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ABSTRACT

Introduction: Accurate prediction of the progression from mild cognitive impairment (MCI)
to Alzheimer’s disease (AD) is crucial for disease management. Machine learning techniques
have demonstrated success in classifying AD and MCI cases, particularly using resting-state
functional magnetic resonance imaging (rs-fMRI) data.

Methods: This study utilized rs-fMRI data from the ADNI, involving 142 patients with stable
MCI (sMCI) and 136 with progressive MCI (pMCI). Graph signal processing was applied
to filter rs-fMRI data into low-, middle-, and high-frequency bands. Connectivity-based
features were derived from both filtered and unfiltered data, resulting in a comprehensive
set of 100 features, including global graph metrics, minimum spanning tree (MST) metrics,
triadic interaction metrics, hub tendency metrics: and number of links. Feature selection was
enhanced using particle swarm optimization (PSO) and simulated annealing (SA). A support
vector machine (SVM) with a radial basis function (RBF) kernel and a 10-fold cross-validation
setup were employed for classification.

Results: The proposed approach achieved high accuracy with a reduced number of features
selected via PSO, specifically five features. With these features: the SVM achieved 77%
accuracy, 70% specificity, and 83% sensitivity. The identified features were as follows, (mean
of clustering coefficient, mean of strength)/radius/(mean eccentricity, and modularity) from
low/middle/high frequency bands of the graph.

Conclusion: This study highlights the efficacy of the proposed framework in identifying
individuals at risk of developing AD using a parsimonious feature set. This approach holds
promise for advancing the precision of MCI-to-AD progression prediction, aiding early
diagnosis and intervention strategies.
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Highlights
e Graph frequency band filters offer functional data with discriminative features between stable sMCI and pMCI.

o Global graph metrics achieve classification performance while requiring only a modest subset of five features for
effective discrimination.

e The integration of functional connectivity-based features promises to enhance prediction capabilities for individuals
with MCI, aiding in early diagnosis and intervention.

Plain Language Summary

Alzheimer’s disease (AD) is a progressive brain disorder that gradually affects memory, thinking, and everyday
functioning. Many people with AD first experience a condition called “mild cognitive impairment”, in which memory
or thinking problems are noticeable but still relatively mild. Being able to predict who is more likely to progress is
crucial for early diagnosis, better care planning, and timely support for patients and families. In this study, we examined
whether patterns of brain activity could help predict which individuals with mild cognitive impairment are at higher
risk of developing AD. We used resting-state functional magnetic resonance imaging (rs-fMRI). Rather than focusing
on the structure of the brain, we studied how different brain regions communicate with each other through functional
connections. To do this, we modeled the brain as a network and analyzed communication patterns at different frequency
ranges, which capture the ways brain regions work together. Using machine learning techniques, we identified a small
set of key features from these functional brain networks that best distinguished people whose cognitive condition
remained stable from those who later showed clear signs of AD. We found that functional brain connectivity alone
can provide important information for predicting disease progression, even when using only a limited number of
carefully selected features. This matters because rs-fMRI is widely available and does not require invasive procedures.
Improving early prediction of AD can help guide clinical monitoring, support earlier interventions, and ultimately
improve quality of life for people at higher risk.

ables evaluation of neurodegenerative signs, including
atrophy and neuronal loss, indicative of amyloid and tau
deposition (Bateman et al., 2012).

Introduction

ementia affects approximately 50 million
individuals worldwide, with nearly 10
million new cases emerging annually (Pe-
terson et al., 1999). Among dementia sub-
types, Alzheimer’s disease (AD) is the most
prevalent, accounting for over half of all
cases. Amnestic mild cognitive impairment

MRI and resting-state functional MRI (rs-fMRI) have
emerged as valuable tools for early-stage clinical as-
sessment of AD and disease progression (Lee et al.,
2013). While task-based fMRI examines brain func-
tion during cognitive tasks, rs-fMRI captures spontane-

(MCI) occupies a pivotal intermediate stage between
healthy controls (HC) and AD. Individuals with MCI
face an escalated risk of transitioning to AD, with an ap-
proximate annual conversion rate of 15%. Notably, the
MCI cohort exhibits significant heterogeneity, with only
a subset progressing to AD (Peterson et al., 1999; Pe-
tersen et al., 2009). Early-stage intervention for AD is a
considerable clinical challenge. Established biomarkers
for AD prediction include AB accumulation and hyper-
phosphorylated tau (Spillantini & Goedert, 2013). Tradi-
tionally, the verification of amyloid and tau deposits ne-
cessitates invasive techniques, such as positron emission
tomography (PET) and cerebrospinal fluid (CSF) analy-
sis. Conversely, magnetic resonance imaging (MRI) en-
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ous low-frequency brain activity, making it valuable for
AD diagnosis (Lee et al., 2013; Khazaee et al., 2015).
In conventional functional connectivity (FC) analyses,
brain region correlations are assumed to remain constant
throughout an imaging session. Dynamic FC, a more re-
cent extension of traditional FC, captures evolving inter-
actions and is considered a more accurate representation
of functional brain networks (Khazaee et al., 2015; Allen
et al., 2014). It is important to note that neuroimaging
techniques are currently predominantly used as research
tools for AD diagnosis.
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Robust biomarker identification is pivotal for distin-
guishing progressive MCI (pMCI) from stable MCI
(sMC), facilitating early AD diagnosis and treatment.
PMCI refers to individuals with MCI who exhibit con-
tinuous cognitive function decline, ultimately progress-
ing to AD. SMCI refers to individuals whose cognitive
impairment does not significantly worsen over time, re-
maining stable without advancing to AD. Recent studies
have integrated multimodal biomarkers, including PET
and rs-fMRI, with machine learning algorithms to pre-
dict the conversion from MCI to AD (Chang & Glover,
2010; Hinrichs et al., 2011; Young et al., 2013; Liu et
al., 2013; Zamani et al; 2022). Notably, functional neu-
roimaging holds greater promise for early AD detection
compared to structural neuroimaging (Yassa et al., 2010;
Sperling, 2011; Wierenga & Bondi, 2007). Functional
MRI, which evaluates brain function during cognitive
tasks, demonstrates remarkable sensitivity to early dis-
ease processes, often preceding observable impairments
in standard neuropsychological tests (Pievani et al.,
2011; Teipel et al., 2015). Conversely, rs-fMRI captures
spontaneous fluctuations in brain activity, making it less
dependent on individual cognitive capabilities (Shakil et
al., 2016; Vemuri et al., 2012; Fox & Greicius, 2010).

A key attribute of rs-fMRI’s is its capacity to assess
FC alterations (Greicius et al., 2003; Sheline & Raich-
le., 2013), a prevalent hallmark of AD (Zhang et al.,
2010; Zhou et al., 2010; Dennis & Thompson, 2014;
Jalilianhasanpour et al., 2019). Studies have shown that
cognitive impairment severity correlates with increasing
disruptions in connectivity patterns, suggesting that FC
changes are potential biomarkers of cognitive dysfunc-
tion in MCI. Importantly, longitudinal FC alterations
are more pronounced in the early stages of AD (Zhan et
al., 2016). FC analysis inherently involves network in-
teractions, making graph theory an effective tool for in-
vestigating global and local brain region characteristics
(Bullmore & Sporns, 2009; Bullmore & Sporns, 2010;
Heuvel & Sporns, 2013; Farahani et al., 2019). This ap-
proach has successfully elucidated insights into various
neurological conditions, including depression, Parkin-
son’s disease, and AD. This method has been success-
fully used in a wide range of applications in both healthy
participants and patients (Blanken et al., 2021), such as
depression (Yun & Kim, 2021; Amiri et al., 2021), Par-
kinson’s disease (Beheshti & Ko, 2021), and AD (Dai
et al., 2021). Graph theory, a powerful topological tool,
allows for novel investigation of AD (Dai et al., 2021;
Tijms et al., 2013; Brier et al., 2014; He & Evans, 2010).
It enables us to compare the brain network organization
between patients and healthy individuals (Bassett &
Bullmore, 2009; Stam, 2014) and, importantly, provides
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insights into how these networks change across different
stages of the disease (Hojjati et al., 2017; Khazaee et al.,
2017). This method delves deeper, not only identifying
brain differences but also revealing compensatory mech-
anisms that might explain why some individuals with
similar cognitive scores exhibit different brain activity
patterns (Behfar et al., 2020; Gregory et al., 2017; Yao et
al., 2010; Cabeza et al., 2018).

Graph-theoretic methods, such as the minimum span-
ning tree (MST), provide valuable insights into brain
connectivity. In this context, nodes represent brain
regions, and edges represent functional connections
(weights) between them. The MST is a subgraph that
connects all nodes with the minimum possible total edge
weight, avoiding cycles and redundant connections. This
simplification retains the essential network structure, of-
fering an “impartial” representation by focusing on the
most critical connections. This impartial technique sig-
nificantly streamlines the network structure while retain-
ing its essential framework. Notably, this ensures the net-
work’s neurological interpretability, making it a widely
employed tool in neuroimaging (Guo et al., 2017; van
Dellen et al., 2018). Using this method, the edges in the
network are simplified, ensuring that the selected span-
ning tree has the smallest possible weight.

While most brain network analyses focus on pairwise
interactions between regions, the complex reality of the
human brain suggests higher-order interactions play
a crucial role. Investigating higher-order interactions
within the brain network can lead to groundbreaking
discoveries related to brain function and dysfunction,
disease progression, and potentially, treatment develop-
ment. Moradimanesh and colleagues (Moradimanesh et
al., 2021) delved deeper into brain network analysis by
examining triadic interactions, involving three intercon-
nected regions. This method allowed them to compare
the interaction patterns between individuals with autism
spectrum disorder (ASD) and HC. Pearson’s correlation
was used as their tool to measure the interaction between
regions. The authors explored four distinct triadic inter-
action patterns, each with specific configurations of pos-
itive and negative FC values (+ and —). These triads were
strongly balanced T,: (+ + +), strongly unbalanced T,:
(++ —), weakly balanced T : (+ — —), and weakly unbal-
anced T, (— ——). The study revealed that balanced brain
interactions were more common in both the ASD and
HC groups, while unbalanced interactions were less fre-
quent. Additionally, the energy levels of the salience net-
work (SN) and the default mode network (DMN) were
found to be lower in patients with AD, suggesting poten-
tial challenges in adapting behavior. In another study of
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triadic interactions, Saberi et al. introduced the metrics
of the tendency to make hub (TMH). They showed that
negative links of the resting-state network make hubs
to reduce balance-energy and push the network into a
more stable state compared to null-networks with trivial
topologies (Saberi et al., 2021).

Graph signal processing (GSP) is a recently developed
field that analyzes brain activity through a unique lens
called the topological frequency (Shuman et al., 2013;
Ortega et al., 2018; Jafadideh & Asl, 2022; Jafadideh &
Asl, 2022). This approach relies on two key elements, A
graph representing brain connections and brain activity
mapped onto that graph. Using a tool called the graph
Fourier transform (GFT), GSP can compute different
topological frequency filters and identify different pat-
terns hidden within these connections. Excitingly, recent
research has shown that GSP can be used to diagnose
early-stage MCI based on brain activity data from two
independent studies (Padole, 2021; Fan et al., 2008).

Early diagnosis of AD at the MCI stage is vital for de-
veloping effective treatments. However, the heterogene-
ity of AD has made early diagnosis challenging. Many
machine learning algorithms have been applied to the
diagnosis of MCI and to the prediction of MCI-to-AD
conversion (Cabral et al., 2015; Blum & Langley, 1997).
Given the large number of extracted features from neu-
roimaging data, feature selection is essential before clas-
sification. Modern machine learning methods often in-
corporate implicit feature-selection mechanisms. While
explicit feature selection as a preprocessing step is less
common, it remains beneficial for reducing dataset di-
mensionality and improving classification accuracy. By
performing this step, the most representative optimal fea-
ture set is selected, and the redundant features for diag-
nosing AD progression are neglected (Reunanen, 2003;
John et al., 1994). High-efficacy feature selection algo-
rithms are useful to speed up the diagnostic system and
enhance its diagnostic performance. The performance of
feature selection and classification methods depends on
hyperparameter tuning and the specific characteristics of
the dataset. Effective optimization requires careful con-
sideration of these parameters to achieve robust results.
Feature selection is particularly complicated due to the
nonlinear nature of classification methods, more param-
eters do not necessarily lead to better performance, and
parameter dependencies are common. Therefore, it is es-
sential to utilize a suitable optimization method that can
handle high-dimensional, nonlinear search spaces (Chu
et al., 2012; Bicacro et al., 2012).
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In this study, the topological filters were obtained
through the GFT tool and SFCmatrix. Each subject had
a unique SFC matrix, computed using Pearson correla-
tion and the Wilcoxon rank sum-test (Mann & Whitney.,
1947). The GFT was used to compute three topological
frequency filters, which were then used to separate the
brain activity data (rs-fMRI) into three distinct frequency
bands, low (LFB), middle (MFB), and high (HFB). FC
matrices were computed for each frequency band using
the filtered data. Additionally, an FC matrix was com-
puted for the unfiltered data, termed the full-frequency
band (FFB). Some graph global metrics, MST metrics,
triadic interaction metrics, TMH metrics, and the num-
ber of positive and negative links were computed from
the LFB, MFB, HFB, and FFB FC matrices. To identify
the most important features, feature selection was per-
formed using particle swarm optimization (PSO) and
simulated annealing (SA) (Abualigah, 2018; Mafarja &
Mirjalili, 2017). Subsequently, the selected features were
used to classify AD and MCI. Our analysis achieved
higher accuracy compared to several prior methods.
Specifically, Raamana et al. (2015) constructed a brain
network based on cortical thickness differences and uti-
lized a multi-core Bayesian classifier, achieving 64%
classification accuracy for distinguishing pMCI from
sMCI (Raamana, 2015). Similarly, Wei et al. (2016) pro-
posed a classification framework incorporating MRI and
network features, achieving an accuracy of 76% (Wei et
al., 2016). Liu and colleageus developed a multi-modal
classification method combining PET and MRI data,
achieving an accuracy of 67% (Liu et al., 2014). Binbin
Fu et al. (2025) introduced a multi-modal deep domain
adaptation (MM-DDA) model that integrates MRI and
PET data. Their model achieved 81.81% accuracy in dis-
tinguishing pMCI from sMCI (Fu et al., 2025).

Hu et al. (2025) proposed MME-TransENet, a novel
hybrid convolutional neural network (CNN)-transform-
er architecture designed to capture fine-grained and
spatiotemporal features from MRI to predict MCI pro-
gression. Evaluated on the AD Neuroimaging Initiative
(ADNI) dataset, MME-TransENet achieved state-of-
the-art performance with an accuracy of 84.74% (Hu
et al., 2025). Zhang and colleageus introduced a similar
graph-theoretic and machine-learning framework that
integrated cortical thickness features, structural brain
networks, and sub-frequency rs-fMRI network metrics.
In their study, the combination of the random subset fea-
ture selection algorithm (RSFS) with a support vector
machine (SVM) classifier yielded the best classification
performance, achieving accuracies of 84.7% for MCI
converters (MClc) versus non-converters (MClnc) and
89.8% for MCI converters (MClIc) versus AD (Zhang
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et al., 2021). Karim and colleagues applied machine
learning and graph theory to resting-state fMRI data to
predict AD. Using 5-fold cross-validation, their models
achieved high accuracy, with the SVM performing at
approximately 82%. These findings align with previous
research and support the use of machine learning and
graph theory applied to fMRI data for improving early
diagnosis of AD (Karim et al., 2024). Minami and col-
leagues proposed a preprocessing method for resting-
state fMRI data that includes principal component analy-
sis, window-based functional connectivity analysis, and
hypothesis-based feature selection. Using a machine
learning model to classify cognitively normal and MCI
groups, their approach achieved the highest performance
with a fivefold cross-validation accuracy of 84.7%, re-
call of 67.0%, precision of 63.5%, and F1 score of 63.3%
(Minami et al., 2025). The strong alignment between our
results and theirs underscores the robustness and reliabil-
ity of conventional machine learning models paired with
carefully selected neuroimaging features, especially in
studies with limited sample sizes where deep learning
methods may underperform. Our approach, which relies
on a limited number of fMRI features, results in lower
computational complexity than multi-modality data ap-
proaches. Our analysis provides FC-based features that
are easy to interpret and understand.

The reminder of this study is organized as fol-
lows: Section 2 describes the dataset, preprocessing
methods,Brain parcellation, FC, graph frequency bands,
studied features, feature selection, and classification.
The subsequent section, results, presents the outcomes
of the feature selection and classification processes. Fi-
nally, the following two sections discuss the results and
present the concluding remarks and insights.

Materials and Methods
Participants and data acquisition

In this study, data from 278 human participants were
used. These human participants’ data were extracted
from the ADNI (Jack et al., 2008; Jack et al., 2010).
Table 1 presents demographic information; the mini-
mental state examination (MMSE) is a widely used
cognitive measure in clinical and research settings to as-
sess the cognitive status in AD). The data used in this
study can be accessed at ADNI data. Other research-
ers can access these data using the same procedures as
the authors. Researchers can access the data by logging
into the ADNI website and following these steps: Down-
load > Image collections > Advanced search > Search >
Select the scans > Add to collection > CSV download
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> Advanced download. A complete listing of ADNI in-
vestigators can be found at ADNI data. Public access to
the database is available. The ADNI was launched in
2003 to test whether serial MRI, fMRI, other biologi-
cal markers, and clinical and neuropsychological assess-
ments can be combined to measure the progression of
MCI and early AD. For this study, we used subjects with
at least three years of follow-up diagnosed with MCI at
baseline. Participants with stable clinical dementia rat-
ing (CDR) scores of 0.5 throughout the follow-up period
were classified as having sMCI. Participants with pMCI
showed a change in clinical dementia rating (CDR) from
0.5 at baseline to 1 at the final assessment (Zamani et
al., 2022). The rs-fMRI data were acquired using a high-
field 3 Tesla Philips MRI scanner and an echo-planar
imaging sequence. Data for each subject consisted of
140 volumes, each with 48 slices, 3.3 mm slice thick-
ness, spatial resolution of 3x3x3 mm’, flip angle of 80
degrees, 30 ms echo time, and a plane matrix of 64x64.
The time between two consecutive volumes was 2s.

Data preprocessing

Resting-state functional magnetic resonance im-
aging (rs-fMRI) data preprocessing and time se-
ries extraction

The preprocessing pipeline for the rs-fMRI data com-
prised several essential steps to ensure data quality and
reliability. The initial five volumes were discarded to
mitigate the influence of T1- equilibration effects. Sub-
sequent preprocessing steps encompassed functional
realignment and unwarping, correction for slice-timing
discrepancies, identification, and handling of outlier
volumes to address subject-motion artifacts, direct seg-
mentation, and normalization into the standard Montreal
Neurological Institute (MNI) space, and spatial convolu-
tion with an 8§ mm full-width half-maximum Gaussian
kernel for functional smoothing. Low-frequency filter-
ing within the range of 0.01 to 0.1 Hz was applied to
retain the relevant fluctuations (Whitfield-Gabrieli &
Nieto-Castanon, 2012).

The rs-fMRI data were preprocessed using the CONN
toolbox. The Harvard-Oxford Cortical atlas with 136
regions of interest (ROIs) was employed for brain par-
cellation. For each ROI, a single signal was obtained by
averaging the time series of its voxels. The final rs-fMRI
data were x € R™T, where M=136 and T=135 were the
numbers of ROIs and time samples, respectively.
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Table 1. Sample characteristics
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MeanSD/ No. (%)

22222222 Statistic P
sMCI (n=142) pMCI (n=136)
Female 59 (41) 68(50) X2(1)=1.99 0.16
Age (y) 71.75+8.19 72.16+7.83 t(276)=-0.43 0.67
MMSE 26.63+3.33 22.94+3.55 t(276)=-8.94 <0.0001
CDR 0.5 = -

Abbreviations: CDR: Clinical dementia rating; MMSE: Mini-mental state exam; pMCI: Progressive mild cognitive impairment;

sMCI: Stable mild cognitive impairment.

Graph frequency bands (GFBs)

The frequency content of the graph signal is defined
according to the signal changes across connected verti-
ces at a given time point. At low frequencies, connected
vertices show similar signals (indicating alignment). At
high frequencies, the variability of the connected verti-
ces’ signals is high compared to each other (indicating
liberality). In liberality, the vertices (brain ROIs) showed
less respect for their underlying connectivity structures.
By approaching from low frequency to high frequency,
the graph signal behavior changes from alignment to lib-
erality (Figure 1).

The graph frequencies are defined using the combina-
torial Laplacian matrix L € R¥N (Shuman et al., 2013),
as follows:

(1) L=D-A

where A is the adjacency matrix, and D is a diagonal
matrix, and its k® diagonal element represents the de-
gree of the kth vertex, i.e. D, = ZNH Akj. The adjacen-
cy matrix of GSP represents its underlying graph. The

Low frequency of GSP

eigendecomposition of L provides the V and A, which
are the eigenvector and diagonal eigenvalues matrices,
respectively.

The eigenvectors represent graph frequency modes and
are used for GFT. The GFT of brain signal x € R*13 g
obtained as

(2)x=VTx

where 136 and 135 are the number of ROIs and time
points and superscript T denotes the transpose operation,
respectively. The inverse GFT (IGFT) of X is attained by

In this domain, the signal changes across connected
vertices define frequency levels (in the time domain,
the signal changes across time points define frequency
levels). Consequently, transitioning from lower to higher
frequency levels within the graph amplifies the signal
changes across connected vertices. The blue circles and
red and blue lines represent vertices, edges, and signals,
respectively.

(3) x=Vx..

High frequency of GSP

Figure 1. Simple representation of the frequency concept in the graph domain
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Remarkably, the eigenvector associated with the larger
eigenvalue exhibits greater variance and can effectively
convey higher graph frequencies (Huang et al., 2018).
These higher-frequency modes facilitate the conversion
of brain signals with increased variance into the graph
frequency domain. Conversely, they can also transform
higher-frequency information from the frequency do-
main back into the brain’s topological domain.

The graph signal is amenable to filtering within the fre-
quency domain, followed by an integrated gasification/
Fischer-Tropsch (IGFT) to obtain a graph-filtered signal.
The graph filtering process can be mathematically for-
mulated as follows:

(4) x,=VGV'x

where G is a diagonal filtering matrix. In this study, a
value of 1 was assigned to the diagonal elements corre-
sponding to the desired frequency modes, while the rest
of the modes were set to 0.

In this study, the LFB consisted of the first 45 frequen-
cy modes, the HFB comprised the last 45 modes, and the
MFB was formed by the remaining 46 modes. Using the
“(4)”, the rs-fMRI data underwent filtering to generate
graphs corresponding to LFB, MFB, and HFB. Subse-
quently, for each subject, FC matrices were computed
within the LFB, MFB, HFB, and FFB. In this study, the
data matrices for LFB, MFB, HFB, and FFB were 136
x135.

Functional connectivity (FC) matrix

FC between ROIs was computed using Pearson cor-
relation and the SW technique. The SW technique was
employed to account for the dynamic nature of brain
FC. In this approach, a series of windows with a one-TR
shift was applied to each ROI time series. Subsequently,
an FC matrix was computed for each window. The final
correlation value for an ROI-ROI pair was determined as
the median of its FC values. The window was created by
convolving a rectangle (width=50 TRs) with a Gaussian
(0=3 TRs) (Huang et al., 2018). Each subject’s dataset
yielded four FC matrices. These matrices were comput-
ed using LFB, MFB, HFB, and FFB rs-fMRI data.

To obtain the adjacency matrix (A) of GSP, the FC ma-
trix of FFB was compared between the sMCI and pMCI
groups using the Wilcoxon rank sum test. This process
identified statistically significant connections between
ROI-ROI. Subsequently, for each subject, these signifi-
cant ROI-ROI connections from the FFB were retained,
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while the remaining connections were set to zero. Thus,
for each subject, an SFC matrix was computed using the
FFB FC and the rank sum test. This matrix served as the
adjacency matrix (A) for GSP. It should be noted that the
SFC for attaining GSP filters were computed using the
training data.

Features

The graph, MST, and triadic interaction metrics were
individually computed for each of the four FC matrices.
The features for this study were extracted from data from
142 subjects with SMCI and 136 subjects with pMCL
The dimension of each FC matrix was 136x136 for the
Harvard-Oxford atlas.

Global metrics of graph

A graph G is defined as a set of vertices V(G) and edges
E(G). The connectivity matrix can be represented as a
graph, with the ROIs as vertices and the connectivity
strengths as edge weights. This modeling approach fa-
cilitated the exploration of topological distinctions be-
tween ASD and typical control (TC) groups using graph
metrics. Subsequently, some of the global graph metrics
are outlined below (Fornito et al., 2016).

Global efficiency (GE): The average inverse shortest-
path length in the network. In this study, the shortest path
between two ROIs is defined as the distance between
them.

Mean eccentricity (ME): For each ROI, the eccentric-
ity is equal to the maximum distance between that ROI
and the rest of the ROIs. ME equals the average eccen-
tricity of all ROls.

Radius: The minimum value of eccentricity of all
ROIs is equal to the radius.

Diameter: The maximum value of eccentricity of all
ROIs is equal to the diameter.

Assortativity coefficient (AC): Each connection in-
volves two ROlIs, one initiating and the other terminat-
ing it. Let the degrees of the first and second ROIs be
as x and vy, respectively. Consequently, for all available
connections, two vectors, X and Y, are obtained, with
the first representing a set of degrees x and the second
a set of degrees y. The AC is derived by calculating the
correlation coefficient between X and Y. This coefficient
ranges between -1 and 1, where positive values indicate
that ROIs with similar degrees are more likely to be con-
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strong
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Figure 2. Four types of triads

nected. Conversely, a negative AC value implies that
ROIs with larger degrees tend to connect to ROIs with
more minor degrees.

Mean of clustering coefficient (MCC): The cluster-
ing coefficient is the ratio of triangles around a ROI and
ranges between 0 and 1. A value of 1 indicates that con-
nected ROIs to a given ROI are also connected. A lower
number of connections in the vicinity of a given ROI
results in a decreased clustering coefficient. In this study,
the mean clustering coefficient values across all ROIs
were calculated for each subject.

Mean of eigenvector centrality (MEC): Connections
originating from high-scoring ROIs carry more weight
in influencing the score of the ROI under consideration
compared to connections from low-scoring ROIs. The
EC of an ROI reflects its impact on the network, where
an ROI with high EC tends to connect with ROIs that
also have high scores. The mean EC across all ROIs was
used for each subject in this study.

Mean of strength (MS): The strength of a specific
RO is defined as the sum of the weights of edges adja-
cent to that ROL In this study, the mean strength values
across all ROIs were calculated for each subject.

Modularity: This metric gauges how effectively a
network has been partitioned into groups of ROIs. In
a network with high modularity, dense connections are
observed within groups, while sparse connections occur
between groups of ROIs.

All these metrics were computed using the functions

provided by the Brain Connectivity Toolbox (Rubinov
& Sporns, 2010).
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Metrics of MST

A spanning tree is a subgraph of the original graph that
is cycle-free and connects all nodes in the original graph.
The MST is a tree with the minimum total weight among
all possible spanning trees of the original graph (Van
Mieghem & Magdalena, 2005; Lee et al., 2012). In this
study, the Single Linkage Dendrogram method was em-
ployed for the computation of the MST (Liu et al., 2021).
Several metrics related to the MST are delineated (Lee et
al., 2012; Liu et al., 2021; Noble, 2006).

Radius and diameter: The minimum and maximum
values of eccentricity for all ROIs in the MST corre-
spond to the radius and diameter, respectively.

Maximum degree (Deg__ ): The degree k. is the num-
ber of neighbors for i ROI in the MST. The maximum

of all ROI degrees is considered as Deg_ .

Leaf fraction (LF): The fraction of leaf ROIs in the
MST, where a leaf ROI is defined as an ROI with a de-
gree of one.

Maximum betweenness centrality (BCmax): The
BC of a particular ROl is the fraction of all shortest paths
that traverse through that ROI. The maximum ROI BC is
considered BCmax.

Hierarchy (TH): The tree hierarchy assesses the bal-
ance between large-scale integration in the MST, quanti-
fied by the leaf fraction, and the concentration of central
nodes, also referred to as hubs, measured through the
maximum BC. This metric can be expressed as

(5) T,=LEA2BC,_ )

Kappa: This metric quantifies the breadth of the de-
gree distribution. This metric can be formulated as
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(6) Kappa=(3"°_ k> (X% Dk,
Metrics of triadic interactions

In this study, as with Moradimanesh and colleagues
(Moradimanesh et al., 2021), four types of triads were
analyzed in LFB, MFB, HFB, and FFB. These triads
were strongly balanced T,: (+ + +), weakly balanced
T1: (+ —), strongly unbalanced T,: (+ + —), and weakly
unbalanced T: (—) (Figure 2). Five metrics were ex-
tracted from FC matrices. The first four metrics were the
number of the triads T, T, T,, and T,. These metrics are
also called the triad frequencies (|Ti|, i=0,1,2,3). The fifth
one was the energy of the whole-brain network (Un).
The Un is defined as

(7) Un:-zizoi=3 Zx<y<z ny (Ti)wxz (Ti)wyz (leA

where X, y, and z indicate the ROIs of triad Ti, w is the
FC value between ROIs, and A is the total number of
triads of the brain.

Tendency to make hub

Hubs are ROIs with a high number of connections and
play a pivotal role in the brain network’s topology. In
this study, we employed the global hubness metric intro-
duced by Saberi et al. to examine the brain topology of
healthy control subjects (Saberi et al., 2021). This met-
ric, named the TMH, is separately defined for positive
and negative links as i and j*:

(8) TMHP:(ZB(»i:l Dzi’p /(2136i:1 Di,p’ Di,pzzm

j=1 ,j;ti,wij>0wij,p
and

) TMHN:(ZBGi:] Dzi,n /(ZBG{Z] D . D =y

i,n’ in =1j#,wij<0

Wiin

where 136 is the total number of ROIs, Di’p and D,
represent the positive and negative degrees of i ROI,
respectively, and w, and w, are the positive and nega-
tive weights between i"and j ROIs.

The subscript of each T denotes the number of positive
links.

The TMH, and TMH,, demonstrate the network’s pro-
pensity to form hubs with positive and negative links, re-
spectively. Therefore, TMH can elucidate the influence
of both positive and negative links on the topology of
the brain.

November & December 2025, Vol 16, No. 6

The number of links

The number (or occurrence rate) of positive links [P
and negative links |N| are computed for FC matrices of
LFB, MFB, HFB, and FFB, separately. By obtaining in-
formation on |P| and |N|, it can be determined whether
[Tis and TMHs may vary between groups, even when
there is no difference in the number of positive and nega-
tive links.

Feature selection

A total of 100 features were extracted from the four
FC matrices (LFB, MFB, HFB, FFB) for each subject.
This set included 25 features in each matrix, distributed
as follows, graph (9), MST (7), triadic (5), TMH (2), and
number of links (2). To improve the efficiency and ac-
curacy of the classification algorithm, feature selection
was performed.

Feature selection plays a pivotal role in machine learn-
ing by reducing dataset dimensionality and improving
classification algorithm performance and accuracy. In
this study, we employed two optimization algorithms,
PSO and SA, to identify the most informative set of
features (Abualigah et al., 2018; Mafarja & Mirjalili.,
2017).

PSO is a stochastic optimization technique inspired
by the behavior of swarming animals, such as birds and
fish. It operates by representing potential solutions as
particles that traverse the search space. Particles adjust
their positions and velocities based on cognitive and so-
cial parameters, and the overall rate of change is regu-
lated by an inertia parameter. Specifically, particles seek
optimal regions of the search space through interaction
with other particles in the population. For our study, we
utilized a swarm size of 20 particles, while setting cogni-
tive and social parameters to 1.5 and inertia to 0.72.

SA employs a probabilistic approach to accept or re-
ject solutions. The algorithm initiates with a randomly
generated solution and iteratively generates neighboring
solutions based on a predefined neighborhood structure.
A fitness function evaluates each generated solution. Im-
proved solutions are accepted, and worse neighbors are
accepted probabilistically, governed by the Boltzmann
distribition, P=e-0/ T. In this equation, 8 denotes the dif-
ference between the fitness of the best solution and the
generated neighbor, while T represents a temperature
parameter. The temperature T decreases over iterations
according to a cooling schedule. In our study, the initial
temperature T was set to 10 (Mafarja & Mirjalili., 2017).
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Table 2. The Results of feature selection

Frequency Selection Acc sen Spec Number of Ex-  Number of Se- Selected Fea- Feature
Band Method P tracted Features lected Features tures Type
Diameter, AC Graph
PSO 70% 67% 72% 25 5
Diameter, Kappa, MST
LF
FFB MEC, diameter Graph
SA 71%  66%  74% 25 10 Radius, Kappa, MST
Degmax’ chax
[T, IPL, IT,I, Triads, TMH,
TMH,, and links
GE, ME, AC, MEC Graph
PSO 75% 70% 79% 25 7
Triads, TMH,
TMH,, P, IT,| and links
MS, MEC, AC,
Al modularity, ME Graph
SA 74% 67% 80% 25 10 Diameter MST
[N],TMH,, |T,|,  Triads, TMH,
TMH, and links
McCC Graph
PSO 63%  51%  73% 25 6 Deg ., T, MST
MFB
Triads, TMH,
T, TMH,, T, and links
SA 63%  62%  64% 25 1 IT.| Triads, TMH,
2 and links
T, Deg .. MST
PSO 63% 66% 61% 25 5
Triads, TMH,
[Tl T, 1L 1T, and links

GE, Diameter,
LFB modularity, radius, Graph
ME, MCC, MEC

SA 64%  66%  63% 25 19 Diameter, radius,

degmax, kappa, T, Sy

Un, [T,|, [P, IN], Triads, TMH,
AC, TMH, and links

Abbreviations: FFB: Full-frequency band; LFB: Low frequency bands; MFB: Middle frequency bands; HFB: High frequency
bands; GE: Global efficiency; ME: Mean eccentricity; AC: Assortativity coefficient; MCC: Mean of clustering coefficient; MEC:
Mean of eigenvector centrality; MS: Mean of strength; LF: Leaf fraction; BC: Betweenness centrality; PSO: Particle swarm opti-
mization; AS: Simulated annealing; TMH: Tendency to make hub; MST: Minimum spanning tree; sMCI: Stable mild cognitive
impairment; pMCI: Progressive mild cognitive impairment.

Note: The most crucial features selected by PSO and SA methods when using triad, TMH, links, graph, MST, and all features,
separately, to classify the sMCI and pMCI subjects.
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Table 3. The results of feature selection

Number of Number of

Selection Frequen-
Features Method Acc Sen Spec Extracted Selected Selected Features c gan d
Features Features y
IN], IP|,BC, . FFB
Radius, ME, |T |, Un, TMH,, |T,|, MCC HFB
PSO  75% 70% 80% 100 26 IT,1, MCC, radius, radius (MST), AC, |P|,
2 MFB
TMH,
Diameter, diameter (MST), TMH,, Kappa, LB
|T,|, radius, GE, T, [N|
All fea- MS, MEC, ME, modularity, radius, |T,|, FEB
tures MCC, LF, |T,|, diameter, AC, |P|
MCC, |P], TMH,, diameter, ME, TMH,, HEB
Un, T, radius. Radius (MST), |T|, LF
0, 0, 0,
SA 7% T1% 7% 100 35 Kappa, MS, TMHN, |T,|, BC T, Radius,
[NI, |T,|, ME, Deg __, diameter, GE, MFB
. diameter (MST), P
Diameter, MCC, [T |, |T, |, Deg__, MEC,
modularity, |T,|, T, radius, MS, Kappa, LFB
[N, Un
ME, modularity HFB
PSO 77% 70%  83% 36 5 Radius MFB
MCC, MS LFB
fGraph MS, diameter, ME, modularity FFB
eatures
MS, ME, radius, MEC, GE HFB
SA 76% 73% 78% 36 17
ME, modularity, AC, MCC, MEC MFB
Diameter, radius, MCC, AC LFB
Radius FFB
PSO 72% 70%  75% 28 2
Diameter HFB

MST Radius, diameter FFB

features Diameter, T, HFB
SA 72%  71% 72% 28 8

Kappa MFB

BC .. T, LFB

|TD |, TMH, FFB

Un, |P|,TMHN, |T1| HFB
PSO 74% 65% 82% 36 12

TMH,, IT,I, IT,|, TMH, MFB

Triads,

TMH, [T,|, TMH, LFB
and links TMH FEB
features P

TMH,, TMH,, HFB

SA 73% 64% 81% 36 5
IT,| MFB
IN| LFB

Abbreviations: MST: Minimum spanning tree; TMH: Tendency to make a hub; ME: Mean eccentricity; AC: Assortativity coef-
ficient; MCC: Mean of clustering coefficient; MEC: Mean of eigenvector centrality; MS: Mean of strength; LF: Leaf fraction;
BC: Betweenness centrality; FFB: Full-frequency band; LFB: Low frequency bands; MFB: Middle frequency bands; HFB: High
frequency bands; GE: Global efficiency.

Note, The most crucial features selected by PSO and SA methods when using LFB, MFB, HFB, and FFB, separately, to classify
sMCI and pMCI subjects.
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By utilizing PSO and SA, we aimed to identify a re-
duced set of features that significantly contributed to
the classification task. This feature selection process
not only streamlines the dataset but also enhances the
classification performance, making our analysis more
effective and efficient. Feature selection was performed
within each cross-validation fold to avoid test-set con-
tamination and ensure an unbiased evaluation of predic-
tive performance.

Classification

To discriminate between progressive MCI (pMCI)
and stable MCI (sMCI), we employed an SVM with a
radial basis function (RBF) kernel. This classification
technique was executed using a robust 10-fold cross-val-
idation approach, a well-established practice in machine
learning evaluation. The RBF kernel function was cho-
sen for its universal applicability across various sample
distributions. It offers flexibility by adjusting parameters
to adapt to the data’s inherent characteristics (Noble,
20006).

We employed a comprehensive set of evaluation met-
rics to assess the classifier’s performance. These metrics
include accuracy (Acc.), sensitivity (Sen.), and specific-
ity (Spec.), which provide insight into the classifier’s ef-
fectiveness in correctly classifying subjects. The evalua-
tion process involves seperating true labels from the test
set, then using utilizing the trained classifier to predict
labels on the test set. The parameters are calculated using
the following equations:

TP+TN

(10) Accuracy or Acc= TP+TN+FP+EN

(1) Sensitivity or Sen=5 3y

(12) Specificity or Spec= TNTEP

where TP, FP, TN, and FN represent true positives,
false positives, true negatives, and false negatives, re-
spectively. Here, TP stands for true positives, FP for
false positives, TN for true negatives, and FN for false
negatives. These metrics collectively illuminate the clas-
sifier’s ability to distinguish between pMCI and sMCI
subjects.

Additionally, receiver operating characteristic (ROC)
curves were employed to visually compare the perfor-
mance of different classifiers. The ROC curve is a graph-
ical representation where the vertical and horizontal axes
represent the false-positive and actual-positive rates, re-
spectively. A higher area under the ROC curve indicates
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better classifier performance, reflecting its capacity to
discriminate between the two classes.

The rigorous evaluation process, combining metrics
and visualization techniques, provides a comprehensive
assessment of the classification model’s accuracy and
reliability in identifying subjects with progressive and
stable MCI.

Results

This study employed two distinct methodologies to ex-
plore the impact of frequency bands and diverse feature
types on classification performance, with feature selec-
tion performed using both PSO and SA algorithms. Ta-
ble 2 presents the outcomes of these investigations.

In the first approach, four feature sets were separately
used to classify sMCI and pMCI. These groups were all
features (100), graph features (36), MST features (28),
and triads, TMH, and link features (36) (the number in
parentheses indicates the number of features). In this ap-
proach, the effect of features over all frequency bands of
the graph was studied. The frequency bands were FFB,
LFB, MFB, and HFB. In the second approach, features
extracted from FFB, LFB, MFB, and HFB were sepa-
rately used for classification. This analysis could show
which frequency bands offered the best and the worst
features for classification. For each frequency band, all
features of the graph, MST, Triads, TMH, and Links
were employed (25 features in total). After feature se-
lection and classification, the results shown in Tables 2
and 3 were obtained for the first and second approaches,
respectively.

By reviewing the results in Table 2, it can be observed
that the graph-featured offered the highest accuracy for
both SA (76%) and PSO (77%) methods. However, the
PSO offered 1% and 5% more accuracy and specific-
ity than SA by selecting a much lower number of fea-
tures (five features) than SA (17 features). The five fea-
tures, selected by PSO, were (MCC, MS)/radius/(ME,
modularity) from LFB/MFB/HFB, respectively. The
results with all features were close to those with graph
features in terms of accuracy, specificity, and sensitiv-
ity. However, this closeness was achieved at the cost of
using many more features (26 and 55 for the PSO and
SA methods, respectively). The fewest selected features
were for MST features when using PSO as the feature
selection method. In this case, the radius (in FFB) and
diameter (in HFB) features offered 72%, 70%, and 75%
of accuracy, sensitivity, and specificity, respectively. The
lowest classification performance was obtained by MST
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features (accuracy of 72%). By reviewing Table 2, it can
be observed that PSO, compared to SA, selected much
fewer features in many cases while offering similar or
better classification performance.

By reviewing the results of the second approach, it is
evident that the worst/best classification performance
was for the LFB and MFB/HFB features, respectively.
The best accuracies in the (LFB and MFB)/HFB were
(64% and 63%)/75%, respectively. The best perfor-
mance in the HFB was achieved using seven features se-
lected by PSO. These seven features were (GE, ME, AC,
MEC) of graphs and (TMHP, |P|, [T2|) of triads, TMH
and links. The corresponding sensitivity and specificity
were 70% and 79%, respectively. In the MFB, an accu-
racy of 63% was obtained using only one feature (|T,|)
selected by SA. Overall, the best classification perfor-
mance in terms of offering higher accuracy with a lower
number of features was achieved using graph features
selected by PSO.

Discussion

This study presents a novel approach to classify sMCI
and pMCI using a combination of graph frequency
bands and functional connectivity-based features ex-
tracted from rs-fMRI data. The classification task was
facilitated by employing PSO and SA algorithms for fea-
ture selection, followed by a SVM with RBF kernel for
classification. The proposed method aims to predict the
conversion of MCI to AD and offers potential insights
into the underlying neurobiological changes associated
with disease progression.

The research methodology involved several key steps.
First, rs-fMRI data preprocessing was conducted using
the CONN toolbox, which included various processing
steps to ensure data quality and reliability. FC matrices
were computed for the following frequency bands, FFB,
LFB, MFB, and HFB. These FC matrices were used to
extract a diverse set of features, encompassing global
graph metrics, MST metrics, triadic interaction metrics,
TMH metrics, and the number of positive and negative
links.

The feature selection process played a crucial role in
enhancing classification accuracy. Both PSO and SA al-
gorithms were employed to identify the most relevant
features for distinguishing between sMCI and pMCI
groups. The resulting feature subsets demonstrated dis-
tinct patterns depending on the algorithm used and the
type of features considered.
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The classification performance of the proposed method
was evaluated using a SVM with an RBF kernel and a
10-fold cross-validation framework. Significantly, the
test data were not utilized in any aspect of feature selec-
tion. The results revealed promising accuracy rates, with
PSO achieving a 77% accuracy using only five selected
features. These findings demonstrated the potential clini-
cal utility of the proposed approach for predicting MCI-
to-AD conversion, which could inform treatment plans
and clinical trials.

Interpretability emerged as a significant advantage of
the proposed method, particularly compared with com-
plex models, such as deep neural networks (DNNs),
which often lack transparency. The selected features in
this study were based on the connectivity patterns of dis-
tinct brain regions, contributing to a better understanding
of the underlying neurobiology.

The key findings of the analysis highlighted the impor-
tance of specific features in classification. For instance,
ME and Modularity of the HFB were found to be par-
ticularly altered between patients with sMCI and pMCI,
while MCC and MS features of the LFB exhibited strong
discriminatory power. Additionally, the radius feature in
the MFB was identified as a key contributor to the clas-
sification of these two groups.

Comparing to SA, PSO achieved higher accuracy with
fewer features. This study underscored the potential of
graph analysis of functional connectivity and the effec-
tiveness of the PSO algorithm combined with a simple
SVM for accurate classification.

In summary, this study contributes to the field of neu-
roimaging and cognitive health by presenting a novel ap-
proach that combines graph frequency bands, functional
connectivity-based features, and advanced feature selec-
tion techniques for the classification of stable and pro-
gressive MCL. This study addresses the pressing need for
early and accurate detection of cognitive decline, particu-
larly in the context of predicting MCI-to-AD conversion.

A notable strength of this study is its innovative ap-
proach to feature selection. The PSO and SA algorithms
effectively navigate the high-dimensional feature space
to identify a subset of features most relevant to accu-
rate classification. This process enhances model perfor-
mance, simplifies the classification task, and contributes
to interpretability. The selected features highlight spe-
cific connectivity patterns that differentiate sSMCI from
pMCI patients, offering valuable insights into the neuro-
biological underpinnings of disease progression.
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The study’s findings highlight the importance of differ-
ent frequency bands and specific connectivity features
for classification. The identification of key features, such
as modularity and mean eccentricity in the HFB, mean
clustering coefficient and mean strength in the LFB, and
radius in the MFB, provides meaningful insights into the
altered network properties associated with cognitive de-
cline.

The study’s scope focused on the classification of
sMCI and pMCI using rs-fMRI data, and future research
could extend this framework to larger and more diverse
datasets, encompassing longitudinal data to capture tem-
poral changes in connectivity patterns.

Conclusion

This study presents a comprehensive and innovative
method for the early classification of stable and progres-
sive MCI using graph frequency bands and FC-based
features. The combination of advanced feature selection
techniques and a well-designed classification pipeline
demonstrates the potential for accurate prediction of
MCI-to-AD conversion. This approach holds promise as
a valuable tool for clinicians and researchers seeking to
enhance early detection and intervention strategies for
neurodegenerative diseases. The continued development
and validation of such methodologies have the potential
to significantly impact the field of cognitive health and
the understanding of neurodegenerative processes.
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