176/appi.ajp.2012.11071091]
12. Brunoni, A. R., Ferrucci, R., Bortolomasi, M., Vergari, M., Tadini, L., Boggio, P. S., et al. (2011). Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(1), 96–101. doi: 10.1016/j.pnpbp.2010.09.010 [DOI:10.1016/j.pnpbp.2010.09.010]
13. Brunoni, A. R., Ferrucci, R., Fregni, F., Boggio, P. S., & Priori, A. (2012). Transcranial direct current stimulation for the treatment of major depressive disorder: A summary of preclinical, clinical and translational findings. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 39(1), 9–16. doi: 10.1016/j.pnpbp.2012.05.016 [DOI:10.1016/j.pnpbp.2012.05.016]
14. Buzsáki, G., & Watson, B. O. (2012). Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues in Clinical Neuroscience, 14(4), 345-67. PMCID: PMC3553572 [PMID] [PMCID]
15. Cooke, S. F. (2006). Plasticity in the human central nervous system. Brain, 129(7), 1659–73. doi: 10.1093/brain/awl082 [DOI:10.1093/brain/awl082]
16. Crabtree, G. W., & Gogos, J. A. (2014). Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Frontiers in Synaptic Neuroscience, 6, 28. doi: 10.3389/fnsyn.2014.00028 [DOI:10.3389/fnsyn.2014.00028]
17. Creutzfeldt, O. D., Fromm, G. H., & Kapp, H. (1962). Influence of transcortical d-c currents on cortical neuronal activity. Experimental Neurology, 5(6), 436–52. doi: 10.1016/0014-4886(62)90056-0 [DOI:10.1016/0014-4886(62)90056-0]
18. D'Urso, G., Brunoni, A. R., Anastasia, A., Micillo, M., de Bartolomeis, A., & Mantovani, A. (2015). Polarity-dependent effects of transcranial direct current stimulation in obsessive-compulsive disorder. Neurocase, 22(1), 60–4. doi: 10.1080/13554794.2015.1045522 [DOI:10.1080/13554794.2015.1045522]
19. Das, S., Holland, P., Frens, M. A., & Donchin, O. (2016). Impact of Transcranial Direct Current Stimulation (tDCS) on neuronal functions. Frontiers in Neuroscience, 10, 550. doi: 10.3389/fnins.2016.00550 [DOI:10.3389/fnins.2016.00550]
20. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. doi: 10.1016/j.jneumeth.2003.10.009 [DOI:10.1016/j.jneumeth.2003.10.009]
21. Desarkar, P., Sinha, V. K., Jagadheesan, K., & Nizamie, S. H. (2007). A high resolution quantitative EEG power analysis of obsessive-compulsive disorder. German Journal of Psychiatry, 10(2), 29-35.
22. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114-26. doi: 10.1038/nrn2762 [DOI:10.1038/nrn2762]
23. Dong, W., & Bao, F. (2005). Effects of biofeedback therapy on the intervention of examination-caused anxiety. Chinese Journal of Clinical Rehabilitation, 9, 17-19.
24. Fontenelle, L. F., Mendlowicz, M. V., Ribeiro, P., Piedade, R. A., & Versiani, M. (2005). Low-resolution electromagnetic tomography and treatment response in obsessive–compulsive disorder. The International Journal of Neuropsychopharmacology, 9(1), 89. doi: 10.1017/s1461145705005584 [DOI:10.1017/S1461145705005584]
25. Froc, D. J., Chapman, C. A., Trepel, C., & Racine, R. J. (2000). Long-term depression and depotentiation in the sensorimotor cortex of the freely moving rat. Journal of Neuroscience, 20(1), 438-45. [DOI:10.1523/JNEUROSCI.20-01-00438.2000] [PMID]
26. Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. N., Hill, C. L., et al. (1989). The yale-brown obsessive compulsive scale: I. Development, use and reliability. Archives of General Psychiatry, 46(11), 1006-11. doi: 10.1001/archpsyc.1989.01810110048007 [DOI:10.1001/archpsyc.1989.01810110048007]
27. Hammond, C. (2005). Neurofeedback with anxiety and affective disorders. Child and Adolescent Psychiatric Clinics of North America, 14(1), 105–23. doi: 10.1016/j.chc.2004.07.008 [DOI:10.1016/j.chc.2004.07.008]
28. Ischebeck, M., Endrass, T., Simon, D., & Kathmann, N. (2014). Altered frontal EEG asymmetry in obsessive-compulsive disorder. Psychophysiology, 51(7), 596–601. doi: 10.1111/psyp.12214 [DOI:10.1111/psyp.12214]
29. Karadag, F., Oguzhanoglu, N. K., Kurt, T., Oguzhanoglu, A., Atesci, F., & Özdel, O. (2003). Quantitative EEG analysis in obsessive compulsive disorder. International Journal of Neuroscience, 113(6), 833–47. doi: 10.1080/00207450390200963 [DOI:10.1080/00207450390200963]
30. Klimke, A., Nitsche, M. A., Maurer, K., & Voss, U. (2016). Case report: Successful treatment of therapy-resistant OCD with application of Transcranial Alternating Current Stimulation (tACS). Brain Stimulation, 9(3), 463–5. doi: 10.1016/j.brs.2016.03.005 [DOI:10.1016/j.brs.2016.03.005]
31. Kopřivová, J., Congedo, M., Horáček, J., Praško, J., Raszka, M., Brunovský, M., et al. (2011). EEG source analysis in obsessive–compulsive disorder. Clinical Neurophysiology, 122(9), 1735–43. doi: 10.1016/j.clinph.2011.01.051 [DOI:10.1016/j.clinph.2011.01.051]
32. Kuskowski, M. A., Malone, S. M., Kim, S. W., Dysken, M. W., Okaya, A. J., & Christensen, K. J. (1993). Quantitative EEG in obsessive-compulsive disorder. Biological Psychiatry, 33(6), 423–30. doi: 10.1016/0006-3223(93)90170-i [DOI:10.1016/0006-3223(93)90170-I]
33. Liu, K. K. L., Bartsch, R. P., Lin, A., Mantegna, R. N., & Ivanov, P. C. (2015). Plasticity of brain wave network interactions and evolution across physiologic states. Frontiers in Neural Circuits, 9:62. doi: 10.3389/fncir.2015.00062 [DOI:10.3389/fncir.2015.00062]
34. Liu, Q., Tan, B., Zhou, J., Zheng, Z., Li, L., & Yang, Y. (2017). Pathophysiology of refractory obsessive-compulsive disorder. Medicine, 96(1), e5655. doi: 10.1097/md.0000000000005655 [DOI:10.1097/MD.0000000000005655]
35. Malenka, R. C., & Bear, M. F. (2004). LTP and LTD. Neuron, 44(1), 5–21. doi: 10.1016/j.neuron.2004.09.012 [DOI:10.1016/j.neuron.2004.09.012]
36. Mondino, M., Haesebaert, F., Poulet, E., Saoud, M., & Brunelin, J. (2015). Efficacy of cathodal transcranial direct current stimulation over the left orbitofrontal cortex in a patient with treatment-resistant obsessive compulsive disorder. The Journal of ECT, 31(4), 271–2. doi: 10.1097/yct.0000000000000218 [DOI:10.1097/YCT.0000000000000218]
37. Narayanaswamy, J. C., Jose, D., Chhabra, H., Agarwal, S. M., Shrinivasa, B., Hegde, A., et al. (2015). Successful application of add-on Transcranial Direct Current Stimulation (tDCS) for treatment of SSRI resistant OCD. Brain Stimulation, 8(3), 655-7. doi: 10.1016/j.brs.2014.12.003 [DOI:10.1016/j.brs.2014.12.003]
38. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–9. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x [DOI:10.1111/j.1469-7793.2000.t01-1-00633.x]
39. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901. doi: 10.1212/wnl.57.10.1899 [DOI:10.1212/WNL.57.10.1899]
40. Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., et al. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553(1), 293–301. doi: 10.1113/jphysiol.2003.049916 [DOI:10.1113/jphysiol.2003.049916]
41. Nitsche, M. A., Jaussi, W., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2004). Consolidation of human motor cortical neuroplasticity by D-Cycloserine. Neuropsychopharmacology, 29(8), 1573–8. doi: 10.1038/sj.npp.1300517 [DOI:10.1038/sj.npp.1300517]
42. Olbrich, S., Olbrich, H., Adamaszek, M., Jahn, I., Hegerl, U., & Stengler, K. (2013). Altered EEG lagged coherence during rest in obsessive–compulsive disorder. Clinical Neurophysiology, 124(12), 2421–30. doi: 10.1016/j.clinph.2013.05.031 [DOI:10.1016/j.clinph.2013.05.031]
43. Podda, M. V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S. A., et al. (2016). Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Scientific Reports, 6(1): 22180. doi: 10.1038/srep22180 [DOI:10.1038/srep22180]
44. Pogarell, O., Juckel, G., Mavrogiorgou, P., Mulert, C., Folkerts, M., Hauke, W., et al. (2006). Symptom-specific EEG power correlations in patients with obsessive–compulsive disorder. International Journal of Psychophysiology, 62(1), 87–92. doi: 10.1016/j.ijpsycho.2006.02.002 [DOI:10.1016/j.ijpsycho.2006.02.002]
45. Prichep, L.S., Mas, F., Hollander, E., Liebowitz, M., John, E.R., Almas, M., Levin, R.H. (1993). Quantitative electroencephalographic subtyping of obsessive-compulsive disorder. Psychiatry Research, 50(1), 25–32. doi: 10.1016/0165-1781(93)80004-o [DOI:10.1016/0165-1781(93)80004-O]
46. Purpura, D.P., McMurtry, J.G., (1965). Intracellular activities and evoked potential changes during polarization of the motor cortex. Journal of Neurophysiology, 28(1), 166–85. doi: 10.1152/jn.1965.28.1.166 [DOI:10.1152/jn.1965.28.1.166]
47. Ranieri, F., Podda, M. V., Riccardi, E., Frisullo, G., Dileone, M., Profice, P., et al. (2012). Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. Journal of Neurophysiology, 107(7), 1868–80. doi: 10.1152/jn.00319.2011 [DOI:10.1152/jn.00319.2011]
48. Romero Lauro, L. J., Rosanova, M., Mattavelli, G., Convento, S., Pisoni, A., Opitz, A., et al. (2014). TDCS increases cortical excitability: Direct evidence from TMS–EEG. Cortex, 58, 99–111. doi: 10.1016/j.cortex.2014.05.003 [DOI:10.1016/j.cortex.2014.05.003]
49. Russell, A., Cortese, B., Lorch, E., Ivey, J., Banerjee, S. P., Moore, G. J., & Rosenberg, D. R. (2003). Localized functional neurochemical marker abnormalities in dorsolateral prefrontal cortex in pediatric obsessive-compulsive disorder. Journal of Child and Adolescent Psychopharmacology, 13(supplement 1), 31–8. doi: 10.1089/104454603322126322 [DOI:10.1089/104454603322126322]
50. Shamasunder, C., Sriram, T. G., Raj, S. M., & Shanmugham, V. (1986). Validity of a short 5-item version of the General Health Questionnaire (GHQ). Indian Journal of Psychiatry, 28(3), 217-19. PMCID: PMC3172533 [PMID] [PMCID]
51. Tortella, G. (2015). Transcranial direct current stimulation in psychiatric disorders. World Journal of Psychiatry, 5(1), 88-102. doi: 10.5498/wjp.v5.i1.88 [DOI:10.5498/wjp.v5.i1.88]
52. Velikova, S., Locatelli, M., Insacco, C., Smeraldi, E., Comi, G., & Leocani, L. (2010). Dysfunctional brain circuitry in obsessive–compulsive disorder: Source and coherence analysis of EEG rhythms. NeuroImage, 49(1), 977–83. doi: 10.1016/j.neuroimage.2009.08.015 [DOI:10.1016/j.neuroimage.2009.08.015]
53. Vercammen, A., Rushby, J. A., Loo, C., Short, B., Weickert, C. S., & Weickert, T. W. (2011). Transcranial direct current stimulation influences probabilistic association learning in schizophrenia. Schizophrenia Research, 131(1-3), 198–205. doi: 10.1016/j.schres.2011.06.021 [DOI:10.1016/j.schres.2011.06.021]
54. Volpato, C., Piccione, F., Cavinato, M., Duzzi, D., Schiff, S., Foscolo, L., & Venneri, A. (2013). Modulation of affective symptoms and resting state activity by brain stimulation in a treatment-resistant case of obsessive–compulsive disorder. Neurocase, 19(4), 360–70. doi: 10.1080/13554794.2012.667131 [DOI:10.1080/13554794.2012.667131]
55. Zhang, T. (2011). Abnormal small-world architecture of top–down control networks in obsessive–compulsive disorder. Journal of Psychiatry & Neuroscience, 36(1), 23–31. doi: 10.1503/jpn.100006 [DOI:10.1503/jpn.100006]

Add your comments about this article : Your username or Email:
Write the security code in the box

Send email to the article author

© 2015 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb