Volume 10, Issue 1 (January & February 2019)                   BCN 2019, 10(1): 13-22 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nikkar E, Ghoshooni H, Hadipour M M, Sahraei H. Effect of Nitric Oxide on Basolateral Amygdala on Persistence of Anxiety and Depression in Stressed Male Rats. BCN. 2019; 10 (1) :13-22
URL: http://bcn.iums.ac.ir/article-1-1133-en.html
1- Department of Physiology and Biophysics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
2- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Introduction: The current study aimed at investigating the role of Nitric Oxide (NO) in the maintenance of anxiety and depression induced by stress in male Wistar rats using intra-Basolateral Amygdala (BLA) injection of NO precursor, L-arginine, Nitric Oxide Synthase (NOS) inhibitor, and L-NAME. 
Methods: Two 23-gauge stainless steel cannulas were placed in the BLA, stereotaxically. Seven days later, animals experienced electro foot shock stress based on the following protocol: animals experienced four sessions of stress for 60 minutes in four consecutive days. Five minutes before each stress session, the animals received different doses of L-arginine or L-NAME (1, 5 and, 10 μg/rat) or saline (0.5 μL/rat) intra-BLA. Six days after the stress termination, animals were tested for maintenance of anxiety-like behavior (elevated plus maze; EPM) and eight days after the stress they were examined for depression (forced swimming test; FST).
Results: Stress reduced the time and number of open arms and decreased motor activity on EPM. Stress-induced anxiety was inhibited by L-arginine and L-NAME (1, 5, and 10 µg/rat). L-Arginine and L-NAME induced anxiety in non-stressed rats. Stress also increased the immobility time in animals in FST paradigm. Interestingly, both L-arginine and L-NAME, in all doses reduced the stress effect.
Conclusion: BLA nitric oxide may play a pivotal role in anxiety and depression induced by stress in rats. Since the effects of both L-arginine and L-NAME were similar, NO might have a modulatory role in the BLA. 
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2018/02/19 | Accepted: 2018/07/17 | Published: 2019/01/1

1. Belujon, P., & Grace, A. A. (2011). Hippocampus, amygdala, and stress: Interacting systems that affect susceptibility to addiction. Annals of the New York Academy of Sciences, 1216(1), 114–21. [DOI:10.1111/j.1749-6632.2010.05896.x] [DOI:10.1111/j.1749-6632.2010.05896.x]
2. Conrad, C. D., LeDoux, J. E., Magarinos, A. M., & McEwen, B. S. (1999). Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behavioral Neuroscience, 113, 902–13. [DOI:10.1037/0735-7044.113.5.902] [PMID] [DOI:10.1037/0735-7044.113.5.902]
3. Faria, M. S., Muscará, M. N., Moreno, Jr. H., Teixeira, S. A., Dias, H. B., De Oliveira, B., et al. (1997). Acute inhibition of nitric oxide synthesis induces anxiolysis in the plus maze test. European Journal of Pharmacology, 323(1), 37-43. [DOI:10.1016/S0014-2999(97)00027-7] [DOI:10.1016/S0014-2999(97)00027-7]
4. Garthwaite, J., & Boulton, C. L. (1995). Nitric oxide signaling in the central nervous system. Annual Review of Physiology, 57, 683–706. [DOI:10.1146/annurev.ph.57.030195.003343] [PMID] [DOI:10.1146/annurev.ph.57.030195.003343]
5. Hunter, R. G., & McEwen, B. S. (2013). Stress and anxiety across the lifespan: Structural plasticity and epigenetic regulation. Epigenomics, 5(2), 177–94. [DOI:10.2217/epi.13.8] [PMID] [DOI:10.2217/epi.13.8]
6. Lange, M. D., Doengi, M., Lesting, J., Pape, H. C., & Jungling, K. (2012). Heterosynaptic long-term potentiation at interneuron–principal neuron synapses in the amygdala requires nitric oxide signaling. Journal of Physiology, 590(1), 131–43. [DOI:10.1113/jphysiol.2011.221317] [PMID] [PMCID] [DOI:10.1113/jphysiol.2011.221317]
7. Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–45. [DOI:10.1038/nrn2639] [PMID] [DOI:10.1038/nrn2639]
8. McEwen, B. S., Eiland, L., Hunter, R. G., & Miller, M. M. (2012). Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology, 62(1), 3–12. [DOI:10.1016/j.neuropharm.2011.07.014] [PMID] [PMCID] [DOI:10.1016/j.neuropharm.2011.07.014]
9. McEwen, B. S. (2012). Brain on stress: How the social environment gets under the skin. Proceedings of the National Academy of Sciences, 109(2), 17180–5. [DOI:10.1073/pnas.1121254109] [DOI:10.1073/pnas.1121254109]
10. McEwen, B. S., Nasca, C., & Gray, J. D. (2016). Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 41(1), 3–23. [DOI:10.1038/npp.2015.171] [PMID] [PMCID] [DOI:10.1038/npp.2015.171]
11. McEwen, B. S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry, 48(8), 721-31. [DOI:10.1016/S0006-3223(00)00964-1] [DOI:10.1016/S0006-3223(00)00964-1]
12. McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5(2), 205-16. [DOI:10.1016/0959-4388(95)80028-X] [DOI:10.1016/0959-4388(95)80028-X]
13. Miller, D. B., & O'Callaghan, J. P. (2002). Neuroendocrine aspects of the response to stress. Metabolism, 51(Suppl1), 5-10. [DOI:10.1053/meta.2002.33184] [DOI:10.1053/meta.2002.33184]
14. Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A., & Chattarji, S. (2005). Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proceedings of the National Academy of Sciences, 102(1), 9371–6. [DOI:10.1073/pnas.0504011102] [PMID] [PMCID] [DOI:10.1073/pnas.0504011102]
15. Pacak, K., & Palkovits, M. (2010). Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocrine Reviews, 22(4), 502–48. [DOI:10.1210/er.22.4.502] [PMID] [DOI:10.1210/er.22.4.502]
16. Pape, H. C., & Par´e, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Cardiac Electrophysiology Review, 90(1), 419–463. [DOI:10.1152/physrev.00037.2009] [PMID] [PMCID] [DOI:10.1152/physrev.00037.2009]
17. Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates. 6th Ed. London: Academic Press. [PMCID]
18. Piri, M., Nasehi, M., Asgariyan, M., & Zarrindast, M. R. (2012). Influence of nitric oxide agents in the dorsal hippocampus of mice on anxiogenic-like effect induced by histamine. Pharmacology, Biochemistry, and Behavior, 102(3), 391-9. [DOI:10.1016/j.pbb.2012.06.004] [PMID] [DOI:10.1016/j.pbb.2012.06.004]
19. Pitsikas, N. (2018). The role of Nitric Oxide (NO) donors in anxiety, Lights and shadows. Nitric Oxide, 77, 6–11. [DOI:10.1016/j.niox.2018.04.002] [PMID] [DOI:10.1016/j.niox.2018.04.002]
20. Ponomarev, I., Rau, V., Eger, E. I., Harris, R. A., & Fanselow, M. S. (2010). Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. Neuropsychopharmacology, 35(6), 1402–11. [PMID] [PMCID] [DOI:10.1038/npp.2010.10] [PMID] [PMCID]
21. Popoli, M., Yan, Z., McEwen, B. S., & Sanacora, G. (2012). The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience, 13(1), 22-37. [DOI:10.1038/nrn3138] [PMID] [PMCID] [DOI:10.1038/nrn3138]
22. Porsolt, R. D., Le Pichon, M., & Jalfre, M. L. (1977). Depression: A new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-2. [DOI:10.1038/266730a0] [PMID] [DOI:10.1038/266730a0]
23. Rainnie, D. G., Asprodini, E. K., & Shinnick-Gallagher, P. (1991a). Inhibitory transmission in the basolateral amygdala. Journal of Neurophysiology, 66(1), 999-1009. [DOI:10.1152/jn.1991.66.3.999] [DOI:10.1152/jn.1991.66.3.999]
24. Rainnie, D. G., Asprodini, E. K., & Shinnick-Gallagher, P. (1991b). Excitatory transmission in the basolateral amygdala. Journal of Neurophysiology, 66(1), 986-8. [DOI:10.1152/jn.1991.66.3.986] [DOI:10.1152/jn.1991.66.3.986]
25. Roohbakhsh, A., Moghaddam, A. H., Massoudi, R., & Zarrindast, M. R. (2007). Role of dorsal hippocampal cannabinoid receptors and nitric oxide in anxiety like behaviours in rats using the elevated plus-maze test. Clinical and Experimental Pharmacology, 34(3), 223-9. [DOI:10.1111/j.1440-1681.2007.04576.x] [PMID] [DOI:10.1111/j.1440-1681.2007.04576.x]
26. Roozendaal, B., McEwen, B. S., & Chattarji, S. (2009). Stress, memory and the amygdala. Nature Review Neuroscience, 10(1), 423-33. [DOI:10.1038/nrn2651] [PMID] [DOI:10.1038/nrn2651]
27. Schafe, G. E., Bauer, E. P., Rosis, S., Farb, C. R., Rodrigues, S. M., & Le Doux, J. E. (2005). Memory consolidation of Pavlovian fear conditioning requires nitric oxide signaling in the lateral amygdala. European Journal of Neuroscience, 22(1), 201-11. [PMID] [DOI:10.1111/j.1460-9568.2005.04209.x] [PMID]
28. Spiacci, Jr. A., Kanamaru, F., Guimaraes, F. S., & Oliveira, R. M. (2008). Nitric oxide-mediated anxiolytic-like and antidepressant-like effects in animal models of anxiety and depression. Pharmacology Biochemistry and Behavior, 88(3), 247-55. [DOI:10.1016/j.pbb.2007.08.008] [PMID] [DOI:10.1016/j.pbb.2007.08.008]
29. Stamler, J. S., Lamas, S., & Fang, F. C. (2001). Nitrosylation, The prototypic redox-based signaling mechanism. Cell, 106(1), 675-83. [DOI:10.1016/S0092-8674(01)00495-0] [DOI:10.1016/S0092-8674(01)00495-0]
30. Trabace, L., & Kendrick, K. M. (2000). Nitric oxide can differentially modulate striatal neurotransmitter concentrations via soluble guanylate cyclase and peroxynitrite formation. Journal of Neurochemistry, 75(4), 1664-74. [DOI:10.1046/j.1471-4159.2000.0751664.x] [PMID] [DOI:10.1046/j.1471-4159.2000.0751664.x]
31. Usunoff, K. G., Itzev, D. E., Rolfs, A., Schmitt, O., & Wree, A. (2006). Nitric oxide synthase-containing neurons in the amygdaloid nuclear complex of the rat. Anatomy and Embryology (Berl), 211(6), 721–37. [DOI:10.1007/s00429-006-0134-9] [PMID] [DOI:10.1007/s00429-006-0134-9]
32. Vyas, A., Mitra, R., Shankaranarayana Rao B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22(15), 6810-18. [DOI:10.1523/JNEUROSCI.22-15-06810.2002] [PMID] [DOI:10.1523/JNEUROSCI.22-15-06810.2002]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb