Volume 9, Issue 6 (November & December 2018)                   BCN 2018, 9(6): 408-416 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmanzadeh R, Mehrabi S, Barati M, Ahmadi M, Golab F, Kazmi S, et al . Effect of Co-administration of Bumetanide and Phenobarbital on Seizure Attacks in Temporal Lobe Epilepsy. BCN. 2018; 9 (6) :408-416
URL: http://bcn.iums.ac.ir/article-1-826-en.html
1- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
2- Department of Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
3- Shefa Neuroscience Research Center, Tehran, Iran.
4- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
5- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
Introduction: The resistance of temporal lobe epilepsy to classic drugs is thought to be due to disruption in the excitation/inhibition of this pathway. Two chloride transporters, NKCC1 and KCC2, are expressed differently for the excitatory state of Gamma-Amino Butyric Acid (GABA). The present study explored the effect of bumetanide as a selective NKCC1 inhibitor either alone or in combination with the phenobarbital in the pilocarpine model of epilepsy. 
Methods: An animal model of Status Epilepticus (SE) was induced with pilocarpine in Wistar male rats followed by phenobarbital and or bumetanide or saline administration for 45 days after the induction of SE by Intraperitoneal (IP) injection. The rats were monitored, their behavior was recorded, and after 24 hours they were sacrificed to study the expression of NKCC1 and KCC2 using real time PCR.
Results: The data showed that the effects of a combination of bumetanide with phenobarbital on frequency rate and duration of seizure attack were more than those of the phenobarbital alone. In addition, in the bumetanide and combined treatment groups, NKCC1 expression decreased significantly, compared with untreated epileptic animals. A delayed decrement in NKCC1/KCC2 expression ratio after bumetanide application was also observed.
Conclusion: The combination of bumetanide with phenobarbital increases the inhibition of SE and maximizes the potential of GABA signaling pathway, and can be considered as an effective therapeutic strategy in patients with epilepsy.
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2016/09/11 | Accepted: 2018/01/20 | Published: 2018/11/1

1. Ben-Ari, Y. (2002). Excitatory actions of gaba during development: The nature of the nurture. Nature Reviews Neuroscience, 3(9), 728-39. [DOI:10.1038/nrn920] [DOI:10.1038/nrn920]
2. Ben Ari, Y., & Holmes, G. L. (2005). The multiple facets of gamma-aminobutyric acid dysfunction in epilepsy. Current Opinion in Neurology, 18(2), 141-5. [DOI:10.1097/01.wco.0000162855.75391.6a] [PMID] [DOI:10.1097/01.wco.0000162855.75391.6a]
3. Blaesse, P., Airaksinen, M. S., Rivera, C., & Kaila, K. (2009). Cation-chloride cotransporters and neuronal function. Neuron, 61(6), 820-38. [DOI:10.1016/j.neuron.2009.03.003] [DOI:10.1016/j.neuron.2009.03.003]
4. Brandt, C., Nozadze, M., Heuchert, N., Rattka, M., & Loscher, W. (2010). Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. Journal of Neuroscience, 30(25), 8602-12. [DOI:10.1523/JNEUROSCI.0633-10.2010] [DOI:10.1523/JNEUROSCI.0633-10.2010]
5. Cleary, R. T., Sun, H., Huynh, T., Manning, S. M., Li, Y., Rotenberg, A., et al. (2013). Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures. PLoS One, 8(3), e57148. [DOI:10.1371/journal.pone.0057148] [DOI:10.1371/journal.pone.0057148]
6. Cohen, I., Navarro, V., Clemenceau, S., Baulac, M., & Miles, R. (2002). On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science, 298(5597), 1418-21. [DOI:10.1126/science.1076510] [DOI:10.1126/science.1076510]
7. Dzhala, V. I., Brumback, A. C., & Staley, K. J. (2008). Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Annals of Neurology, 63(2), 222-35. [DOI:10.1002/ana.21229] [DOI:10.1002/ana.21229]
8. Dzhala, V. I., & Staley, K. J. (2003). Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. Journal of Neuroscience, 23(5), 1840-6. [DOI:10.1523/JNEUROSCI.23-05-01840.2003] [PMID] [DOI:10.1523/JNEUROSCI.23-05-01840.2003]
9. Dzhala, V. I., Talos, D. M., Sdrulla, D. A., Brumback, A. C., Mathews, G. C., Benke, T. A., et al. (2005). NKCC1 transporter facilitates seizures in the developing brain. Nature Medicine, 11(11), 1205-13. [DOI:10.1038/nm1301] [DOI:10.1038/nm1301]
10. Ferhat, L., Esclapez, M., Represa, A., Fattoum, A., Shirao, T., & Ben Ari, Y. (2003). Increased levels of acidic calponin during dendritic spine plasticity after pilocarpine-induced seizures. Hippocampus, 13(7), 845-58. [DOI:10.1002/hipo.10136] [DOI:10.1002/hipo.10136]
11. Furman, M. (2013). Seizure initiation and propagation in the pilocarpine rat model of temporal lobe epilepsy. Journal of Neuroscience, 33(42), 16409-11. [DOI:10.1523/JNEUROSCI.3687-13.2013] [DOI:10.1523/JNEUROSCI.3687-13.2013]
12. Galanopoulou, A. S. (2007). Developmental patterns in the regulation of chloride homeostasis and GABA(A) receptor signaling by seizures. Epilepsia, 48(suppl. 5), 14-8. [DOI:10.1111/j.1528-1167.2007.01284.x] [DOI:10.1111/j.1528-1167.2007.01284.x]
13. Galeffi, F., Sah, R., Pond, B. B., George, A., & Schwartz Bloom, R. D. (2004). Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: effect of diazepam. Journal of Neuroscience, 24(18), 4478-88. [DOI:10.1523/JNEUROSCI.0755-04.2004] [DOI:10.1523/JNEUROSCI.0755-04.2004]
14. Hannaert, P., Alvarez Guerra, M., Pirot, D., Nazaret, C., & Garay, R. P. (2002). Rat NKCC2/NKCC1 cotransporter selectivity for loop diuretic drugs. Naunyn-Schmiedeberg's Archives of Pharmacology, 365(3), 193-9. [DOI:10.1007/s00210-001-0521-y] [DOI:10.1007/s00210-001-0521-y]
15. Huberfeld, G., Wittner, L., Clemenceau, S., Baulac, M., Kaila, K., Miles, R., et al. (2007). Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. Journal of Neuroscience, 27(37), 9866-73. [DOI:10.1523/JNEUROSCI.2761-07.2007] [DOI:10.1523/JNEUROSCI.2761-07.2007]
16. Inglefield, J. R., & Schwartz-Bloom, R. D. (1998). Activation of excitatory amino acid receptors in the rat hippocampal slice increases intracellular Cl- and cell volume. Journal of Neurochemistry, 71(4), 1396-404. [DOI:10.1046/j.1471-4159.1998.71041396.x] [PMID] [DOI:10.1046/j.1471-4159.1998.71041396.x]
17. Kahle, K. T., & Staley, K. (2008a). Altered neuronal chloride homeostasis and excitatory GABAergic signaling in human temporal lobe epilepsy. Epilepsy Currents, 8(2), 51-3. [DOI:10.1111/j.1535-7511.2008.00235.x] [DOI:10.1111/j.1535-7511.2008.00235.x]
18. Kahle, K. T., & Staley, K. J. (2008b). The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures. Epilepsy Currents, 25(3), E22. [DOI:10.3171/FOC/2008/25/9/E22] [DOI:10.3171/FOC/2008/25/9/E22]
19. Khazipov, R., Khalilov, I., Tyzio, R., Morozova, E., Ben Ari, Y., & Holmes, G. L. (2004). Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. European Journal of Neuroscience, 19(3), 590-600. [DOI:10.1111/j.0953-816X.2003.03152.x] [PMID] [DOI:10.1111/j.0953-816X.2003.03152.x]
20. Kohling, R. (2002). GABA becomes exciting. Science, 298(5597), 1350-1. [DOI:10.1126/science.1079446] [DOI:10.1126/science.1079446]
21. Lee, H. H., Jurd, R., & Moss, S. J. (2010). Tyrosine phosphorylation regulates the membrane trafficking of the potassium chloride co-transporter KCC2. Molecular and Cellular Neuroscience, 45(2), 173-9. [DOI:10.1016/j.mcn.2010.06.008] [DOI:10.1016/j.mcn.2010.06.008]
22. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. [DOI:10.1006/meth.2001.1262] [DOI:10.1006/meth.2001.1262]
23. Lu, J., Karadsheh, M., & Delpire, E. (1999). Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. Journal of Neurobiology, 39(4), 558-68. [DOI:10.1002/(SICI)1097-4695(19990615)39:43.0.CO;2-5] https://doi.org/10.1002/(SICI)1097-4695(19990615)39:4<558::AID-NEU9>3.0.CO;2-5 [DOI:10.1002/(SICI)1097-4695(19990615)39:43.0.CO;2-5]
24. Lu, K. T., Wu, C. Y., Cheng, N. C., Wo, Y. Y., Yang, J. T., Yen, H. H., et al. (2006). Inhibition of the Na+-K+-2Cl--cotransporter in choroid plexus attenuates traumatic brain injury-induced brain edema and neuronal damage. European Journal of Pharmacology, 548(1-3), 99-105. [DOI:10.1016/j.ejphar.2006.07.048] [DOI:10.1016/j.ejphar.2006.07.048]
25. Lu, K. T., Wu, C. Y., Yen, H. H., Peng, J. H., Wang, C. L., & Yang, Y. L. (2007). Bumetanide administration attenuated traumatic brain injury through IL-1 overexpression. Neurological Research, 29(4), 404-9. [DOI:10.1179/016164107X204738] [DOI:10.1179/016164107X204738]
26. Mazarati, A., Shin, D., & Sankar, R. (2009). Bumetanide inhibits rapid kindling in neonatal rats. Epilepsia, 50(9), 2117-22. [DOI:10.1111/j.1528-1167.2009.02048.x] [DOI:10.1111/j.1528-1167.2009.02048.x]
27. Owens, D. F., & Kriegstein, A. R. (2002). Is there more to GABA than synaptic inhibition? Nature Reviews Neuroscience, 3(9), 715-27. [DOI:10.1038/nrn919] [DOI:10.1038/nrn919]
28. Palma, E., Amici, M., Sobrero, F., Spinelli, G., Di Angelantonio, S., Ragozzino, D., et al. (2006). Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proceedings of the National Academy of Sciences of the United States of America, 103(22), 8465-8. [DOI:10.1073/pnas.0602979103] [DOI:10.1073/pnas.0602979103]
29. Pathak, H. R., Weissinger, F., Terunuma, M., Carlson, G. C., Hsu, F. C., Moss, S. J., et al. (2007). Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. Journal of Neuroscience, 27(51), 14012-22. [DOI:10.1523/JNEUROSCI.4390-07.2007] [DOI:10.1523/JNEUROSCI.4390-07.2007]
30. Payne, J. A., Rivera, C., Voipio, J., & Kaila, K. (2003). Cation-chloride co-transporters in neuronal communication, development and trauma. Trends in Neurosciences, 26(4), 199-206. [DOI:10.1016/S0166-2236(03)00068-7] [DOI:10.1016/S0166-2236(03)00068-7]
31. Plotkin, M. D., Snyder, E. Y., Hebert, S. C., & Delpire, E. (1997). Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: A possible mechanism underlying GABA's excitatory role in immature brain. Journal of Neurobiology, 33(6), 781-95. [DOI:10.1002/(SICI)1097-4695(19971120)33:63.0.CO;2-5] https://doi.org/10.1002/(SICI)1097-4695(19971120)33:6<781::AID-NEU6>3.0.CO;2-5 [DOI:10.1002/(SICI)1097-4695(19971120)33:63.0.CO;2-5]
32. Racine, R. J. (1972). Modification of seizure activity by electrical stimulation: II. motor seizure. Electroencephalography and Clinical Neurophysiology, 32(3), 281-94. [DOI:10.1016/0013-4694(72)90177-0] [DOI:10.1016/0013-4694(72)90177-0]
33. Rivera, C., Voipio, J., Thomas Crusells, J., Li, H., Emri, Z., Sipila, S., et al. (2004). Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. Journal of Neuroscience, 24(19), 4683-91. [DOI:10.1523/JNEUROSCI.5265-03.2004] [DOI:10.1523/JNEUROSCI.5265-03.2004]
34. Staley, K. J. (2006). Wrong-way chloride transport: Is it a treatable cause of some intractable seizures? Epilepsy Currents, 6(4), 124-7. [DOI:10.1111/j.1535-7511.2006.00119.x] [DOI:10.1111/j.1535-7511.2006.00119.x]
35. Wake, H., Watanabe, M., Moorhouse, A. J., Kanematsu, T., Horibe, S., Matsukawa, N., et al. (2007). Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation. Journal of Neuroscience, 27(7), 1642-50. [DOI:10.1523/JNEUROSCI.3104-06.2007] [DOI:10.1523/JNEUROSCI.3104-06.2007]
36. Wang, C., Shimizu Okabe, C., Watanabe, K., Okabe, A., Matsuzaki, H., Ogawa, T., et al. (2002). Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain. Brain Research. Developmental Brain Research, 139(1), 59-66. [DOI:10.1016/S0165-3806(02)00536-9] [DOI:10.1016/S0165-3806(02)00536-9]
37. Yamada, J., Okabe, A., Toyoda, H., Kilb, W., Luhmann, H. J., & Fukuda, A. (2004). Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. The Journal of Physiology, 557(Pt 3), 829-41. [DOI:10.1113/jphysiol.2004.062471] [DOI:10.1113/jphysiol.2004.062471]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb