Volume 9, Issue 5 (September & October 2018 2018)                   BCN 2018, 9(5): 307-316 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadian N, Hejazi S, Mahmoudi J, Talebi M. Review Paper: Tau Pathology of Alzheimer Disease: Possible Role of Sleep Deprivation. BCN. 2018; 9 (5) :307-316
URL: http://bcn.iums.ac.ir/article-1-1039-en.html
1- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
2- Department of Anatomy, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Sleep deprivation is a common complaint in modern societies. Insufficient sleep has increased the risk of catching neurodegenerative diseases such as Alzheimer’s. Several studies have indicated that restricted sleep increases the level of deposition of β-amyloid and formation of neurofibrillary tangles, the major brain microstructural hallmarks for Alzheimer disease. The mechanisms by which sleep deprivation affects the pathology of Alzheimer disease has not yet been fully and definitively identified. However, risk factors like apolipoprotein E risk alleles, kinases and phosphatases dysregulation, reactive oxygen species, endoplasmic reticulum damages, glymphatic system dysfunctions and orexinergic system inefficacy have been identified as the most important factors which mediates between the two conditions. In this review, these factors are briefly discussed. 
Type of Study: Review | Subject: Clinical Neuroscience
Received: 2017/10/5 | Accepted: 2017/12/18 | Published: 2018/09/1

1. Ahnaou, A., & Drinkenburg, W. (2011). Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice. Behavioural Brain Research, 221(1), 246-52. [DOI:10.1016/j.bbr.2011.03.004] [PMID] [DOI:10.1016/j.bbr.2011.03.004]
2. Albrecht, U. (2012). Circadian rhythms and sleep-the metabolic connection. Pflügers Archiv-European Journal of Physiology, 463(1), 23-30. [DOI:10.1007/s00424-011-0986-6] [PMID] [DOI:10.1007/s00424-011-0986-6]
3. Anderson, K. N., & Bradley, A. J. (2013). Sleep disturbance in mental health problems and neurodegenerative disease. Nature and Science of Sleep, 5, 61-75. [DOI:10.2147/NSS.S34842] [PMID] [PMCID] [DOI:10.2147/NSS.S34842]
4. Avila, J., León Espinosa, G., García, E., García Escudero, V., Hernández, F., & DeFelipe, J. (2012). Tau phosphorylation by GSK3 in different conditions. International Journal of Alzheimer's Disease, 2012, Article ID: 578373. [DOI:10.1155/2012/578373] [PMID] [PMCID] [DOI:10.1155/2012/578373]
5. Cao, S. S., & Kaufman, R. J. (2014). Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & Redox Signaling, 21(3), 396-413. [DOI:10.1089/ars.2014.5851] [DOI:10.1089/ars.2014.5851]
6. Cedernaes, J., Osorio, R. S., Varga, A. W., Kam, K., Schiöth, H. B., & Benedict, C. (2016). Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer's disease. Sleep Medicine Reviews, 31, 102-11. [PMID] [PMCID] [DOI:10.1016/j.smrv.2016.02.002] [PMID] [PMCID]
7. Cheng, H. C., Qi, R. Z., Paudel, H., & Zhu, H. J. (2011). Regulation and function of protein kinases and phosphatases. Enzyme Research, 2011, 794089. [DOI:10.4061/2011/794089] [DOI:10.4061/2011/794089]
8. Cirelli, C., Shaw, P. J., Rechtschaffen, A., & Tononi, G. (1999). No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Research, 840(1), 184-93. [DOI:10.1016/S0006-8993(99)01768-0] [DOI:10.1016/S0006-8993(99)01768-0]
9. Cox, P. A., Davis, D. A., Mash, D. C., Metcalf, J. S., & Banack, S. A. (2016). Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proceedings of the Royal Society B: Biological Sciences, 283(1823), 20152397. [DOI:10.1098/rspb.2015.2397] [DOI:10.1098/rspb.2015.2397]
10. Cui, S. Y., Li, S. J., Cui, X. Y., Zhang, X. Q., Yu, B., Sheng, Z. F., et al. (2016). Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation. Journal of Neurochemistry, 136(3), 609-19. [DOI:10.1111/jnc.13431] [PMID] [DOI:10.1111/jnc.13431]
11. Datta, S., & Desarnaud, F. (2010). Protein kinase A in the pedunculopontine tegmental nucleus of rat contributes to regulation of rapid eye movement sleep. The Journal of Neuroscience, 30(37), 12263-73. [DOI:10.1523/JNEUROSCI.1563-10.2010] [PMID] [PMCID] [DOI:10.1523/JNEUROSCI.1563-10.2010]
12. Di Meco, A., Joshi, Y. B., & Praticò, D. (2014). Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer's disease with plaques and tangles. Neurobiology of Aging, 35(8), 1813-20. [DOI:10.1016/j.neurobiolaging.2014.02.011] [DOI:10.1016/j.neurobiolaging.2014.02.011]
13. Dixon, S. J., & Stockwell, B. R. (2014). The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 10(1), 9-17. [DOI:10.1038/nchembio.1416] [PMID] [DOI:10.1038/nchembio.1416]
14. Ebrahim, I. O., Howard, R. S., Kopelman, M. D., Sharief, M. K., & Williams, A. J. (2002). The hypocretin/Orexin system. Journal of the Royal Society of Medicine, 95(5), 227-30. [DOI:10.1177/014107680209500503] [PMID] [PMCID] [DOI:10.1177/014107680209500503]
15. El Helaly, M., & Abu Hashem, E. (2010). Oxidative stress, melatonin level, and sleep insufficiency among electronic equipment repairers. Indian Journal of Occupational and Environmental Medicine, 14(3), 66-70. [DOI:10.4103/0019-5278.75692] [DOI:10.4103/0019-5278.75692]
16. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35(4), 495-516. [DOI:10.1080 /01926230701320337] [DOI:10.1080/01926230701320337] [PMID] [PMCID]
17. Eugene, A. R., & Masiak, J. (2015). The neuroprotective aspects of sleep. MEDtube Science, 3(1), 35-40. [PMID] [PMCID] [PMID] [PMCID]
18. Fribley, A., Zhang, K., & Kaufman, R. J. (2009). Regulation of apoptosis by the unfolded protein response. Methods in Molecular Biology, 559, 191-204. [DOI:10.1007/978-1-60327-017-5_14] [DOI:10.1007/978-1-60327-017-5_14]
19. Ghosh, A., & Giese, K. P. (2015). Calcium/calmodulin-dependent kinase II and Alzheimer's disease. Molecular Brain, 8(1), 78. [DOI:10.1186/s13041-015-0166-2] [PMID] [PMCID] [DOI:10.1186/s13041-015-0166-2]
20. Giau, V. V., Bagyinszky, E., An, S. S., & Kim, S. Y. (2015). Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatric Disease and Treatment, 2015(11), 1723-37. [DOI:10.2147/NDT.S84266] [DOI:10.2147/NDT.S84266]
21. Giese, K. P., & Mizuno, K. (2013). The roles of protein kinases in learning and memory. Learning & Memory, 20(10), 540-52. [DOI:10.1101/lm.028449.112] [PMID] [DOI:10.1101/lm.028449.112]
22. Graves, L. A., Hellman, K., Veasey, S., Blendy, J. A., Pack, A. I., & Abel, T. (2003). Genetic evidence for a role of CREB in sustained cortical arousal. Journal of Neurophysiology, 90(2), 1152-9. [DOI:10.1152/jn.00882.2002] [PMID] [DOI:10.1152/jn.00882.2002]
23. Grewal, S. S., York, R. D., & Stork, P. J. (1999). Extracellular-signal-regulated kinase signalling in neurons. Current Opinion in Neurobiology, 9(5), 544-53. [DOI:10.1016/S0959-4388(99)00010-0] [DOI:10.1016/S0959-4388(99)00010-0]
24. Guan, Z., Peng, X., & Fang, J. (2004). Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Research, 1018(1), 38-47. [DOI:10.1016/j.brainres.2004.05.032] [DOI:10.1016/j.brainres.2004.05.032]
25. Hanger, D. P., Byers, H. L., Wray, S., Leung, K. Y., Saxton, M. J., Seereeram, A., et al. (2007). Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. Journal of Biological Chemistry, 282(32), 23645-54. [DOI:10.1074/jbc.M703269200] [PMID] [DOI:10.1074/jbc.M703269200]
26. Harrison, J. R., & Owen, M. J. (2016). Alzheimer's disease: The amyloid hypothesis on trial. The British Journal of Psychiatry, 208(1), 1-3. [DOI:10.1192/bjp.bp.115.167569] [PMID]
27. Hellman, K., Hernandez, P., Park, A., & Abel, T. (2010). Genetic evidence for a role for protein kinase A in the maintenance of sleep and thalamocortical oscillations. Sleep, 33(1), 19-28. [DOI:10.1093/sleep/33.1.19] [PMID] [PMCID] [DOI:10.1093/sleep/33.1.19]
28. Hickie, I. B., Naismith, S. L., Robillard, R., Scott, E. M., & Hermens, D. F. (2013). Manipulating the sleep-wake cycle and circadian rhythms to improve clinical management of major depression. BMC Medicine, 11, 79. [DOI:10.1186/1741-7015-11-79] [PMID] [PMCID] [DOI:10.1186/1741-7015-11-79]
29. Hoon Roh, J., Yafei, H., Bero, A. W., & Kasten, T. (2012). Disruption of the sleep-wake cycle and diurnal fluctuation of β-Amyloid in mice with Alzheimer's disease pathology. Science Translational Medicine, 4(150), 150ra122. [DOI:10.1126/scitranslmed.3004291] [DOI:10.1126/scitranslmed.3004291]
30. Huang, Y., & Mahley, R. W. (2014). Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiology of Disease, 72, 3-12. [DOI:10.1016/j.nbd.2014.08.025] [PMID] [PMCID] [DOI:10.1016/j.nbd.2014.08.025]
31. Hungs, M., & Mignot, E. (2001). Hypocretin/orexin, sleep and narcolepsy. BioEssays, 23(5), 397-408. [DOI:10.1002/bies.1058] [DOI:10.1002/bies.1058]
32. Iliff, J. J., Wang, M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., et al. (2012). A Paravascular Pathway Facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including Amyloid β. Science Translational Medicine, 4(147), 147ra111. [DOI:10.1126/scitranslmed.3003748] [DOI:10.1126/scitranslmed.3003748]
33. Ittner, A., Chua, S. W., Bertz, J., Volkerling, A., van der Hoven, J., Gladbach, A., et al. (2016). Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science, 354(6314), 904-8. [DOI:10.1126/science.aah6205] [PMID] [DOI:10.1126/science.aah6205]
34. Ju, Y. E. S., Lucey, B. P., & Holtzman, D. M. (2013). Sleep and Alzheimer disease pathology-a bidirectional relationship. Nature Reviews Neurology, 10(2), 115-9. [DOI:10.1038/nrneurol.2013.269] [DOI:10.1038/nrneurol.2013.269]
35. Ju, Y. S., Ooms, S. J., Sutphen, C., Macauley, S. L., Zangrilli, M. A., Jerome, G., et al. (2017). Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels. Brain, 140(8), 2104-11. [DOI:10.1093/brain/awx148] [DOI:10.1093/brain/awx148]
36. Kadavath, H., Hofele, R. V., Biernat, J., Kumar, S., Tepper, K., Urlaub, H., et al. (2015). Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proceedings of the National Academy of Sciences, 112(24), 7501-6. [DOI:10.1073/pnas.1504081112] [PMID] [PMCID] [DOI:10.1073/pnas.1504081112]
37. Kadotani, H., Kadotani, T., Young, T., Peppard, P. E., Finn, L., Colrain, I. M., et al. (2001). Association between apolipoprotein E∊4 and sleep-disordered breathing in adults. JAMA, 285(22), 2888-90. [DOI:10.1001/jama.285.22.2888] [PMID] [DOI:10.1001/jama.285.22.2888]
38. Kanemoto, S., & Wang, H. (2012). Roles of endoplasmic reticulum stress in neurodegenerative diseases. Translational Medicine, 2012, 2:e108.
39. Kang, J. E., Lim, M. M., Bateman, R. J., Lee, J. J., & Smyth , L. P. (2009). Amyloid-β dynamics are regulated by Orexin and the sleep-wake cycle. Science, 326(5955), 1005-7. [DOI:10.1126/science.1180962] [DOI:10.1126/science.1180962]
40. Kelly, Á., Laroche, S., & Davis, S. (2003). Activation of mitogen-activated protein kinase/ Extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. Journal of Neuroscience, 23(12), 5354-60. [DOI:10.1523/JNEUROSCI.23-12-05354.2003] [PMID] [DOI:10.1523/JNEUROSCI.23-12-05354.2003]
41. Leoni, V., Solomon, A., & Kivipelto, M. (2010). Links between ApoE, brain cholesterol metabolism, tau and amyloid β-peptide in patients with cognitive impairment. Biochemical Society Transactions, 38(4), 1021-5. [DOI:10.1042/BST0381021] [DOI:10.1042/BST0381021]
42. Liguori, C., Romigi, A., Nuccetelli, M., Zannino, S., Sancesario, G., Martorana, A., et al. (2014). Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurology, 71(12), 1498-505. [DOI:10.1001/jamaneurol.2014.2510] [PMID] [DOI:10.1001/jamaneurol.2014.2510]
43. Lim, A. S. P., Yu, L., Kowgier, M., Schneider, J. A., Buchman, A. S., & Bennett, D. A. (2013). Sleep modifies the relation of APOE to the risk of Alzheimer disease and neurofibrillary tangle pathology. JAMA Neurology, 70(12), 1544-51. [DOI:10.1001/jamaneurol.2013.4215] [DOI:10.1001/jamaneurol.2013.4215]
44. Lim, M. M., Gerstner, J. R., & Holtzman, D. M. (2014). The sleep-wake cycle and Alzheimer's disease: What do we know?. Neurodegenerative Disease Management, 4(5), 351-362. [DOI:10.2217/nmt.14.33] [DOI:10.2217/nmt.14.33]
45. Liu, C. C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease: Risk, mechanisms, and therapy. Nature Reviews. Neurology, 9(2), 106-18. [DOI:10.1038/nrneurol.2012.263] [DOI:10.1038/nrneurol.2012.263]
46. Mahley, R. W. (2016). Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(7), 1305-15. [DOI:10.1161/ATVBAHA.116.307023] [DOI:10.1161/ATVBAHA.116.307023]
47. Mahmoudi, J., Ahmadian, N., Farajdokht, F., Majdi, A., & Erfani, M. (2017). A protocol for conventional sleep deprivation methods in rats. Journal of Experimental and Clinical Neuroscience, 4(1), 1-4. [DOI:10.13183/jecns.v4i1.61] [DOI:10.13183/jecns.v4i1.61]
48. Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: A mini review. Oxidative Medicine and Cellular Longevity, 2016, 8590578. [DOI:10.1155/2016/8590578] [DOI:10.1155/2016/8590578]
49. Massaad, C. A. (2011). Neuronal and vascular oxidative stress in Alzheimer's disease. Current Neuropharmacology, 9(4), 662-73. [DOI:10.2174/157015911798376244] [DOI:10.2174/157015911798376244]
50. Mathangi, D. C., Shyamala, R., & Subhashini, A. S. (2012). Effect of REM sleep deprivation on the antioxidant status in the brain of Wistar rats. Annals of Neurosciences, 19(4), 161-4. [DOI:10.5214/ans.0972.7531.190405] [DOI:10.5214/ans.0972.7531.190405]
51. Mehta, R., Khanday, M. A., & Mallick, B. N. (2015). REM sleep loss associated changes in orexin-A levels in discrete brain areas in rats. Neuroscience Letters, 590, 62-7. [DOI:10.1016/j.neulet.2015.01.067] [DOI:10.1016/j.neulet.2015.01.067]
52. Mieda, M., & Sakurai, T. (2016). Orexin (hypocretin) and narcolepsy. In M. Goswami, M.J. Thorpy, S.R. Pandi Perumal (Eds), Narcolepsy (pp. 11-23). Berlin: Springer. [DOI:10.1007/978-3-319-23739-8_2] [DOI:10.1007/978-3-319-23739-8_2]
53. Morris, J. C., Roe, C. M., Xiong, C., Fagan, A. M., Goate, A. M., Holtzman, D. M., et al. (2010). APOE predicts amyloid‐beta but not tau Alzheimer pathology in cognitively normal aging. Annals of Neurology, 67(1), 122-31. [DOI:10.1002/ana.21843] [PMID] [PMCID] [DOI:10.1002/ana.21843]
54. Naidoo, N. (2009). Cellular stress/the unfolded protein response: Relevance to sleep and sleep disorders. Sleep Medicine Reviews, 13(3), 195-204. [DOI:10.1016/j.smrv.2009.01.001] [PMID] [PMCID] [DOI:10.1016/j.smrv.2009.01.001]
55. Navara, K. J., & Nelson, R. J. (2007). The dark side of light at night: Physiological, epidemiological, and ecological consequences. Journal of Pineal Research, 43(3), 215-24. [DOI:10.1111/j.1600-079X.2007.00473.x] [PMID] [DOI:10.1111/j.1600-079X.2007.00473.x]
56. Nichol, K. E., Parachikova, A. I., & Cotman, C. W. (2007). Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behavioural Brain Research, 184(2), 124-32. [DOI:10.1016/j.bbr.2007.06.027] [PMID] [PMCID] [DOI:10.1016/j.bbr.2007.06.027]
57. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., et al. (2001). Oxidative damage is the earliest event in Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 60(8), 759-67. [DOI:10.1093/jnen/60.8.759] [DOI:10.1093/jnen/60.8.759]
58. Okazawa, H., & Estus, S. (2002). The JNK/c-Jun cascade and Alzheimer's disease. American Journal of Alzheimer's Disease & Other Dementias, 17(2), 79-88. [DOI:10.1177/153331750201700209] [DOI:10.1177/153331750201700209]
59. Ooms, S., Overeem, S., Besse, K., Rikkert, M., Verbeek, M., & Claassen, J. R. (2014). Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: A randomized clinical trial. JAMA Neurology, 71(8), 971-77. [DOI:10.1001/jamaneurol.2014.1173] [DOI:10.1001/jamaneurol.2014.1173]
60. Osorio, R. S., Ducca, E. L., Wohlleber, M. E., Tanzi, E. B., Gumb, T., Twumasi, A., et al. (2016). Orexin-A is associated with increases in cerebrospinal fluid phosphorylated-tau in cognitively normal elderly subjects. Sleep, 39(6), 1253-60. [DOI:10.5665/sleep.5846] [DOI:10.5665/sleep.5846]
61. Ramanathan, L., Gulyani, S., Nienhuis, R., & Siegel, J. M. (2002). Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. Neuroreport, 13(11), 1387-90. [DOI:10.1097/00001756-200208070-00007] [PMID] [DOI:10.1097/00001756-200208070-00007]
62. Ranjan, A., Biswas, S., & Mallick, B. N. (2010). Cytomorphometric changes in the dorsal raphe neurons after rapid eye movement sleep deprivation are mediated by noradrenalin in rats. Behavioral and Brain Functions, 6, 62. [DOI:10.1186/1744-9081-6-62] [DOI:10.1186/1744-9081-6-62]
63. Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive Oxygen Species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-90. [DOI:10.1016/j.cellsig.2012.01.008] [DOI:10.1016/j.cellsig.2012.01.008]
64. Roh, J. H., Huang, Y., Bero, A. W., Kasten, T., Stewart, F. R., Bateman, R. J., et al. (2012). Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer's disease pathology. Science Translational Medicine, 4(150), 150ra122. [DOI:10.1126/scitranslmed.3004291] [DOI:10.1126/scitranslmed.3004291]
65. Rothman, S. M., Herdener, N., Frankola, K. A., Mughal, M. R., & Mattson, M. P. (2013). Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer's disease. Brain Research, 1529, 200-8. [DOI:10.1016/j.brainres.2013.07.010] [PMID] [PMCID] [DOI:10.1016/j.brainres.2013.07.010]
66. Ryu, S., Atzmon, G., Barzilai, N., Raghavachari, N., & Suh, Y. (2016). Genetic landscape of APOE in human longevity revealed by high-throughput sequencing. Mechanisms of Ageing and Development, 155, 7-9. [DOI:10.1016/j.mad.2016.02.010] [PMID] [PMCID] [DOI:10.1016/j.mad.2016.02.010]
67. Sadigh-Eteghad, S., Sabermarouf, B., Maj

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb