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Introduction: Accurate prediction of the progression from mild cognitive impairment (MCI) 
to Alzheimer’s disease (AD) is crucial for disease management. Machine learning techniques 
have demonstrated success in classifying AD and MCI cases, particularly using resting-state 
functional magnetic resonance imaging (rs-fMRI) data.

Methods: This study utilized rs-fMRI data from the ADNI, involving 142 patients with stable 
MCI (sMCI) and 136 with progressive MCI (pMCI). Graph signal processing was applied 
to filter rs-fMRI data into low-, middle-, and high-frequency bands. Connectivity-based 
features were derived from both filtered and unfiltered data, resulting in a comprehensive 
set of 100 features, including global graph metrics, minimum spanning tree (MST) metrics, 
triadic interaction metrics, hub tendency metrics: and number of links. Feature selection was 
enhanced using particle swarm optimization (PSO) and simulated annealing (SA). A support 
vector machine (SVM) with a radial basis function (RBF) kernel and a 10-fold cross-validation 
setup were employed for classification. 

Results: The proposed approach achieved high accuracy with a reduced number of features 
selected via PSO, specifically five features. With these features: the SVM achieved 77% 
accuracy, 70% specificity, and 83% sensitivity. The identified features were as follows, (mean 
of clustering coefficient, mean of strength)/radius/(mean eccentricity, and modularity) from 
low/middle/high frequency bands of the graph. 

Conclusion: This study highlights the efficacy of the proposed framework in identifying 
individuals at risk of developing AD using a parsimonious feature set. This approach holds 
promise for advancing the precision of MCI-to-AD progression prediction, aiding early 
diagnosis and intervention strategies.
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Introduction

ementia affects approximately 50 million 
individuals worldwide, with nearly 10 
million new cases emerging annually (Pe-
terson et al., 1999). Among dementia sub-
types, Alzheimer’s disease (AD) is the most 
prevalent, accounting for over half of all 
cases. Amnestic mild cognitive impairment 

(MCI) occupies a pivotal intermediate stage between 
healthy controls (HC) and AD. Individuals with MCI 
face an escalated risk of transitioning to AD, with an ap-
proximate annual conversion rate of 15%. Notably, the 
MCI cohort exhibits significant heterogeneity, with only 
a subset progressing to AD (Peterson et al., 1999; Pe-
tersen et al., 2009). Early-stage intervention for AD is a 
considerable clinical challenge. Established biomarkers 
for AD prediction include Aβ accumulation and hyper-
phosphorylated tau (Spillantini & Goedert, 2013). Tradi-
tionally, the verification of amyloid and tau deposits ne-
cessitates invasive techniques, such as positron emission 
tomography (PET) and cerebrospinal fluid (CSF) analy-
sis. Conversely, magnetic resonance imaging (MRI) en-

ables evaluation of neurodegenerative signs, including 
atrophy and neuronal loss, indicative of amyloid and tau 
deposition (Bateman et al., 2012).

MRI and resting-state functional MRI (rs-fMRI) have 
emerged as valuable tools for early-stage clinical as-
sessment of AD and disease progression (Lee et al., 
2013). While task-based fMRI examines brain func-
tion during cognitive tasks, rs-fMRI captures spontane-
ous low-frequency brain activity, making it valuable for 
AD diagnosis (Lee et al., 2013; Khazaee et al., 2015). 
In conventional functional connectivity (FC) analyses, 
brain region correlations are assumed to remain constant 
throughout an imaging session. Dynamic FC, a more re-
cent extension of traditional FC, captures evolving inter-
actions and is considered a more accurate representation 
of functional brain networks (Khazaee et al., 2015; Allen 
et al., 2014). It is important to note that neuroimaging 
techniques are currently predominantly used as research 
tools for AD diagnosis.

Highlights 

● Graph frequency band filters offer functional data with discriminative features between stable sMCI and pMCI.

● Global graph metrics achieve classification performance while requiring only a modest subset of five features for 
effective discrimination.

● The integration of functional connectivity-based features promises to enhance prediction capabilities for individuals 
with MCI, aiding in early diagnosis and intervention.

Plain Language Summary 

Alzheimer’s disease (AD) is a progressive brain disorder that gradually affects memory, thinking, and everyday 
functioning. Many people with AD first experience a condition called “mild cognitive impairment”, in which memory 
or thinking problems are noticeable but still relatively mild. Being able to predict who is more likely to progress is 
crucial for early diagnosis, better care planning, and timely support for patients and families. In this study, we examined 
whether patterns of brain activity could help predict which individuals with mild cognitive impairment are at higher 
risk of developing AD. We used resting-state functional magnetic resonance imaging (rs-fMRI). Rather than focusing 
on the structure of the brain, we studied how different brain regions communicate with each other through functional 
connections. To do this, we modeled the brain as a network and analyzed communication patterns at different frequency 
ranges, which capture the ways brain regions work together. Using machine learning techniques, we identified a small 
set of key features from these functional brain networks that best distinguished people whose cognitive condition 
remained stable from those who later showed clear signs of AD. We found that functional brain connectivity alone 
can provide important information for predicting disease progression, even when using only a limited number of 
carefully selected features. This matters because rs-fMRI is widely available and does not require invasive procedures. 
Improving early prediction of AD can help guide clinical monitoring, support earlier interventions, and ultimately 
improve quality of life for people at higher risk. 

D
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Robust biomarker identification is pivotal for distin-
guishing progressive MCI (pMCI) from stable MCI 
(sMCI), facilitating early AD diagnosis and treatment. 
PMCI refers to individuals with MCI who exhibit con-
tinuous cognitive function decline, ultimately progress-
ing to AD. SMCI refers to individuals whose cognitive 
impairment does not significantly worsen over time, re-
maining stable without advancing to AD. Recent studies 
have integrated multimodal biomarkers, including PET 
and rs-fMRI, with machine learning algorithms to pre-
dict the conversion from MCI to AD (Chang & Glover, 
2010; Hinrichs et al., 2011; Young et al., 2013; Liu et 
al., 2013; Zamani et al; 2022). Notably, functional neu-
roimaging holds greater promise for early AD detection 
compared to structural neuroimaging (Yassa et al., 2010; 
Sperling, 2011; Wierenga & Bondi, 2007). Functional 
MRI, which evaluates brain function during cognitive 
tasks, demonstrates remarkable sensitivity to early dis-
ease processes, often preceding observable impairments 
in standard neuropsychological tests (Pievani et al., 
2011; Teipel et al., 2015). Conversely, rs-fMRI captures 
spontaneous fluctuations in brain activity, making it less 
dependent on individual cognitive capabilities (Shakil et 
al., 2016; Vemuri et al., 2012; Fox & Greicius, 2010).

A key attribute of rs-fMRI’s is its capacity to assess 
FC alterations (Greicius et al., 2003; Sheline & Raich-
le., 2013), a prevalent hallmark of AD (Zhang et al., 
2010; Zhou et al., 2010; Dennis & Thompson, 2014; 
Jalilianhasanpour et al., 2019). Studies have shown that 
cognitive impairment severity correlates with increasing 
disruptions in connectivity patterns, suggesting that FC 
changes are potential biomarkers of cognitive dysfunc-
tion in MCI. Importantly, longitudinal FC alterations 
are more pronounced in the early stages of AD (Zhan et 
al., 2016). FC analysis inherently involves network in-
teractions, making graph theory an effective tool for in-
vestigating global and local brain region characteristics 
(Bullmore & Sporns, 2009; Bullmore & Sporns, 2010; 
Heuvel & Sporns, 2013; Farahani et al., 2019). This ap-
proach has successfully elucidated insights into various 
neurological conditions, including depression, Parkin-
son’s disease, and AD. This method has been success-
fully used in a wide range of applications in both healthy 
participants and patients (Blanken et al., 2021), such as 
depression (Yun & Kim, 2021; Amiri et al., 2021), Par-
kinson’s disease (Beheshti & Ko, 2021), and AD (Dai 
et al., 2021). Graph theory, a powerful topological tool, 
allows for novel investigation of AD (Dai et al., 2021; 
Tijms et al., 2013; Brier et al., 2014; He & Evans, 2010). 
It enables us to compare the brain network organization 
between patients and healthy individuals (Bassett & 
Bullmore, 2009; Stam, 2014) and, importantly, provides 

insights into how these networks change across different 
stages of the disease (Hojjati et al., 2017; Khazaee et al., 
2017). This method delves deeper, not only identifying 
brain differences but also revealing compensatory mech-
anisms that might explain why some individuals with 
similar cognitive scores exhibit different brain activity 
patterns (Behfar et al., 2020; Gregory et al., 2017; Yao et 
al., 2010; Cabeza et al., 2018).

Graph-theoretic methods, such as the minimum span-
ning tree (MST), provide valuable insights into brain 
connectivity. In this context, nodes represent brain 
regions, and edges represent functional connections 
(weights) between them. The MST is a subgraph that 
connects all nodes with the minimum possible total edge 
weight, avoiding cycles and redundant connections. This 
simplification retains the essential network structure, of-
fering an “impartial” representation by focusing on the 
most critical connections. This impartial technique sig-
nificantly streamlines the network structure while retain-
ing its essential framework. Notably, this ensures the net-
work’s neurological interpretability, making it a widely 
employed tool in neuroimaging (Guo et al., 2017; van 
Dellen et al., 2018). Using this method, the edges in the 
network are simplified, ensuring that the selected span-
ning tree has the smallest possible weight.

While most brain network analyses focus on pairwise 
interactions between regions, the complex reality of the 
human brain suggests higher-order interactions play 
a crucial role. Investigating higher-order interactions 
within the brain network can lead to groundbreaking 
discoveries related to brain function and dysfunction, 
disease progression, and potentially, treatment develop-
ment. Moradimanesh and colleagues (Moradimanesh et 
al., 2021) delved deeper into brain network analysis by 
examining triadic interactions, involving three intercon-
nected regions. This method allowed them to compare 
the interaction patterns between individuals with autism 
spectrum disorder (ASD) and HC. Pearson’s correlation 
was used as their tool to measure the interaction between 
regions. The authors explored four distinct triadic inter-
action patterns, each with specific configurations of pos-
itive and negative FC values (+ and −). These triads were 
strongly balanced T3: (+ + +), strongly unbalanced T2: 
(+ + −), weakly balanced T1: (+ − −), and weakly unbal-
anced T0, (− − −). The study revealed that balanced brain 
interactions were more common in both the ASD and 
HC groups, while unbalanced interactions were less fre-
quent. Additionally, the energy levels of the salience net-
work (SN) and the default mode network (DMN) were 
found to be lower in patients with AD, suggesting poten-
tial challenges in adapting behavior. In another study of 
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triadic interactions, Saberi et al. introduced the metrics 
of the tendency to make hub (TMH). They showed that 
negative links of the resting-state network make hubs 
to reduce balance-energy and push the network into a 
more stable state compared to null-networks with trivial 
topologies (Saberi et al., 2021).

Graph signal processing (GSP) is a recently developed 
field that analyzes brain activity through a unique lens 
called the topological frequency (Shuman et al., 2013; 
Ortega et al., 2018; Jafadideh & Asl, 2022; Jafadideh & 
Asl, 2022). This approach relies on two key elements, A 
graph representing brain connections and brain activity 
mapped onto that graph. Using a tool called the graph 
Fourier transform (GFT), GSP can compute different 
topological frequency filters and identify different pat-
terns hidden within these connections. Excitingly, recent 
research has shown that GSP can be used to diagnose 
early-stage MCI based on brain activity data from two 
independent studies (Padole, 2021; Fan et al., 2008).

Early diagnosis of AD at the MCI stage is vital for de-
veloping effective treatments. However, the heterogene-
ity of AD has made early diagnosis challenging. Many 
machine learning algorithms have been applied to the 
diagnosis of MCI and to the prediction of MCI-to-AD 
conversion (Cabral et al., 2015; Blum & Langley, 1997). 
Given the large number of extracted features from neu-
roimaging data, feature selection is essential before clas-
sification. Modern machine learning methods often in-
corporate implicit feature-selection mechanisms. While 
explicit feature selection as a preprocessing step is less 
common, it remains beneficial for reducing dataset di-
mensionality and improving classification accuracy. By 
performing this step, the most representative optimal fea-
ture set is selected, and the redundant features for diag-
nosing AD progression are neglected (Reunanen, 2003; 
John et al., 1994). High-efficacy feature selection algo-
rithms are useful to speed up the diagnostic system and 
enhance its diagnostic performance. The performance of 
feature selection and classification methods depends on 
hyperparameter tuning and the specific characteristics of 
the dataset. Effective optimization requires careful con-
sideration of these parameters to achieve robust results. 
Feature selection is particularly complicated due to the 
nonlinear nature of classification methods, more param-
eters do not necessarily lead to better performance, and 
parameter dependencies are common. Therefore, it is es-
sential to utilize a suitable optimization method that can 
handle high-dimensional, nonlinear search spaces (Chu 
et al., 2012; Bicacro et al., 2012). 

In this study, the topological filters were obtained 
through the GFT tool and SFCmatrix. Each subject had 
a unique SFC matrix, computed using Pearson correla-
tion and the Wilcoxon rank sum-test (Mann & Whitney., 
1947). The GFT was used to compute three topological 
frequency filters, which were then used to separate the 
brain activity data (rs-fMRI) into three distinct frequency 
bands, low (LFB), middle (MFB), and high (HFB). FC 
matrices were computed for each frequency band using 
the filtered data. Additionally, an FC matrix was com-
puted for the unfiltered data, termed the full-frequency 
band (FFB). Some graph global metrics, MST metrics, 
triadic interaction metrics, TMH metrics, and the num-
ber of positive and negative links were computed from 
the LFB, MFB, HFB, and FFB FC matrices. To identify 
the most important features, feature selection was per-
formed using particle swarm optimization (PSO) and 
simulated annealing (SA) (Abualigah, 2018; Mafarja & 
Mirjalili, 2017). Subsequently, the selected features were 
used to classify AD and MCI. Our analysis achieved 
higher accuracy compared to several prior methods. 
Specifically, Raamana et al. (2015) constructed a brain 
network based on cortical thickness differences and uti-
lized a multi-core Bayesian classifier, achieving 64% 
classification accuracy for distinguishing pMCI from 
sMCI (Raamana, 2015). Similarly, Wei et al. (2016) pro-
posed a classification framework incorporating MRI and 
network features, achieving an accuracy of 76% (Wei et 
al., 2016). Liu and colleageus developed a multi-modal 
classification method combining PET and MRI data, 
achieving an accuracy of 67% (Liu et al., 2014). Binbin 
Fu et al. (2025) introduced a multi-modal deep domain 
adaptation (MM-DDA) model that integrates MRI and 
PET data. Their model achieved 81.81% accuracy in dis-
tinguishing pMCI from sMCI (Fu et al., 2025).

Hu et al. (2025) proposed MME-TransENet, a novel 
hybrid convolutional neural network (CNN)-transform-
er architecture designed to capture fine-grained and 
spatiotemporal features from MRI to predict MCI pro-
gression. Evaluated on the AD Neuroimaging Initiative 
(ADNI) dataset, MME-TransENet achieved state-of-
the-art performance with an accuracy of 84.74% (Hu 
et al., 2025). Zhang and colleageus introduced a similar 
graph-theoretic and machine-learning framework that 
integrated cortical thickness features, structural brain 
networks, and sub-frequency rs-fMRI network metrics. 
In their study, the combination of the random subset fea-
ture selection algorithm (RSFS) with a support vector 
machine (SVM) classifier yielded the best classification 
performance, achieving accuracies of 84.7% for MCI 
converters (MCIc) versus non-converters (MCInc) and 
89.8% for MCI converters (MCIc) versus AD (Zhang 
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et al., 2021). Karim and colleagues applied machine 
learning and graph theory to resting-state fMRI data to 
predict AD. Using 5-fold cross-validation, their models 
achieved high accuracy, with the SVM performing at 
approximately 82%. These findings align with previous 
research and support the use of machine learning and 
graph theory applied to fMRI data for improving early 
diagnosis of AD (Karim et al., 2024). Minami and col-
leagues proposed a preprocessing method for resting-
state fMRI data that includes principal component analy-
sis, window-based functional connectivity analysis, and 
hypothesis-based feature selection. Using a machine 
learning model to classify cognitively normal and MCI 
groups, their approach achieved the highest performance 
with a fivefold cross-validation accuracy of 84.7%, re-
call of 67.0%, precision of 63.5%, and F1 score of 63.3% 
(Minami et al., 2025). The strong alignment between our 
results and theirs underscores the robustness and reliabil-
ity of conventional machine learning models paired with 
carefully selected neuroimaging features, especially in 
studies with limited sample sizes where deep learning 
methods may underperform. Our approach, which relies 
on a limited number of fMRI features, results in lower 
computational complexity than multi-modality data ap-
proaches. Our analysis provides FC-based features that 
are easy to interpret and understand. 

The reminder of this study is organized as fol-
lows: Section 2 describes the dataset, preprocessing 
methods,Brain parcellation, FC, graph frequency bands, 
studied features, feature selection, and classification. 
The subsequent section, results, presents the outcomes 
of the feature selection and classification processes. Fi-
nally, the following two sections discuss the results and 
present the concluding remarks and insights.

Materials and Methods

Participants and data acquisition

In this study, data from 278 human participants were 
used. These human participants’ data were extracted 
from the ADNI (Jack et al., 2008; Jack et al., 2010). 
Table 1 presents demographic information; the mini-
mental state examination (MMSE) is a widely used 
cognitive measure in clinical and research settings to as-
sess the cognitive status in AD). The data used in this 
study  can be accessed at ADNI data. Other research-
ers can access these data using the same procedures as 
the authors. Researchers can access the data by logging 
into the ADNI website and following these steps: Down-
load > Image collections > Advanced search > Search > 
Select the scans > Add to collection > CSV download 

> Advanced download. A complete listing of ADNI in-
vestigators can be found at ADNI data. Public access to 
the database is available. The ADNI was launched in 
2003 to test whether serial MRI, fMRI, other biologi-
cal markers, and clinical and neuropsychological assess-
ments can be combined to measure the progression of 
MCI and early AD. For this study, we used subjects with 
at least three years of follow-up diagnosed with MCI at 
baseline. Participants with stable clinical dementia rat-
ing (CDR) scores of 0.5 throughout the follow-up period 
were classified as having sMCI. Participants with pMCI 
showed a change in clinical dementia rating (CDR) from 
0.5 at baseline to 1 at the final assessment (Zamani et 
al., 2022). The rs-fMRI data were acquired using a high-
field 3 Tesla Philips MRI scanner and an echo-planar 
imaging sequence. Data for each subject consisted of 
140 volumes, each with 48 slices, 3.3 mm slice thick-
ness, spatial resolution of 3×3×3 mm3, flip angle of 80 
degrees, 30 ms echo time, and a plane matrix of 64×64. 
The time between two consecutive volumes was 2s.

Data preprocessing 

Resting-state functional magnetic resonance im-
aging (rs-fMRI) data preprocessing and time se-
ries extraction

The preprocessing pipeline for the rs-fMRI data com-
prised several essential steps to ensure data quality and 
reliability. The initial five volumes were discarded to 
mitigate the influence of T1- equilibration effects. Sub-
sequent preprocessing steps encompassed functional 
realignment and unwarping, correction for slice-timing 
discrepancies, identification, and handling of outlier 
volumes to address subject-motion artifacts, direct seg-
mentation, and normalization into the standard Montreal 
Neurological Institute (MNI) space, and spatial convolu-
tion with an 8 mm full-width half-maximum Gaussian 
kernel for functional smoothing. Low-frequency filter-
ing within the range of 0.01 to 0.1 Hz was applied to 
retain the relevant fluctuations (Whitfield-Gabrieli & 
Nieto-Castanon, 2012).

The rs-fMRI data were preprocessed using the CONN 
toolbox. The Harvard-Oxford Cortical atlas with 136 
regions of interest (ROIs) was employed for brain par-
cellation. For each ROI, a single signal was obtained by 
averaging the time series of its voxels. The final rs-fMRI 
data were x ϵ RM×T, where M=136 and T=135 were the 
numbers of ROIs and time samples, respectively.
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Graph frequency bands (GFBs)

The frequency content of the graph signal is defined 
according to the signal changes across connected verti-
ces at a given time point. At low frequencies, connected 
vertices show similar signals (indicating alignment). At 
high frequencies, the variability of the connected verti-
ces’ signals is high compared to each other (indicating 
liberality). In liberality, the vertices (brain ROIs) showed 
less respect for their underlying connectivity structures. 
By approaching from low frequency to high frequency, 
the graph signal behavior changes from alignment to lib-
erality (Figure 1). 

The graph frequencies are defined using the combina-
torial Laplacian matrix L ϵ RN×N (Shuman et al., 2013), 
as follows:

(1) L=D-A

where A is the adjacency matrix, and D is a diagonal 
matrix, and its kth diagonal element represents the de-
gree of the kth vertex, i.e. Dkk= ∑N

j=1 Akj. The adjacen-
cy matrix of GSP represents its underlying graph. The 

eigendecomposition of L provides the V and A, which 
are the eigenvector and diagonal eigenvalues matrices, 
respectively.

The eigenvectors represent graph frequency modes and 
are used for GFT. The GFT of brain signal x ϵ R136×135 is 
obtained as

(2) x =̃VT x

where 136 and 135 are the number of ROIs and time 
points and superscript T denotes the transpose operation, 
respectively. The inverse GFT (IGFT) of x ĩs attained by

In this domain, the signal changes across connected 
vertices define frequency levels (in the time domain, 
the signal changes across time points define frequency 
levels). Consequently, transitioning from lower to higher 
frequency levels within the graph amplifies the signal 
changes across connected vertices. The blue circles and 
red and blue lines represent vertices, edges, and signals, 
respectively. 

(3) x=Vx .̃

Table 1. Sample characteristics

?????????
Mean±SD/ No. (%)

Statistic P
sMCI (n=142) pMCI (n=136)

Female 59 (41) 68(50) X2(1)=1.99 0.16

Age (y) 71.75±8.19 72.16±7.83 t(276)=-0.43 0.67

MMSE 26.63±3.33 22.94±3.55 t(276)=-8.94 <0.0001

CDR 0.5 1 - -

Abbreviations: CDR: Clinical dementia rating; MMSE: Mini-mental state exam; pMCI: Progressive mild cognitive impairment; 
sMCI: Stable mild cognitive impairment.

.…… .……

Low frequency of GSP High frequency of GSP

Figure 1. Simple representation of the frequency concept in the graph domain
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Remarkably, the eigenvector associated with the larger 
eigenvalue exhibits greater variance and can effectively 
convey higher graph frequencies (Huang et al., 2018). 
These higher-frequency modes facilitate the conversion 
of brain signals with increased variance into the graph 
frequency domain. Conversely, they can also transform 
higher-frequency information from the frequency do-
main back into the brain’s topological domain.

The graph signal is amenable to filtering within the fre-
quency domain, followed by an integrated gasification/
Fischer-Tropsch (IGFT) to obtain a graph-filtered signal. 
The graph filtering process can be mathematically for-
mulated as follows:

(4) xF=VGVT x

where G is a diagonal filtering matrix. In this study, a 
value of 1 was assigned to the diagonal elements corre-
sponding to the desired frequency modes, while the rest 
of the modes were set to 0.

In this study, the LFB consisted of the first 45 frequen-
cy modes, the HFB comprised the last 45 modes, and the 
MFB was formed by the remaining 46 modes. Using the 
“(4)”, the rs-fMRI data underwent filtering to generate 
graphs corresponding to LFB, MFB, and HFB. Subse-
quently, for each subject, FC matrices were computed 
within the LFB, MFB, HFB, and FFB. In this study, the 
data matrices for LFB, MFB, HFB, and FFB were 136 
×135. 

Functional connectivity (FC) matrix

FC between ROIs was computed using Pearson cor-
relation and the SW technique. The SW technique was 
employed to account for the dynamic nature of brain 
FC. In this approach, a series of windows with a one-TR 
shift was applied to each ROI time series. Subsequently, 
an FC matrix was computed for each window. The final 
correlation value for an ROI-ROI pair was determined as 
the median of its FC values. The window was created by 
convolving a rectangle (width=50 TRs) with a Gaussian 
(σ=3 TRs) (Huang et al., 2018). Each subject’s dataset 
yielded four FC matrices. These matrices were comput-
ed using LFB, MFB, HFB, and FFB rs-fMRI data.

To obtain the adjacency matrix (A) of GSP, the FC ma-
trix of FFB was compared between the sMCI and pMCI 
groups using the Wilcoxon rank sum test. This process 
identified statistically significant connections between 
ROI-ROI. Subsequently, for each subject, these signifi-
cant ROI-ROI connections from the FFB were retained, 

while the remaining connections were set to zero. Thus, 
for each subject, an SFC matrix was computed using the 
FFB FC and the rank sum test. This matrix served as the 
adjacency matrix (A) for GSP. It should be noted that the 
SFC for attaining GSP filters were computed using the 
training data.

Features

The graph, MST, and triadic interaction metrics were 
individually computed for each of the four FC matrices. 
The features for this study were extracted from data from 
142 subjects with sMCI and 136 subjects with pMCI. 
The dimension of each FC matrix was 136×136 for the 
Harvard-Oxford atlas. 

Global metrics of graph

A graph G is defined as a set of vertices V(G) and edges 
E(G). The connectivity matrix can be represented as a 
graph, with the ROIs as vertices and the connectivity 
strengths as edge weights. This modeling approach fa-
cilitated the exploration of topological distinctions be-
tween ASD and typical control (TC) groups using graph 
metrics. Subsequently, some of the global graph metrics 
are outlined below (Fornito et al., 2016). 

Global efficiency (GE): The average inverse shortest-
path length in the network. In this study, the shortest path 
between two ROIs is defined as the distance between 
them. 

Mean eccentricity (ME): For each ROI, the eccentric-
ity is equal to the maximum distance between that ROI 
and the rest of the ROIs. ME equals the average eccen-
tricity of all ROIs. 

Radius: The minimum value of eccentricity of all 
ROIs is equal to the radius. 

Diameter: The maximum value of eccentricity of all 
ROIs is equal to the diameter. 

Assortativity coefficient (AC): Each connection in-
volves two ROIs, one initiating and the other terminat-
ing it. Let the degrees of the first and second ROIs be 
as x and y, respectively. Consequently, for all available 
connections, two vectors, X and Y, are obtained, with 
the first representing a set of degrees x and the second 
a set of degrees y. The AC is derived by calculating the 
correlation coefficient between X and Y. This coefficient 
ranges between -1 and 1, where positive values indicate 
that ROIs with similar degrees are more likely to be con-
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nected. Conversely, a negative AC value implies that 
ROIs with larger degrees tend to connect to ROIs with 
more minor degrees.

Mean of clustering coefficient (MCC): The cluster-
ing coefficient is the ratio of triangles around a ROI and 
ranges between 0 and 1. A value of 1 indicates that con-
nected ROIs to a given ROI are also connected. A lower 
number of connections in the vicinity of a given ROI 
results in a decreased clustering coefficient. In this study, 
the mean clustering coefficient values across all ROIs 
were calculated for each subject.

Mean of eigenvector centrality (MEC): Connections 
originating from high-scoring ROIs carry more weight 
in influencing the score of the ROI under consideration 
compared to connections from low-scoring ROIs. The 
EC of an ROI reflects its impact on the network, where 
an ROI with high EC tends to connect with ROIs that 
also have high scores. The mean EC across all ROIs was 
used for each subject in this study.

Mean of strength (MS): The strength of a specific 
ROI is defined as the sum of the weights of edges adja-
cent to that ROI. In this study, the mean strength values 
across all ROIs were calculated for each subject.

Modularity: This metric gauges how effectively a 
network has been partitioned into groups of ROIs. In 
a network with high modularity, dense connections are 
observed within groups, while sparse connections occur 
between groups of ROIs.

All these metrics were computed using the functions 
provided by the Brain Connectivity Toolbox (Rubinov 
& Sporns, 2010).

Metrics of MST

A spanning tree is a subgraph of the original graph that 
is cycle-free and connects all nodes in the original graph. 
The MST is a tree with the minimum total weight among 
all possible spanning trees of the original graph (Van 
Mieghem & Magdalena, 2005; Lee et al., 2012). In this 
study, the Single Linkage Dendrogram method was em-
ployed for the computation of the MST (Liu et al., 2021). 
Several metrics related to the MST are delineated (Lee et 
al., 2012; Liu et al., 2021; Noble, 2006). 

Radius and diameter: The minimum and maximum 
values of eccentricity for all ROIs in the MST corre-
spond to the radius and diameter, respectively.

Maximum degree (Degmax): The degree ki is the num-
ber of neighbors for ith ROI in the MST. The maximum 
of all ROI degrees is considered as Degmax.

Leaf fraction (LF): The fraction of leaf ROIs in the 
MST, where a leaf ROI is defined as an ROI with a de-
gree of one.

Maximum betweenness centrality (BCmax): The 
BC of a particular ROI is the fraction of all shortest paths 
that traverse through that ROI. The maximum ROI BC is 
considered BCmax. 

Hierarchy (TH): The tree hierarchy assesses the bal-
ance between large-scale integration in the MST, quanti-
fied by the leaf fraction, and the concentration of central 
nodes, also referred to as hubs, measured through the 
maximum BC. This metric can be expressed as

(5) TH=LF⁄(2BCmax)

Kappa: This metric quantifies the breadth of the de-
gree distribution. This metric can be formulated as
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Figure 2. Four types of triads
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(6) Kappa=(∑136
i=1 ki

2 )⁄(∑136
i=1)ki

Metrics of triadic interactions 

In this study, as with Moradimanesh and colleagues 
(Moradimanesh et al., 2021), four types of triads were 
analyzed in LFB, MFB, HFB, and FFB. These triads 
were strongly balanced T3: (+ + +), weakly balanced 
T1: (+ −−), strongly unbalanced T2: (+ + −), and weakly 
unbalanced T0: (−−−) (Figure 2). Five metrics were ex-
tracted from FC matrices. The first four metrics were the 
number of the triads T0, T1, T2, and T3. These metrics are 
also called the triad frequencies (|Ti|, i=0,1,2,3). The fifth 
one was the energy of the whole-brain network (Un). 
The Un is defined as

(7) Un=-∑i=0
i=3 ∑x<y<z wxy (Ti)wxz (Ti)wyz (Ti)⁄∆

where x, y, and z indicate the ROIs of triad Ti, w is the 
FC value between ROIs, and ∆ is the total number of 
triads of the brain. 

Tendency to make hub 

Hubs are ROIs with a high number of connections and 
play a pivotal role in the brain network’s topology. In 
this study, we employed the global hubness metric intro-
duced by Saberi et al. to examine the brain topology of 
healthy control subjects (Saberi et al., 2021). This met-
ric, named the TMH, is separately defined for positive 
and negative links as ith and jth:

(8) TMHP=(∑136
i=1 D

2
i,p ⁄(∑

136
i=1 Di,p, Di,p=∑136 

j=1,j≠i,wij>0wij,p

and

(9) TMHN=(∑136
i=1 D2

i,n ⁄(∑136
i=1 Di,n, Di,n=∑136

j=1,j≠i,wij<0 
wij,n

where 136 is the total number of ROIs, Di,p and Di,n 
represent the positive and negative degrees of ith ROI, 
respectively, and wij,p and wij,n are the positive and nega-
tive weights between ith and jth ROIs.

The subscript of each T denotes the number of positive 
links. 

The TMHP and TMHN demonstrate the network’s pro-
pensity to form hubs with positive and negative links, re-
spectively. Therefore, TMH can elucidate the influence 
of both positive and negative links on the topology of 
the brain.

The number of links

The number (or occurrence rate) of positive links |P| 
and negative links |N| are computed for FC matrices of 
LFB, MFB, HFB, and FFB, separately. By obtaining in-
formation on |P| and |N|, it can be determined whether 
|Ti|s and TMHs may vary between groups, even when 
there is no difference in the number of positive and nega-
tive links. 

Feature selection

A total of 100 features were extracted from the four 
FC matrices (LFB, MFB, HFB, FFB) for each subject. 
This set included 25 features in each matrix, distributed 
as follows, graph (9), MST (7), triadic (5), TMH (2), and 
number of links (2). To improve the efficiency and ac-
curacy of the classification algorithm, feature selection 
was performed.

Feature selection plays a pivotal role in machine learn-
ing by reducing dataset dimensionality and improving 
classification algorithm performance and accuracy. In 
this study, we employed two optimization algorithms, 
PSO and SA, to identify the most informative set of 
features (Abualigah et al., 2018; Mafarja & Mirjalili., 
2017).

PSO is a stochastic optimization technique inspired 
by the behavior of swarming animals, such as birds and 
fish. It operates by representing potential solutions as 
particles that traverse the search space. Particles adjust 
their positions and velocities based on cognitive and so-
cial parameters, and the overall rate of change is regu-
lated by an inertia parameter. Specifically, particles seek 
optimal regions of the search space through interaction 
with other particles in the population. For our study, we 
utilized a swarm size of 20 particles, while setting cogni-
tive and social parameters to 1.5 and inertia to 0.72.

SA employs a probabilistic approach to accept or re-
ject solutions. The algorithm initiates with a randomly 
generated solution and iteratively generates neighboring 
solutions based on a predefined neighborhood structure. 
A fitness function evaluates each generated solution. Im-
proved solutions are accepted, and worse neighbors are 
accepted probabilistically, governed by the Boltzmann 
distribition, P=e-θ/ T. In this equation, θ denotes the dif-
ference between the fitness of the best solution and the 
generated neighbor, while T represents a temperature 
parameter. The temperature T decreases over iterations 
according to a cooling schedule. In our study, the initial 
temperature T was set to 10 (Mafarja & Mirjalili., 2017).
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Table 2. The Results of feature selection

Frequency 
Band

Selection 
Method Acc Sen Spec Number of Ex-

tracted Features
Number of Se-
lected Features

Selected Fea-
tures

Feature 
Type

FFB

PSO 70% 67% 72% 25 5
Diameter, AC Graph

Diameter, Kappa, 
LF MST

SA 71% 66% 74% 25 10

MEC, diameter Graph

Radius, Kappa, 
Degmax, BCmax

MST

|T3|, |P|, |T2|, 
TMHN

Triads, TMH, 
and links

HFB

PSO 75% 70% 79% 25 7
GE, ME, AC, MEC Graph

TMHP, |P|, |T2|
Triads, TMH, 

and links

SA 74% 67% 80% 25 10

MS, MEC, AC, 
modularity, ME Graph

Diameter MST

|N|, TMHP, |T2|, 
TMHN

Triads, TMH, 
and links

MFB
PSO 63% 51% 73% 25 6

MCC Graph

Degmax, TH MST

|T3|, TMHN, T0
Triads, TMH, 

and links

SA 63% 62% 64% 25 1 |T2|
Triads, TMH, 

and links

LFB

PSO 63% 66% 61% 25 5
TH, Degmax MST

|T0|, |T1|, |T2|
Triads, TMH, 

and links

SA 64% 66% 63% 25 19

GE, Diameter, 
modularity, radius, 

ME, MCC, MEC
Graph

Diameter, radius, 
degmax, kappa, TH

MST

Un, |T1|, |P|, |N|, 
AC, TMHN

Triads, TMH, 
and links

Abbreviations: FFB: Full-frequency band; LFB: Low frequency bands; MFB: Middle frequency bands; HFB: High frequency 
bands; GE: Global efficiency; ME: Mean eccentricity; AC: Assortativity coefficient; MCC: Mean of clustering coefficient; MEC: 
Mean of eigenvector centrality; MS: Mean of strength; LF: Leaf fraction; BC: Betweenness centrality; PSO: Particle swarm opti-
mization; AS: Simulated annealing; TMH: Tendency to make hub; MST: Minimum spanning tree; sMCI: Stable mild cognitive 
impairment; pMCI: Progressive mild cognitive impairment.

Note: The most crucial features selected by PSO and SA methods when using triad, TMH, links, graph, MST, and all features, 
separately, to classify the sMCI and pMCI subjects.
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Table 3. The results of feature selection 

Features Selection 
Method Acc Sen Spec

Number of 
Extracted 
Features

Number of 
Selected 
Features

Selected Features Frequen-
cy Band

All fea-
tures

PSO 75% 70% 80% 100 26

|N|, |P|, BCmax FFB

Radius, ME, |T1|, Un, TMHN, |T3|, MCC HFB

|T2|, MCC, radius, radius (MST), AC, |P|, 
TMHP

MFB

Diameter, diameter (MST), TMHN, Kappa, 
|T3|, radius, GE, TH, |N| LFB

SA 75% 71% 79% 100 55

MS, MEC, ME, modularity, radius, |T1|, 
MCC, LF, |T3|, diameter, AC, |P| FFB

MCC, |P|, TMHP, diameter, ME, TMHN, 
Un, TH, radius. Radius (MST), |T0|, LF HFB

Kappa, MS, TMHN, |T3|, BCmax, TH, Radius, 
|N|, |T2|, ME, Degmax, diameter, GE, 

diameter (MST), P
MFB

Diameter, MCC, |T0|, |T2|, Degmax, MEC, 
modularity, |T3|, TH, radius, MS, Kappa, 

|N|, Un
LFB

Graph 
features

PSO 77% 70% 83% 36 5

ME, modularity HFB

Radius MFB

MCC, MS LFB

SA 76% 73% 78% 36 17

MS, diameter, ME, modularity FFB

MS, ME, radius, MEC, GE HFB

ME, modularity, AC, MCC, MEC MFB

Diameter, radius, MCC, AC LFB

MST 
features

PSO 72% 70% 75% 28 2
Radius FFB

Diameter HFB

SA 72% 71% 72% 28 8

Radius, diameter FFB

Diameter, TH HFB

Kappa MFB

BCmax, TH LFB

Triads, 
TMH, 

and links 
features

PSO 74% 65% 82% 36 12

|T0|, TMHP FFB

Un, |P|, TMHN, |T1| HFB

TMHN, |T3|, |T0|, TMHP MFB

|T1|, TMHN LFB

SA 73% 64% 81% 36 5

TMHP FFB

TMHP, TMHN HFB

|T2| MFB

|N| LFB

Abbreviations: MST: Minimum spanning tree; TMH: Tendency to make a hub; ME: Mean eccentricity; AC: Assortativity coef-
ficient; MCC: Mean of clustering coefficient; MEC: Mean of eigenvector centrality; MS: Mean of strength; LF: Leaf fraction; 
BC: Betweenness centrality; FFB: Full-frequency band; LFB: Low frequency bands; MFB: Middle frequency bands; HFB: High 
frequency bands; GE: Global efficiency. 

Note, The most crucial features selected by PSO and SA methods when using LFB, MFB, HFB, and FFB, separately, to classify 
sMCI and pMCI subjects.
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By utilizing PSO and SA, we aimed to identify a re-
duced set of features that significantly contributed to 
the classification task. This feature selection process 
not only streamlines the dataset but also enhances the 
classification performance, making our analysis more 
effective and efficient. Feature selection was performed 
within each cross-validation fold to avoid test-set con-
tamination and ensure an unbiased evaluation of predic-
tive performance.

Classification

To discriminate between progressive MCI (pMCI) 
and stable MCI (sMCI), we employed an SVM with a 
radial basis function (RBF) kernel. This classification 
technique was executed using a robust 10-fold cross-val-
idation approach, a well-established practice in machine 
learning evaluation. The RBF kernel function was cho-
sen for its universal applicability across various sample 
distributions. It offers flexibility by adjusting parameters 
to adapt to the data’s inherent characteristics (Noble, 
2006).

We employed a comprehensive set of evaluation met-
rics to assess the classifier’s performance. These metrics 
include accuracy (Acc.), sensitivity (Sen.), and specific-
ity (Spec.), which provide insight into the classifier’s ef-
fectiveness in correctly classifying subjects. The evalua-
tion process involves seperating true labels from the test 
set, then using utilizing the trained classifier to predict 
labels on the test set. The parameters are calculated using 
the following equations:

(10) Accuracy or Acc= TP+TN
TP+TN+FP+FN

(11) Sensitivity or Sen= 
TP

TP+FN

(12) Specificity or Spec= 
TN

TN+FP

where TP, FP, TN, and FN represent true positives, 
false positives, true negatives, and false negatives, re-
spectively. Here, TP stands for true positives, FP for 
false positives, TN for true negatives, and FN for false 
negatives. These metrics collectively illuminate the clas-
sifier’s ability to distinguish between pMCI and sMCI 
subjects.

Additionally, receiver operating characteristic (ROC) 
curves were employed to visually compare the perfor-
mance of different classifiers. The ROC curve is a graph-
ical representation where the vertical and horizontal axes 
represent the false-positive and actual-positive rates, re-
spectively. A higher area under the ROC curve indicates 

better classifier performance, reflecting its capacity to 
discriminate between the two classes.

The rigorous evaluation process, combining metrics 
and visualization techniques, provides a comprehensive 
assessment of the classification model’s accuracy and 
reliability in identifying subjects with progressive and 
stable MCI.

Results

This study employed two distinct methodologies to ex-
plore the impact of frequency bands and diverse feature 
types on classification performance, with feature selec-
tion performed using both PSO and SA algorithms. Ta-
ble 2 presents the outcomes of these investigations.

In the first approach, four feature sets were separately 
used to classify sMCI and pMCI. These groups were all 
features (100), graph features (36), MST features (28), 
and triads, TMH, and link features (36) (the number in 
parentheses indicates the number of features). In this ap-
proach, the effect of features over all frequency bands of 
the graph was studied. The frequency bands were FFB, 
LFB, MFB, and HFB. In the second approach, features 
extracted from FFB, LFB, MFB, and HFB were sepa-
rately used for classification. This analysis could show 
which frequency bands offered the best and the worst 
features for classification. For each frequency band, all 
features of the graph, MST, Triads, TMH, and Links 
were employed (25 features in total). After feature se-
lection and classification, the results shown in Tables 2 
and 3 were obtained for the first and second approaches, 
respectively.

By reviewing the results in Table 2, it can be observed 
that the graph-featured offered the highest accuracy for 
both SA (76%) and PSO (77%) methods. However, the 
PSO offered 1% and 5% more accuracy and specific-
ity than SA by selecting a much lower number of fea-
tures (five features) than SA (17 features). The five fea-
tures, selected by PSO, were (MCC, MS)/radius/(ME, 
modularity) from LFB/MFB/HFB, respectively. The 
results with all features were close to those with graph 
features in terms of accuracy, specificity, and sensitiv-
ity. However, this closeness was achieved at the cost of 
using many more features (26 and 55 for the PSO and 
SA methods, respectively). The fewest selected features 
were for MST features when using PSO as the feature 
selection method. In this case, the radius (in FFB) and 
diameter (in HFB) features offered 72%, 70%, and 75% 
of accuracy, sensitivity, and specificity, respectively. The 
lowest classification performance was obtained by MST 
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features (accuracy of 72%). By reviewing Table 2, it can 
be observed that PSO, compared to SA, selected much 
fewer features in many cases while offering similar or 
better classification performance.

By reviewing the results of the second approach, it is 
evident that the worst/best classification performance 
was for the LFB and MFB/HFB features, respectively. 
The best accuracies in the (LFB and MFB)/HFB were 
(64% and 63%)/75%, respectively. The best perfor-
mance in the HFB was achieved using seven features se-
lected by PSO. These seven features were (GE, ME, AC, 
MEC) of graphs and (TMHP, |P|, |T2|) of triads, TMH 
and links. The corresponding sensitivity and specificity 
were 70% and 79%, respectively. In the MFB, an accu-
racy of 63% was obtained using only one feature (|T2|) 
selected by SA. Overall, the best classification perfor-
mance in terms of offering higher accuracy with a lower 
number of features was achieved using graph features 
selected by PSO.

Discussion

This study presents a novel approach to classify sMCI 
and pMCI using a combination of graph frequency 
bands and functional connectivity-based features ex-
tracted from rs-fMRI data. The classification task was 
facilitated by employing PSO and SA algorithms for fea-
ture selection, followed by a SVM with RBF kernel for 
classification. The proposed method aims to predict the 
conversion of MCI to AD and offers potential insights 
into the underlying neurobiological changes associated 
with disease progression.

The research methodology involved several key steps. 
First, rs-fMRI data preprocessing was conducted using 
the CONN toolbox, which included various processing 
steps to ensure data quality and reliability. FC matrices 
were computed for the following frequency bands, FFB, 
LFB, MFB, and HFB. These FC matrices were used to 
extract a diverse set of features, encompassing global 
graph metrics, MST metrics, triadic interaction metrics, 
TMH metrics, and the number of positive and negative 
links.

The feature selection process played a crucial role in 
enhancing classification accuracy. Both PSO and SA al-
gorithms were employed to identify the most relevant 
features for distinguishing between sMCI and pMCI 
groups. The resulting feature subsets demonstrated dis-
tinct patterns depending on the algorithm used and the 
type of features considered.

The classification performance of the proposed method 
was evaluated using a SVM with an RBF kernel and a 
10-fold cross-validation framework. Significantly, the 
test data were not utilized in any aspect of feature selec-
tion. The results revealed promising accuracy rates, with 
PSO achieving a 77% accuracy using only five selected 
features. These findings demonstrated the potential clini-
cal utility of the proposed approach for predicting MCI-
to-AD conversion, which could inform treatment plans 
and clinical trials.

Interpretability emerged as a significant advantage of 
the proposed method, particularly compared with com-
plex models, such as deep neural networks (DNNs), 
which often lack transparency. The selected features in 
this study were based on the connectivity patterns of dis-
tinct brain regions, contributing to a better understanding 
of the underlying neurobiology.

The key findings of the analysis highlighted the impor-
tance of specific features in classification. For instance, 
ME and Modularity of the HFB were found to be par-
ticularly altered between patients with sMCI and pMCI, 
while MCC and MS features of the LFB exhibited strong 
discriminatory power. Additionally, the radius feature in 
the MFB was identified as a key contributor to the clas-
sification of these two groups.

Comparing to SA, PSO achieved higher accuracy with 
fewer features. This study underscored the potential of 
graph analysis of functional connectivity and the effec-
tiveness of the PSO algorithm combined with a simple 
SVM for accurate classification.

In summary, this study contributes to the field of neu-
roimaging and cognitive health by presenting a novel ap-
proach that combines graph frequency bands, functional 
connectivity-based features, and advanced feature selec-
tion techniques for the classification of stable and pro-
gressive MCI. This study addresses the pressing need for 
early and accurate detection of cognitive decline, particu-
larly in the context of predicting MCI-to-AD conversion.

A notable strength of this study is its innovative ap-
proach to feature selection. The PSO and SA algorithms 
effectively navigate the high-dimensional feature space 
to identify a subset of features most relevant to accu-
rate classification. This process enhances model perfor-
mance, simplifies the classification task, and contributes 
to interpretability. The selected features highlight spe-
cific connectivity patterns that differentiate sMCI from 
pMCI patients, offering valuable insights into the neuro-
biological underpinnings of disease progression.

Zamani & Talesh Jafadideh. (2025). Graph Frequency Bands Predict MCI-to-AD Conversion. BCN: 16(6): 1113-1130.

http://bcn.iums.ac.ir/


Basic and Clinical

1126

November & December 2025, Vol 16, No. 6

The study’s findings highlight the importance of differ-
ent frequency bands and specific connectivity features 
for classification. The identification of key features, such 
as modularity and mean eccentricity in the HFB, mean 
clustering coefficient and mean strength in the LFB, and 
radius in the MFB, provides meaningful insights into the 
altered network properties associated with cognitive de-
cline.

The study’s scope focused on the classification of 
sMCI and pMCI using rs-fMRI data, and future research 
could extend this framework to larger and more diverse 
datasets, encompassing longitudinal data to capture tem-
poral changes in connectivity patterns.

Conclusion 

This study presents a comprehensive and innovative 
method for the early classification of stable and progres-
sive MCI using graph frequency bands and FC-based 
features. The combination of advanced feature selection 
techniques and a well-designed classification pipeline 
demonstrates the potential for accurate prediction of 
MCI-to-AD conversion. This approach holds promise as 
a valuable tool for clinicians and researchers seeking to 
enhance early detection and intervention strategies for 
neurodegenerative diseases. The continued development 
and validation of such methodologies have the potential 
to significantly impact the field of cognitive health and 
the understanding of neurodegenerative processes.
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