Volume 10, Issue 1 (January & February 2019)                   BCN 2019, 10(1): 85-97 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari-Roozbahani N, Shomali T, Taherianfard M. Neuroprotective Effect of Zataria Multiflora Essential Oil on Rats With Alzheimer Disease: A Mechanistic Study. BCN. 2019; 10 (1) :85-97
URL: http://bcn.iums.ac.ir/article-1-1108-en.html
1- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
Introduction: Finding herbs with promising effects to prevent or postpone Alzheimer Disease (AD) is highly demanded. The present study aimed at clarifying plausible effects and related mechanism(s) of Zataria Multiflora Essential Oil (ZMEO) against memory impairment in a rat model of the AD.
Methods: Forty male adult rats were categorized into four groups and treated as follows: 1. The Negative Control (NC): no treatment; 2. Sham control (sham): distilled water by Intracerebroventricular (ICV) injection; 3. The AD control (AD): Aβ 1-42 by ICV injection; and 4. The ZMEO group: Aβ 1-42 by ICV injection and ZMEO at 100 μL/kg/d orally for 20 days. 
Results: After Congo red staining of the hippocampus, a relative decrease in amyloid deposits was observed in the ZMEO group. Moreover, rats showed better outcomes in Morris Water Maze (MWM) test, reduced hippocampal acetylcholinesterase (AchE) activity, and higher Brain-Derived Neurotrophic Factor (BDNF) content as compared with the AD group (P<0.05). However, no significant changes in antioxidant status was observed (P>0.05).
Conclusion: ZMEO has a protective effect against memory impairment in rats with AD at least partly via reducing hippocampal AchE activity and enhancement of BDNF levels without a change in antioxidant status. These findings can pave the way for future studies on the usefulness of this herb in AD prevention.
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2018/01/10 | Accepted: 2018/05/26 | Published: 2019/01/1

1. Abe, E., Casamenti, F., Giovannelli, L., Scali, C., & Pepeu, G. (1994). Administration of amyloid β-peptides into the medial septum of rats decreases acetylcholine release from hippocampus in vivo. Brain Research, 636(1), 162-164. [DOI:10.1016/0006-8993(94)90193-7] [DOI:10.1016/0006-8993(94)90193-7]
2. Bassil, N., & Grossberg, G. T. (2017). Novel regimens and delivery systems in the pharmacological treatment of Alzheimer's disease. CNS Drugs, 23(2), 293-307. [DOI:10.2165/00023210-200923040-00003] [PMID] [DOI:10.2165/00023210-200923040-00003]
3. Cacabelos, R. (2007). Donepezil in Alzheimer's disease: From conventional trials to pharmacogenetics. Neuropsychiatry Diseases Treatment, 3(3), 303-33. [PMID] [PMCID] [PMID] [PMCID]
4. Cetin, F., Dincer, S. (2007). The Effect of Intrahippocampal Beta amyloid (1-42) peptide injection on oxidant and antioxidant status in rat brain. Annals of New York Academy of Sciences, 1100, 510-17. [DOI:10.1196/annals.1395.056] [PMID] [DOI:10.1196/annals.1395.056]
5. Christensen, R., Marcussen, A. B., Wörtwein, G., Knudsen, G.M., & Aznar, S. (2008). A beta (1-42) injection causes memory impairment, lowered cortical and serum BDNF levels, and decreased hippocampal 5-HT (2A) levels. Experimental Neurology, 210(4), 164-71. [DOI:10.1016/j.expneurol.2007.10.009] [PMID] [DOI:10.1016/j.expneurol.2007.10.009]
6. Fahnestock, M., Marchese, M., Head, E., Pop, V., Michalski, B., & Milgram, W. N. (2012). BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog. Neurobiology of Aging, 33(3), 546-54. [DOI:10.1016/j.neurobiolaging.2010.03.019] [PMID] [PMCID] [DOI:10.1016/j.neurobiolaging.2010.03.019]
7. Fellgiebel, A., & Yakushev, I. (2011). Diffusion tensor imaging of the hippocampus in MCI and early Alzheimer's disease. Journal of Alzheimers Disease, 26(Suppl3), 257-62. [DOI:10.3233/JAD-2011-0001] [PMID] [DOI:10.3233/JAD-2011-0001]
8. Fitzgerald, L. W., & Dokla, C. P. (1989). Morris water task impairment and hypoactivity following cysteamine-induced reductions of somatostatin-like immunoreactivity. Brain Research, 505(2), 246-50. [DOI:10.1016/0006-8993(89)91450-9] [DOI:10.1016/0006-8993(89)91450-9]
9. Forsyth, D. R., Surmon, D. J., Morgan, R. A., & Wilcock, G. K. (1989). Clinical experience with and side-effects of tacrine hydrochloride in Alzheimer's disease: A pilot study. Age and Ageing, 18(4), 223-29. [DOI:10.1093/ageing/18.4.223] [PMID] [DOI:10.1093/ageing/18.4.223]
10. Gholamipour-Badie, H., Naderi, N., Khodagholi, F., Shaerzadeh, F., & Motamedi, F. (2013). L-type calcium channel blockade alleviates molecular and reversal spatial learning and memory alterations induced by entorhinal amyloid pathology in rats. Behavioural Brain Research, 237(2), 190-99. [DOI:10.1016/j.bbr.2012.09.045] [PMID] [DOI:10.1016/j.bbr.2012.09.045]
11. Hosseinzadeh, H., Ramezani, M., & Salmani, G. (2000). Antinociceptive, anti-inflammatory and acute toxicity effect of Zataria multiflora Boiss. extracts in mice and rats. Journal of Ethnopharmacology, 73(3), 379-85. [DOI:10.1016/S0378-8741(00)00238-5] [DOI:10.1016/S0378-8741(00)00238-5]
12. Jeong, J. H., Jeong, H. R., Jo, Y. N., Kim, H. J., Shin, J. H., & Heo, H. J. (2013). Ameliorating effects of aged garlic extracts against Abeta-induced neurotoxicity and cognitive impairment. BMC Complementary, 13(6), 268. [DOI:10.1186/1472-6882-13-268] [PMID] [PMCID] [DOI:10.1186/1472-6882-13-268]
13. Jukic, M., Politeo, O., Maksimovic, M., Milos, M., & Milos, M. (2007). In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymo quinone and thymo hydroquinone. Phytotherapy Research, 21(2), 259-61. [DOI:10.1002/ptr.2063] [PMID] [DOI:10.1002/ptr.2063]
14. Li, H., Wu, X., Bai, Y., Hung, Y., He, W., & Dong, Z. (2012). Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase. Behavioural Brain Research, 230(3), 428-32. [DOI:10.1016/j.bbr.2012.05.035] [PMID] [DOI:10.1016/j.bbr.2012.05.035]
15. Lieo, A., Greenberg, S. M., & Growdon, J. H. (2006). Current pharmacotherapy for Alzheimer's disease. Annual Review of Medicine, 57(4), 513–33. [DOI:10.1146/annurev.med.57.121304.131442] [PMID] [DOI:10.1146/annurev.med.57.121304.131442]
16. Majlesi, N., Choopani, S., Kamalinejad, M., & Azizi, Z. (2012). Amelioration of amyloid β-induced cognitive deficits by Zataria multiflora Boiss. essential oil in a rat model of Alzheimer's disease. CNS Neuroscience & Therapeutics, 18(4), 295-301. [DOI:10.1111/j.1755-5949.2011.00237.x] [PMID] [DOI:10.1111/j.1755-5949.2011.00237.x]
17. Mimica, N., & Presecki, P. (2009). Side effects of approved anti-dementives. Psychiatry Danub, 21(4), 108-13. [PMID] [PMID]
18. Miranda, M. D., de Bruin, V. M. S., Vale, M. R., & Viana, G. S. B. (2000). Lipid peroxidation and nitrite plus nitrate levels in brain tissue from patients with Alzheimer's Disease. Gerontology, 46(3), 179-184. [DOI:10.1159/000022156] [PMID] [DOI:10.1159/000022156]
19. Muller, T. (2007). Rivastigmine in the treatment of patients with Alzheimer's Disease. The American Journal of Pathology, 3(4), 211-8. [DOI:10.2147/nedt.2007.3.2.211] [DOI:10.2147/nedt.2007.3.2.211]
20. Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's Disease and Parkinson's disease. Progress in Neurobiology, 63(4), 71-124. [DOI:10.1016/S0301-0082(00)00014-9] [DOI:10.1016/S0301-0082(00)00014-9]
21. Nagahara, A. H., Merrill, D. A., Coppola, G., Tsukada, S., Schroeder, B. E., Shaked, G. M., et al. (2009). Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's Disease. Nature Medicine, 15(3), 331-7. [DOI:10.1038/nm.1912] [PMID] [PMCID] [DOI:10.1038/nm.1912]
22. Parihar, M. S., & Hemnani, T. (2004). Alzheimer's Disease pathogenesis and therapeutic interventions. Journal of Clinical Neuroscience, 11(1), 456-67. [DOI:10.1016/j.jocn.2003.12.007] [PMID] [DOI:10.1016/j.jocn.2003.12.007]
23. Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates. 6th Ed. New York: Academic Press. [PMCID] [PMCID]
24. Postu, P. A., Noumedem, J. A. K., Cioanca, O., Hancianu, M., Mihasan, M., Ciorpac, M., et al. (2017). Lactuca capensis reverses memory deficits in Aβ1-42-induced an animal model of Alzheimer's Disease. Journal of Cellular and Molecular Medicine, 22(1), 111-22. [DOI:10.1111/jcmm.13299] [DOI:10.1111/jcmm.13299]
25. Prince, M., Wimo, A., Guerchet, M., Ali, G. C., Wu, Y., & Prina, A. M. (2015). World Alzheimer Report 2015: The global impact of dementia. An analysis of prevalence, incidence, costs and trends. London: Alzheimer's Disease Association.
26. Ramin, M., Azizi, P., Motamedi, F., Haghparast, A., & Khodagholi, F. (2011). Inhibition of JNK phosphorylation reverses memory deficit induced by β-amyloid (1-42) associated with decrease of apoptotic factors. Behavioural Brain Research, 217(2), 424-31. [DOI:10.1016/j.bbr.2010.11.017] [PMID] [DOI:10.1016/j.bbr.2010.11.017]
27. Reddy, P. H. (2006). Amyloid precursor protein-mediated free radicals and oxidative damage: Implications for the development and progression of Alzheimer's Disease. Journal of Neurochemistry, 96(1), 1-13. [DOI:10.1111/j.1471-4159.2005.03530.x] [PMID] [DOI:10.1111/j.1471-4159.2005.03530.x]
28. Sajed, H., Sahebkar, A., & Iranshahi, M. (2013). Zataria multiflora Boiss. (Shirazi thyme) an ancient condiment with modern pharmaceutical uses. Journal of Ethnopharmacology, 145(1), 686-98. [DOI:10.1016/j.jep.2012.12.018] [PMID] [DOI:10.1016/j.jep.2012.12.018]
29. Saleem, M., Nazli, R., Afza, N., Sami, A., & Ali, M. S. (2004). Biological significance of essential oil of Zataria multiflora Boiss. Journal of Asian Natural Products Research, 18(1), 493-7. [DOI:10.1080/14786410310001608064] [PMID] [DOI:10.1080/14786410310001608064]
30. Shomali, T., Raeesi, M., & Eskandari-Roozbahani, N. (2016). Zataria multiflora Boiss.essential oil against ethanol-induced gastric ulcer in rats by antioxidant properties and increase in nitric oxide production. Journal of Herbal Medicine Pharmacology, 5(4), 143-8.
31. Wilcock, D. M., Gordon, M. N., & Morgan, D. (2006). Qualification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nature Protocols, 1(4), 1591-5. [DOI:10.1038/nprot.2006.277] [PMID] [DOI:10.1038/nprot.2006.277]
32. Zussy, C., Brureau, A., Delair, B., Marchal, S., Keller, E., Ixart, G., et al. (2011). Time-course and regional analyses of the physio pathological changes induced after cerebral injection of an amyloid β fragment in rats. The American Journal of Pathology, 179(2), 315-34. [DOI:10.1016/j.ajpath.2011.03.021] [PMID] [PMCID] [DOI:10.1016/j.ajpath.2011.03.021]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb