Volume 10, Issue 2 (March & April 2019)                   BCN 2019, 10(2): 157-164 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

SoukhakLari R, Moezi L, Pirsalami F, Abkar M, Moosavi M. Curcumin-Loaded BSA Nanoparticles Protect More Efficiently Than Natural Curcumin Against Scopolamine-Induced Memory Retrieval Deficit. BCN. 2019; 10 (2) :157-164
URL: http://bcn.iums.ac.ir/article-1-1141-en.html
1- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
2- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
3- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Introduction: There is evidence indicating that the rate of AD is lower in curry consuming populations. Then, there is an effort to elucidate if curcumin -as the main ingredient of turmeric- might affect the process of AD. However, in clinical trials of AD, a six-month curcumin treatment failed to show any progress, which might be attributable to its low bioavailability. In this line, a recent human study revealed that a more bioavailable solid lipid curcumin enhances cognition in aged adults. By the application of Bovine Serum Albumin (BSA), the current study aimed at converting curcumin to nano sizes and assessing its protective effects against scopolamine-induced passive avoidance memory retrieval deficit.
Methods: Nanocurcumin was prepared via dissolution method. Male NMRI mice (20-25 g body weight) were used. The effective doses of nanocurcumin were selected according to the initial pilot test. The mice were treated with nanocurcumin 15 or 20 mg/kg/p.o or distilled water for 10 days. The animals were habituated and trained in passive avoidance apparatus on the day 10. The retention test was performed 24 hours later. Scopolamine (1 mg/kg/i.p.) or saline was injected 30 minutes before memory retention trial.
Results: The findings indicated that nanocurcumin in doses 15 or 20 mg/kg/p.o prevented the retrieval deficit induced by scopolamine while natural curcumin in its equivalent doses did not have such an effect. Furthermore, nanocurcumin by itself improved memory retention comparing with the control group. 
Conclusion: These findings implied that the potential anti-amnesic effects of curcumin might be observed by producing and using its nanoformulation form.
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2018/03/4 | Accepted: 2018/10/13 | Published: 2019/03/1

1. Ahmed, T., & Gilani, A. H. (2009). Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer's Disease. Pharmacology, Biochemistry, and Behavior, 91(4), 554-9. [DOI:10.1016/j.pbb.2008.09.010] [DOI:10.1016/j.pbb.2008.09.010]
2. Akinyemi, A. J., Oboh, G., Oyeleye, S. I., & Ogunsuyi, O. (2017). Anti-amnestic Effect of Curcumin in Combination with Donepezil, an Anticholinesterase Drug: Involvement of Cholinergic System. Neurotox Research, 31(4), 560-9. [DOI:10.1007/s12640-017-9701-5] [DOI:10.1007/s12640-017-9701-5]
3. Ali, E. H., & Arafa, N. M. (2011). Comparative protective action of curcumin, memantine and diclofenac against scopolamine-induced memory dysfunction. Fitoterapia, 82(4), 601-8. [DOI:10.1016/j.fitote.2011.01.016] [DOI:10.1016/j.fitote.2011.01.016]
4. Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: Problems and promises. Molecular Pharmacology, 4(6), 807-18. [DOI:10.1021/mp700113r] [DOI:10.1021/mp700113r]
5. Aniesrani Delfiya, D. S., Thangavel, K., & Amirtham, D. (2016). Preparation of curcumin loaded egg albumin nanoparticles using acetone and optimization of desolvation process. Protein Journal, 35(2), 124-35. [DOI:10.1007/s10930-016-9652-3] [DOI:10.1007/s10930-016-9652-3]
6. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In W. S. Kenneth & S. Janet Taylor (Eds.), Psychology of Learning and Motivation (pp. 89-195). New York: Academic Press. [DOI:10.1016/S0079-7421(08)60422-3] [DOI:10.1016/S0079-7421(08)60422-3]
7. Barber, T. A., Edris, E. M., Levinsky, P. J., Williams, J. M., Brouwer, A. R., & Gessay, S. A. (2016). Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick. Behavioural Pharmacology, 27(6), 536-41. [DOI:10.1097/FBP.0000000000000242] [DOI:10.1097/FBP.0000000000000242]
8. Bartus, R. T., Dean, R. L., Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408-14. [DOI:10.1126/science.7046051] [DOI:10.1126/science.7046051]
9. Baum, L., Lam, C. W., Cheung, S. K., Kwok, T., Lui, V., Tsoh, J. et al. (2008). Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer's Disease. Journal of Clinical Psychopharmacology, 28(1), 110-3. [DOI:10.1097/jcp.0b013e318160862c] [DOI:10.1097/jcp.0b013e318160862c]
10. Bennett, D. A. (2000). Part II. Clinical diagnosis and course of Alzheimer's Disease. Disease-a-Month, 46(10), 666-86. [DOI:10.1016/S0011-5029(00)90029-4] [DOI:10.1016/S0011-5029(00)90029-4]
11. Cox, K. H., Pipingas, A., & Scholey, A. B. (2015). Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. Journal of Psychopharmacology, 29(5), 642-51. [DOI:10.1177/0269881114552744] [DOI:10.1177/0269881114552744]
12. El-Khadragy, M. F., Al-Olayan, E. M., & Abdel Moneim, A. E. (2014). Neuroprotective effects of Citrus reticulata in scopolamine-induced dementia oxidative stress in rats. CNS & Neurological Disorders Drug Targets, 13(4), 684-90. [DOI:10.2174/1871527313666140618105404] [DOI:10.2174/1871527313666140618105404]
13. Ganguli, M., Chandra, V., Kamboh, M. I., Johnston, J. M., Dodge, H. H., & Thelma, B. K. et al. (2000). Apolipoprotein E polymorphism and Alzheimer's Disease: The Indo-US cross-national dementia study. Archives of Neurology, 57(6), 824-30. [DOI:10.1001/archneur.57.6.824] [DOI:10.1001/archneur.57.6.824]
14. Hodges, J. R., Salmon, D. P., & Butters, N. (1990). Differential impairment of semantic and episodic memory in Alzheimer's and Huntington's Diseases: A controlled prospective study. Journal of Neurology, Neurosurgery, and Psychiatry, 53(12), 1089-95. [DOI:10.1136/jnnp.53.12.1089] [DOI:10.1136/jnnp.53.12.1089]
15. Jithan, A. V., Madhavi, K., Madhavi, M., & Prabhakar, K. (2011). Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. International Journal of Pharmaceutical Investigation, 1(2), 119-25. [DOI:10.4103/2230-973X.82432] [DOI:10.4103/2230-973X.82432]
16. John, T. A., Vogel, S. M., Tiruppathi, C., Malik, A. B., & Minshall, R. D. (2003). Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. American Journal of Physiology: Lung Cellular and Molecular Physiology, 284(1), L187-196. [DOI:10.1152/ajplung.00152.2002] [DOI:10.1152/ajplung.00152.2002]
17. Khopde, S. M., Priyadarsini, K. I., Guha, S. N., Satav, J. G., Venkatesan, P., & Rao, M. N. (2000). Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Bioscience, Biotechnology, and Biochemistry, 64(3), 503-9. [DOI:10.1271/bbb.64.503] [DOI:10.1271/bbb.64.503]
18. Kim, T. H., Jiang, H. H., Youn, Y. S., Park, C. W., Tak, K. K., Lee, S. et al. (2011). Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. International Journal of Pharmacology, 403(1-2), 285-91. [DOI:10.1016/j.ijpharm.2010.10.041] [DOI:10.1016/j.ijpharm.2010.10.041]
19. Lahiri, D. K., Rogers, J. T., Greig, N. H., & Sambamurti, K. (2004). Rationale for the development of cholinesterase inhibitors as anti-Alzheimer's agents. Current Pharmaceutical Design, 10(25), 3111-9. [DOI:10.2174/1381612043383331] [DOI:10.2174/1381612043383331]
20. Li, L., Braiteh, F. S., & Kurzrock, R. (2005). Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer, 104(6), 1322-31. [DOI:10.1002/cncr.21300] [DOI:10.1002/cncr.21300]
21. Lim, D. W., Son, H. J., Um, M. Y., Kim, I. H., Han, D., Cho, S., et al. (2016). Enhanced cognitive effects of demethoxycurcumin, a natural derivative of curcumin on scopolamine-induced memory impairment in mice. Molecules, 21(8), 1-10. [DOI:10.3390/molecules21081022] [DOI:10.3390/molecules21081022]
22. Minshall, R. D., Tiruppathi, C., Vogel, S. M., & Malik, A. B. (2002). Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochemistry and Cell Biology, 117(2), 105-12. [DOI:10.1007/s00418-001-0367-x] [DOI:10.1007/s00418-001-0367-x]
23. Moosavi, M., Khales, G. Y., Abbasi, L., Zarifkar, A., & Rastegar, K. (2012). Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivation. Neuropharmacology, 62(5-6), 2018-23. [DOI:10.1016/j.neuropharm.2011.12.031] [DOI:10.1016/j.neuropharm.2011.12.031]
24. Moosavi, M., SoukhakLari, R., Moezi, L., & Pirsalami, F. (2018). Scopolamine-induced passive avoidance memory retrieval deficit is accompanied with hippocampal MMP2, MMP-9 and MAPKs alteration. European Journal of Pharmacology, 819, 248-53. [DOI:10.1016/j.ejphar.2017.12.007] [DOI:10.1016/j.ejphar.2017.12.007]
25. Ng, T. P., Chiam, P. C., Lee, T., Chua, H. C., Lim, L., & Kua, E. H. (2006). Curry consumption and cognitive function in the elderly. American Journal of Epidemiology, 164(9), 898-906. [DOI:10.1093/aje/kwj267] [DOI:10.1093/aje/kwj267]
26. Oz, M., Nurullahoglu Atalik, K. E., Yerlikaya, F. H., & Demir, E. A. (2015). Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiology of Learning and Memory, 123(1), 43-9. [DOI:10.1016/j.nlm.2015.05.001] [DOI:10.1016/j.nlm.2015.05.001]
27. Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Pharmacology, 75(3), 588-602. [DOI:10.1111/j.1365-2125.2012.04425.x] [DOI:10.1111/j.1365-2125.2012.04425.x]
28. Ringman, J. M., Frautschy, S. A., Teng, E., Begum, A. N., Bardens, J., Beigi, M., et al. (2012). Oral curcumin for Alzheimer's Disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Research & Therapy, 4(5), 43-6. [DOI:10.1186/alzrt146] [DOI:10.1186/alzrt146]
29. Roy, D. S., Arons, A., Mitchell, T. I., Pignatelli, M., Ryan, T. J., & Tonegawa, S. (2016). Memory retrieval by activating engram cells in mouse models of early Alzheimer's Disease. Nature, 531(7595), 508-12. [DOI:10.1038/nature17172] [DOI:10.1038/nature17172]
30. Rush, D. K. (1988). Scopolamine amnesia of passive avoidance: A deficit of information acquisition. Behavioral and Neural Biology, 50(3), 255-74. [DOI:10.1016/S0163-1047(88)90938-7] [DOI:10.1016/S0163-1047(88)90938-7]
31. Sarlak, Z., Oryan, S., & Moghaddasi, M. (2015). Interaction between the antioxidant activity of curcumin and cholinergic system on memory retention in adult male Wistar rats. Iranian Journal of Basic Medical Sciences, 18(4), 398-403. [PMID] [PMCID] [PMID] [PMCID]
32. Sarter, M., & Bruno, J. P. (1997). Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Research. Brain Research Reviews, 23(1-2), 28-46. [DOI:10.1016/S0165-0173(96)00009-4] [DOI:10.1016/S0165-0173(96)00009-4]
33. Scheepens, A., Tan, K., & Paxton, J. W. (2010). Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes & Nutrition, 5(1), 75-87. [DOI:10.1007/s12263-009-0148-z] [DOI:10.1007/s12263-009-0148-z]
34. SoukhakLari, R., Moezi, L., Pirsalami, F., & Moosavi, M. (2018). The effect of BSA-Based Curcumin Nanoparticles on memory and hippocampal MMP-2, MMP-9, and MAPKs in adult mice. Journal of Molecular Neuroscience, 65(3), 319-26. [DOI:10.1007/s12031-018-1104-4] [DOI:10.1007/s12031-018-1104-4]
35. Sunderland, T., Tariot, P. N., Weingartner, H., Murphy, D. L., Newhouse, P. A., Mueller, E. A., et al. (1986). Pharmacologic modelling of Alzheimer's Disease. Progress in Neuro-psychopharmacology & Biological Psychiatry, 10(3-5), 599-610. [DOI:10.1016/0278-5846(86)90030-8] [DOI:10.1016/0278-5846(86)90030-8]
36. Tohgi, H., Abe, T., Kimura, M., Saheki, M., & Takahashi, S. (1996). Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with Alzheimer-type dementia. Journal of Neural Transmission (Vienna), 103(10), 1211-20. [DOI:10.1007/BF01271206] [DOI:10.1007/BF01271206]
37. Weintraub, S., Wicklund, A. H., & Salmon, D. P. (2012). The neuropsychological profile of Alzheimer's Disease. Cold Spring Harbor Perspectives in Medicine, 2(4), a006171. [DOI:10.1101/cshperspect.a006171] [DOI:10.1101/cshperspect.a006171]
38. Witkin, J. M., Leucke, S., Thompson, L. K., Lynch, R. A., Ding, C., Heinz, B., et al. (2013). Further evaluation of the neuropharmacological determinants of the antidepressant-like effects of curcumin. CNS & Neurological Disorders Drug Targets, 12(4), 498-505. [DOI:10.2174/1871527311312040008] [DOI:10.2174/1871527311312040008]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb