Research Paper: Protective Effect of the *Viola spathulata* Extract on NCX3 Gene Expression in an Animal Model of Cerebral Ischemia

Mahmood Abedinzade1, Ekram Mohammadi2, Mojtaba Hedayati3, Iraj Nikokar4, Korosh Khanaki5, Zahra Bostani6

1. Medical Biotechnology Research Center, Department of Physiology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
2. Department of Medical Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
3. Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
4. Medical Biotechnology Research Center, Department of Laboratory of Microbiology, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
5. Medical Biotechnology Research Center, Department of Clinical Biochemistry, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
6. Social Determinants of Health Research Center, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran.

Corresponding Author:
Ekram Mohammadi, PhD Candidate.
Address: Department of Medical Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Tel: +98 (21) 88622532
E-mail: ekram.mohammadi@yahoo.com

ABSTRACT

Introduction: Viola plant has been used traditionally to treat neurological disorders. We aimed at determining whether pretreatment with *Viola spathulata* extract can alleviate the severity of ischemic-reperfusion damages and exert its protective effects through the regulation of a sodium/calcium exchanger (NCX3) gene expression in a rat brain.

Methods: Male Wistar rats were divided into two main groups: one main group for evaluating Neurologic Deficit Score (NDS) and Infarct Volume (IV) and the other group for the evaluation of NCX3 gene expression in the brain tissue. The latter group was subdivided into the intact, control (vehicle), sham, V5, and V10. The vehicle (control) subgroup received Dimethyl Sulfoxide (DMSO), and V5 and V10 subgroups received *V. spathulata* extract at the doses of 5 and 10 mg/kg (IP), respectively, for 7 days. After pretreatment, we carried out Middle Cerebral Artery Occlusion (MCAO) for 60 min.

Results: In the V5 and V10 subgroups, NDS and IV significantly decreased. MCAO upregulated NCX3 gene expression in the core, penumbra, and subcortical regions compared with the intact subgroup. The V5 subgroup significantly downregulated the NCX3 gene expression level in the core compared with the control subgroup. The V10 subgroup showed downregulation of the NCX3 gene expression level in the core, penumbra, and subcortex compared with the control subgroup.

Conclusion: *V. spathulata* extract may have a neuroprotective role against MCAO-induced ischemic brain damage, possibly by preventing the alteration of NCX3 gene expression level.

Keywords:
Viola spathulata, Viola extract, Brain ischemia, NCX3 gene, Stroke, Neuroprotective

Article info:
Received: 09 Sep 2019
First Revision: 05 Mar 2020
Accepted: 16 Aug 2020
Available Online: 01 Jan 2022
1. Introduction

Cerebrovascular attack or stroke is a sudden disruption of blood supply to the brain which triggers serious consequences such as cerebral infarction and neurological deficits. In developing countries such as Iran, stroke is the second leading cause of death and long-term disability (Bacigaluppi, Pluchino, Martino, Kilic, & Hermann, 2008). Ischemia is a major type of stroke (Mergenthaler, Dirnagl, & Meisel, 2004). Several changes are initiated by ischemia and reperfusion, such as inhibition of electron transport, decreasing ATP and pH, increasing cell Ca\(^{2+}\), releasing glutamate, and increasing arachidonic acid. Also, gene activation leads to the synthesis of the cytokines and enzymes involved in free radical production (Lipton, 1999).

Na\(^{+}/Ca^{2+}\) exchanger (NCX) has nine transmembrane segments widely distributed in the brain (Blaustein & Lederer, 1999). This protein couples transmembrane movement of Ca\(^{2+}\) to reciprocal movements of Na\(^{+}\) in a bidirectional way in the Central Nervous System (CNS) (Meyer, 1989). In the CNS, NCX plays a fundamental role in controlling changes in the intracellular concentrations of Na\(^{-}\) and Ca\(^{2+}\) ions under physiologic conditions (Canitano et al., 2002). NCX1, NCX2, and NCX3 are three different genes of the NCX family that are differentially expressed in distinct regions of the CNS (Papa et al., 2003). Depending on the intracellular Ca\(^{2+}\) and Na\(^{+}\) concentrations ([Ca\(^{2+}\)] and [Na\(^{+}\)]), NCX can act either in the forward mode, coupling the uphill extrusion of Ca\(^{2+}\) to the influx of Na\(^{+}\) ions, or in the reverse mode, mediating the extrusion of Na\(^{+}\) and the influx of the Ca\(^{2+}\) ions (Blaustein & Lederer, 1999). NCX activation reduces the brain infarct volume extension after permanent Middle Cerebral Artery Occlusion (MCAO). Also, the selective pharmacological blockade of NCX worsens the brain lesion, suggesting a protective role played by the exchanger during the events leading to brain ischemia (Pignataro et al., 2004). NCX3, unlike the other NCXs family members (NCX1 and NCX2), has a peculiar capability to maintain [Ca\(^{2+}\)]\(_i\) homeostasis even when ATP levels are reduced considerably. Therefore, it has a major role in neuronal preservation during hypoxic conditions (Mohammadi & Bigdeli, 2014; Secondo et al., 2007).

Recently, it has been demonstrated that herbal extracts and oils such as olive oil (Mohagheghi, Bigdeli, Rasoulian, Zeinanloo, & Khoshbaten, 2010), Coriandrum sativum (Linn) (Vekaria, Patel, Bhalodiya, Patel, V., Desai, & Tirgar, 2012) and Ocimum basilicum (Bora, Arora, & Shri, 2011) have a protective role in ischemia-reperfusion injury. It has also been shown that Viola odorata and Viola tricolor have antioxidant activities and protect neuronal cells against serum glucose deprivation (Mousavi, Naghizade, Pourgonabadi, & Ghorbani, 2016).

Viola has a long remedial history in Iranian traditional medicine to treat disorders such as cancer (Koochek,
Previous studies demonstrated that viola tissue contains melatonin (Ansari et al., 2010; Kim, Yoon, & Park, 2011). Plants with a high level of melatonin have been used traditionally to treat neurological disorders (Murch, Simmons, & Saxena, 1997) and diseases caused by free radicals generation (Chen, Huo, Tan, Liang, Zhang, & Zhang, 2003). It has also been found that melatonin reduces hypoxia-ischemia damages, improves sleep, ameliorates cardiac ischemia/reperfusion injuries, and inhibits oxidative stress-mediated endothelial cell death (Lin et al., 2016; Manchester et al., 2015; Mao et al., 2016; Nduhirabandi, Lamont, Albertyn, Opie, & Lecour, 2016). Treatment with melatonin improves calcium handling by preserving SERCA gene expression in hypoxic rats and performs as a cardioprotective factor against myocardial injury (Yeung, Hung, & Fung, 2008).

Because of using viola in traditional medicine to treat neurodegenerative diseases, we designed a study to evaluate whether the administration of Viola spathulata can alleviate brain injuries by using an in vivo model of transient focal cerebral ischemia in rats. In the second part, because calcium overload is a major mechanism in ischemic injury (Dirnagl, Iadecola, & Moskowitz, 1999), we sought to identify whether such effects on brain ischemia might be associated with changes in the expression of the NCX3 gene.

2. Methods

Experimental procedures

Viola extraction

Aerial parts of V. spathulata were collected from Gadouk neck, Firoozkouh road, Savadkouh City (Mazandaran Province, Iran) in May 2017, and the species were authenticated at the herbarium of the Department of Biology, School of Medical Sciences (Sari Payame Noor University; Herbarium No.: SPNH-4727).

The aerial parts of V. spathulata were separately dried, powdered, and extracted with 70% ethanol in a Soxhlet apparatus for 48 h. The hydroalcoholic extracts were then concentrated in a water bath and kept at -20°C until use.

Finally, the extract was dissolved in Dimethyl Sulfoxide (DMSO) to be used in this study.

Animals and group assignment

All experimental animal procedures were approved and conducted under the Animal Research and Ethics Committee (IR.GUMS.REC.1394.323) of Guilan University of Medical Sciences. Every attempt was made to minimize the number of animal use and their suffering. The rats were housed under controlled temperature (24°C) with food and water ad libitum with lights on from 07:00 to 19:00 (light cycle) and off from 19:00 to 07:00 (dark cycle).

Male Wistar rats (200-250 g) were divided into two main groups, and each group was divided into the control (vehicle), sham, intact, V5 (V. spathulata 5 mg/kg/d) (Liu et al., 2014; Robertson et al., 2012) and V10 (V. spathulata 10 mg/kg/d) (Letechipia-Vallejo, González-Burgos, & Cervantes, 2001; Robertson et al., 2012) subgroups. One main group was used for evaluating Neurologic Deficit Score (NDS) and Infarct Volume (IV), Viola extracts (5 and 10 mg/kg) was administrated by i.p. injection for 7 days before MCAO operation and control group received DMSO. (Yanpallewar, Rai, Kumar, & Acharya, 2004). After pretreatment, a 60-min MCAO was carried out in the control, V5, and V10 subgroups. In the sham subgroup, all steps were similar to the control group, except MCAO. Data from the sham and intact subgroups were pooled together, as there was no significant difference between them.

Focal cerebral ischemia

The rats were weighed and anesthetized with chloral hydrate (400 mg/kg bodyweight; Merck, Germany). MCAO was applied as described previously by Longa et al. (Longa, Weinstein, Carlson, & Cummins, 1989). Briefly, under microscopic surgery, a 3-0 silicone-coated nylon filament was introduced through the external carotid artery stump. The occluder was advanced into the internal carotid artery 20 to 22 mm past the carotid bifurcation until mild resistance indicated that the tip was lodged in the anterior cerebral artery and blocked the blood flow to the middle cerebral artery. After 60 min of ischemia, reperfusion was started by withdrawing the filament. During the surgery, the animal’s body temperature was monitored and maintained at around 37°C by using a heating and cooling surface.

Neurologic Deficit Score (NDS)

After the filament was withdrawn, the rats were returned to their separate cages. The rats were assessed neurologically 24 h later by an observer blinded to the animal groups. The neurobehavioral scoring was performed using the 6-point scale previously described by Longa et al. (Longa et al., 1989) as follows: normal motor function=0; flexion of contralateral forelimb on suspension vertically by the tail, failure to extend forepaw
were isolated as previously described by Lei et al. (Lei, et al., 1990): corrected infarct volume = left hemisphere volume – (right hemisphere volume - infarct volume).

Infarct Volume (IV) assessment

After killing animals with chloral hydrate (800 mg/kg), they were decapitated, and their brains were rapidly removed and cooled in saline (4°C) for 15 min. Eight 2-mm thick coronal sections were cut (Brain Matrix, Tehran, Iran) through the brain, starting at the olfactory bulb. The slides were immersed in 2% 2, 3, 5-triphenyl tetrazolium chloride solution (Merck, Germany) and kept at 37°C in a water bath for 15 min. The slices were then digitally photographed by a camera (iPhone 5s) connected to a computer. Unstained areas were defined as infarct and measured using the image analysis software (Image Tools, National Institutes of Health). The infarct volume was calculated by measuring the unstained and stained area in each hemisphere slice in three defined regions (core, penumbra, and subcortex), multiplying by slice thickness (2 mm), followed by summing all eight slices according to the method by Swanson et al. (Swanson et al., 1990):

Complementary DNA synthesis

cDNA was synthesized from 1 µg/µL total RNA with reverse transcriptase (HyperScript™ First-strand Synthesis Kit, Gene All, South Korea). Briefly, 1 µg/µL RNA, 1 µL oligo(dT) primer (50 µM), and 1 µL dNTPs (10 mM) were added into a 0.2 mL nuclease-free microtube and then reached 10 µL using nuclease-free water and mixed mildly. The contents were transferred to a 37°C water bath for 30 min, and 1 µL of EDTA (50 mM) was added and incubated at 65°C for 10 min.

Real-Time PCR

Following the extraction of total RNA from the treated and untreated groups and the synthesis of cDNA, the
real-time PCR technique was exploited to determine the changes in the expression of NCX3 (NCBI Reference Sequence: 017593995.1_). The expression of NCX3 mRNAs was quantified compared to the β-actin gene as a reference gene and represented relative gene expression. The PCR primers were designed by Primer3web (version 4.0.0), and the sequences and product sizes are given in Table 1. The specificity of the designed primers was checked for each interest gene using the Primer-BLAST system available at the National Center for Biotechnology Information (NCBI).

We employed a reaction buffer, including 1 µL of each primer, 10 µL SYBR Green reagent (YEKTA TAJHIZ AZMA, Iran), 4 µL diluted cDNA, and 4 µL nuclease-free water using a real-time PCR method (Applied Biosystems, StepOne™, USA). The thermal program was initially planned at 95°C for 10 min and then continued with 40 tow-step cycles, at 95°C for 10 s and 60°C for 60 s, and finally terminated with a cycle at 72°C for 5 minutes. Each amplification product was analyzed by a dissociation curve certifying that for each gene, the amplified product showed all nonspecific bands or primer dimer formation. The differences between mRNA expression of the reference and test samples were calculated, and the relative mRNA expressions of NCX3 were calculated using the Ct method (2−ΔΔCt) (Livak & Schmittgen, 2001). All reactions were run in triplicate.

Table 1. The sequences of the gene-specific Polymerase Chain Reaction (PCR) primers for real-time PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>NCBI Code</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>62 µg</td>
<td>NM_012512.2</td>
<td>TACATGTCGGTCCCAGGT</td>
<td>AATTCACCCACCGAGACC</td>
</tr>
<tr>
<td>NCX3</td>
<td>NM_078620.2</td>
<td>CGACGGTACAAGAGCACACT</td>
<td>TTCATGTGTCGCTGAGAC</td>
</tr>
</tbody>
</table>

β2 µg: β2 microglobulin; NCX3: Na⁺/Ca²⁺ exchanger; NCBI: National Center for Biotechnology Information.

3. Results

Effects of V. spathulata pretreatment on NCX3 gene expression

Brain Ischemia (MCAO) upregulated NCX3 gene expression in the core (P=0.0001), penumbra (P=0.007), and subcortex (P=0.38) regions significantly compared with the intact subgroup (Figure 4).

Pretreatment with 5 mg/kg V. spathulata down-regulated NCX3 gene expression level in the core (P=0.001) region significantly compared with the control group (Figure 4).

Pretreatment with 10 mg/kg V. spathulata down-regulated NCX3 gene expression level in core (P=0.0001), penumbra (P=0.011), and subcortex (P=0.047) regions compared with the control group (Figure 4).

4. Discussion

NDS and IV are considered indicators of neurologic deficits in cerebral ischemia/reperfusion damage. Our results demonstrated that preconditioning with V. spathulata at the doses of 5 and 10 mg/kg reduced IV and NDS in three regions of the brain (core, penumbra, and subcortex). In the present study, administration of V. spathulata was done for the first time in the animal model of cerebral ischemia. Our results confirmed that V. spathulata had a protective role in ischemia-reperfusion injury. Similar previous studies have shown the protective role of olive oil (Mohagheghi et al., 2010), Coriandrum sativum (Vekaria et al., 2012), and Ocimum basilicum (Bora et al., 2011) in ischemia-reperfusion injury. Ischemic-reperfusion leads to the generation of...
There is excessive Reactive oxygen Species (ROS) (Amantea et al., 2009), which causes oxidative damage to the cellular and mitochondrial structures. These changes ultimately result in the initiation of some pathways that lead to apoptotic and necrotic cell death (Manzanero, Santro, & Arumugam, 2013). Viola tricolor and Viola odorata extracts protected the neuronal cell against adverse effects of intracellular ROS, which resulted in serum glucose deprivation (Mousavi et al., 2016). Therefore, V. spathulata might protect the neural cells from ischemia-reperfusion damage, probably alleviating ROS effects. However, in our study, intracellular ROS was not evaluated.

The NCX3 is a bi-directional membrane ion transporter that exchanges Ca\(^{2+}\) and Na\(^{+}\) ions across the cell membrane in the CNS and contributes significantly to maintaining intracellular Ca\(^{2+}\) homeostasis during experimental conditions mimicking ischemia (Secondo et al., 2007). It has been suggested that during ischemia, the calcium entry mode of NCX may account for a major portion of the calcium influx and induced excitotoxicity in cerebellar granule cells (Czyż & Kiedrowski, 2002). However, to confirm the hypothesis that NCX acts as an exchanger contributing to calcium homeostasis during ischemia, it is necessary to measure calcium levels in the early hours after the stroke. NCX1 mRNA was up-regulated in the peri-infarct area with the induction of permanent MCAO in rats (Boscia et al., 2006). Bano et al. demonstrated that NCX3 is cleaved and inactivated during ischemia in a rat model of focal ischemia (Bano et al., 2005). In our study, NCX3 gene transcription was up-regulated after 24 h reperfusion in the brain of MCAO rats; thus, a possible mechanism of NCX3 gene up-regulation is a compensatory response to cleavage of NCX3 isoform during one-hour ischemia.

This work is the first study to exhibit the effect of V. spathulata on NCX3 gene transcription in neurological conditions.
Figure 2. The effect of *Viola spatulata* (5 mg/kg) pretreatment on infarct volume in the core, penumbra and subcortex areas compared with the control group (n=7).

Values are presented as Mean±SEM obtained from two independent experiments in the core, penumbra and subcortex of the brain.

*P<0.05, #P<0.001

Figure 4. Relative expression of *NCX3* in the intact (Healthy Rats, n=4), control (MCAO, n=4), V5 (*Viola spatulata*, 5 mg/kg/d pretreatment with MCAO operation (n=4), and V10 (*Viola spatulata*, 10 mg/kg/d; pretreatment with MCAO operation (n=4) groups detected by Real-Time Polymerase Chain Reaction (RT-PCR).

NCX3 transcript was upregulated in the control group compared with the intact groups. *NCX3* transcript was down-regulated in the V5 and V10 groups compared with the control group.

Values are presented as Mean±SEM obtained from two independent experiments in the core, penumbra and subcortex areas of the brain.

*P<0.05, **P<0.01, ***P<0.001 compared with the intact group.

#P<0.05, ##P<0.01, and ###P<0.001 compared with the control group.

impairment induced by MCA occlusion. Our findings showed that pretreatment with *Viola spathulata* downregulated NCX3 transcription in the brain of MCAO rats. NCX activity causes calcium entry, which leads to lethal calcium load, and the inhibition of NCX may be protective in excitotoxicity when ATP depletion occurs (Czyż & Kiedrowski, 2002; Jeffs, Meloni, Bakker, & Knuckey, 2007). The mechanism by which *Viola spathulata* pretreatment reduced ischemic damage could be partly due to downregulating NCX3 gene transcription and protecting the cells from lethal calcium load in ischemia conditions. However, the NCX3 protein level was not evaluated by the western blot technique in our study, which is recommended to be addressed in further studies.

5. Conclusion

Regarding the effects of *V. spathulata* pretreatment on IV, NDS, and NCX3 gene transcription, our data suggested that *V. spathulata* extract has a neuroprotective role. *V. spathulata* extract reversed the deleterious effects of ischemia-reperfusion on cells, possibly by overcoming the Ca²⁺ overload through regulating NCX3 gene transcription. Further studies are required to extend or confirm these observations. Ultimately, it is hoped that novel cerebroprotective strategies be developed for those at risk of stroke or for cases whose cerebral perfusion is electively reduced at the time of surgery.

Ethical Considerations

Compliance with ethical guidelines

All experimental animal procedures were approved and conducted under the Animal Research and Ethics Committee (IR.GUMS.REC.1394.323) of Guilan University of Medical Sciences.

Funding

The present study was funded by grants from the Research Deputy of Guilan University of Medical Sciences (Rasht, Iran).

Authors’ contributions

All authors equally contributed to preparing this article.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

This work was financially supported by research deputy of Guilan University of Medical Sciences.
References

Kim, Y. J., Yoon, Y. H., & Park, W. J. (2011). Supply of tryptophan and tryptamine influenced the formation of melatonin in Vio-

Pignataro, G., Gala, R., Cuomo, O., Tortiglione, A., Giaccio, L., Castaldo, P., et al. (2004). Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke, 35(11), 2566-70. [DOI:10.1161/01.STR.0000143730.29964.93] [PMID]

Secondo, A., Staiano, R. L., Scorziello, A., Sirabella, R., Boscia, F., Adornetto, A., et al. (2007). BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium, 42(6), 521-35. [DOI:10.1016/j.ceca.2007.01.006] [PMID]

