Volume 3, Issue 2 (Winter 2012 -- 2012)                   BCN 2012, 3(2): 22-31 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daneshparvar Z, Daliri M R. A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns. BCN. 2012; 3 (2) :22-31
URL: http://bcn.iums.ac.ir/article-1-210-en.html

A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a detailed physiological model (Kanold & Manis, 2000). For our development we benefit from transient potassium currents properties i.e. fast activation and slow inactivation to generate long latency before start of firing. We compare our minimal model outputs in response to a hyperpolarizing stimulus fallowed by a depolarizing one with the data of KM-LIF model. The results conform well to the KM-LIF model with lower complexity.

Type of Study: Original | Subject: Clinical Neuroscience
Received: 2012/04/19

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb