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Introduction: Cognitive trajectories in individuals with a baseline clinical dementia rating 
(CDR) score of 0.5 vary widely, ranging from recovery (stable reverse migration) to resistance 
to recovery. Identifying predictors of these trajectories is essential for targeted interventions. 
This study aimed to investigate baseline structural magnetic resonance imaging (MRI) features 
and clinical factors associated with the rate of recovery and the likelihood of resistance to it, 
using a penalized mixture cure model (MCM). 

Methods: Data from 185 individuals with a baseline CDR of 0.5 in the OASIS-3 database 
were analyzed. OASIS-3 is a retrospective compilation of data for 1378 participants that were 
collected across several ongoing projects through the WUSTL Knight ADRC over 30 years. 
Structural MRI features and clinical measures were assessed using the latency and incidence 
components of an MCM. The latency component evaluated factors influencing recovery rates, 
while the incidence component identified predictors of resistance.

Results: The latency component revealed that increasing right rostral middle frontal thickness 
(hazard ratio [HR]=2.06) was linked to faster recovery, while right frontal pole thickness 
(HR=0.48) predicted slower recovery. The cure component identified left bankssts volume 
(odds ratio [OR]=2.21) as a key predictor of resistance, whereas left pars orbitalis thickness 
(OR=0.56) was protective. Notably, right supramarginal thickness was paradoxically associated 
with both faster recovery (HR=1.24) and increased resistance (OR=1.48), potentially acting as 
a proxy for both compensatory mechanisms and maladaptive changes.

Conclusion: The MCM revealed complex, context-dependent roles of structural MRI features 
in recovery and resistance trajectories, with frontal and temporal regions pivotal to cognitive 
outcomes. These findings highlight the value of MCM in advancing personalized therapeutic 
strategies and understanding recovery dynamics.
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1. Introduction

he clinical dementia rating (CDR) is a vali-
dated tool for assessing Alzheimer disease 
(AD) risk and severity through semi-struc-
tured interviews conducted by experienced 
clinicians with patients and collateral sourc-

es, such as family members. A key feature of the CDR 
is its ability to capture intraindividual cognitive trajecto-
ries, providing insights into the progression from normal 
cognition (NC) to mild cognitive impairment (MCI) and 
potential reversion to NC (Morris, 1993).

Reverse migration, particularly the transition from a 
CDR score of 0.5 to 0, is a crucial area of AD research 
(Duran et al., 2022; Angevaare et al., 2022; Hampel & 
Lista, 2016). Stable reverse migration, which we refer to 
as cognitive recovery in this study, can be defined as a 
CDR score reverting from 0.5 to 0 without subsequent 
decline or fluctuation, indicating a return to normal cogni-
tive function. This process, though not fully understood, 
suggests a form of neuroplasticity, where the brain, de-

spite experiencing neurodegenerative changes, can com-
pensate and restore cognitive function. Neuroplasticity 
may involve mechanisms such as synaptic strengthening, 
neuronal reorganization, and neurogenesis, particularly 
in regions like the hippocampus, prefrontal cortex, and 
parietal regions that are vital for memory and executive 
functions (Zatorre et al., 2012). Gray matter preservation 
and even an increase in volume in certain regions have 
been observed in individuals who experience recovery, 
indicating that the brain's ability to adapt plays a signifi-
cant role in recovery processes (Duran et al., 2022).

However, the understanding of neuroimaging biomark-
ers related to reverse migration remains limited. Previous 
studies have primarily focused on the unidirectional pro-
gression from NC to MCI and dementia (Jack et al., 2018; 
Sperling et al., 2019), leaving the role of reverse migra-
tion in cognitive recovery largely unexplored. While this 
concept has gained attention in recent years, further in-
vestigation is needed to identify specific biomarkers that 
predict stable reverse migration and differentiate it from 
other cognitive trajectories. 

Highlights 

● Penalized cure model identified predictors of cognitive recovery and resistance to recovery. 

● Right rostral middle frontal thickness predicted faster cognitive recovery.

● Left bankssts volume increased resistance to recovery in mild cognitive impairment.

● Right supramarginal thickness linked to both faster recovery and increased resistance.

Plain Language Summary 

Memory problems are common in old people, which are often early signs of Alzheimer’s disease. Doctors use a tool 
called the clinical dementia rating (CDR) to measure these changes. Some people with a CDR score of 0.5—indicating 
very mild cognitive impairment—get worse over time. Others, however, can return to normal functioning, a process 
we call “cognitive recovery.” Understanding why some people recover while others do not could help guide better 
treatment and prevention strategies. In this study, we examined the brain scans (structural MRI) and health information 
of 185 older adults with mild cognitive impairment. We used a new type of statistical method called a “penalized 
mixture cure model” that allowed us to study two things at once: (1) how quickly people recover, and (2) why some 
people never recover at all. We found that certain brain regions were strongly linked to recovery. For example, thicker 
tissue in the frontal lobe was associated with faster recovery, while changes in other regions, like the frontal pole and 
banks of the superior temporal sulcus, were associated with lower chance of recovery. Surprisingly, one region (the right 
supramarginal area) seemed to play both positive and negative roles. We also found that general health factors, such as 
body weight and psychiatric symptoms, influenced the chance of recovery. These findings are important because they 
show that brain changes related to Alzheimer’s disease are not always straightforward; higher volume or thickness is 
not always better. By recognizing which brain features and health factors predict cognitive recovery, doctors may one 
day design more personalized prevention and treatment strategies. This research highlights the importance of both brain 
health and overall lifestyle in maintaining memory and cognitive abilities as we get older.
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In addition to structural brain features, various con-
founders such as vascular risk factors (e.g. hyperten-
sion, diabetes), body mass index (BMI), apolipoprotein 
E (APOE) genotype, and psychiatric symptoms (e.g. 
depression) can influence cognitive recovery and resis-
tance to recovery. For example, vascular risk factors and 
higher BMI are associated with impaired cognitive re-
covery (Deckers et al., 2017; Dregan et al., 2013), while 
the APOE ε4 allele is linked to poorer recovery outcomes 
in MCI (Riedel et al., 2016). These factors should be 
carefully accounted for when interpreting the relation-
ship between brain structure and cognitive trajectories.

In the most recent work by Duran et al. (2022), mul-
tinomial or binary logistic regression has been utilized 
to investigate biomarkers associated with reverse migra-
tion. However, time-to-event regression offers a more 
dynamic and informative approach by modeling factors 
that influence the timing of cognitive migration rather 
than merely estimating its probability. Survival models 
provide significant advantages over logistic models by 
incorporating the timing of events, which is crucial for 
elucidating the trajectory of cognitive changes and ef-
fectively predicting clinical outcomes (Cox, 1972; Rabin 
et al., 2020).

When stable reverse migration in the CDR is the pri-
mary outcome, many participants with a CDR of 0.5 
remain impaired or experience fluctuations. This result 
is primarily due to the neurodegenerative nature of AD 
and related cognitive impairments. As a result, a substan-
tial proportion of individuals become resistant to stable 
reverse migration (resistance to recovery) and do not 
achieve a sustained return to a CDR of 0.

In time-to-event analyses involving this resistance, 
mixture cure models (MCMs) provide a valuable alter-
native to traditional survival models such as the Cox pro-
portional hazards model. Conventional survival analyses 
assume that every individual has some likelihood of ex-
periencing the event. MCMs address this limitation by 
separately modeling the probability of resistance and the 
time to stable reverse migration among those who are 
susceptible. This dual approach includes an incidence 
component that assesses the likelihood of resistance ver-
sus susceptibility and a latency component that models 
the time to stable reverse migration among susceptible 
individuals. By distinguishing these processes, MCMs 
allow for the estimation of time to stable reverse migra-
tion and facilitate the identification of factors that influ-
ence the probability of resistance. This advantage leads 
to a more comprehensive understanding of cognitive 
trajectories.

In this study, we extract neuroimaging and clinical data 
from the OASIS-3 dataset, a publicly available resource 
designed to support research on normal aging and AD 
(LaMontagne et al., 2019). The dataset includes exten-
sive MRI data, cognitive assessments, and other clinical 
features, providing a rich foundation for identifying bio-
markers associated with cognitive changes. 

The primary goal of this study is to identify an opti-
mal subset of high-dimensional structural MRI biomark-
ers—specifically regional cortical thickness and gray 
matter volume—that contribute to cognitive recovery 
and resistance to recovery in individuals with MCI. We 
use the hdcuremodels package (Fu et al., 2022b; Fu & 
Archer, 2024) in R to implement penalized MCMs capa-
ble of handling high-dimensional data, allowing us to ef-
ficiently perform feature selection and highlight the most 
relevant MRI biomarkers for these cognitive outcomes.

2. Materials and Methods

Study design and participants

Data were obtained from the OASIS-3 cohort, a longi-
tudinal study spanning over 15 years with 1378 partici-
pants at the Knight Alzheimer Disease Research Center, 
Washington University in St. Louis. The cohort includes 
generally healthy older adults (CDR=0) with or without 
a family history of AD, as well as individuals with very 
mild to mild AD (CDR=0.5 or 1). Participants undergo 
periodic evaluations, genetic testing, and neuroimaging 
every two or three years. Exclusion criteria encompass 
conditions preventing long-term follow-up (for example, 
end-stage renal disease) or contraindications to MRI or 
lumbar puncture (for example, pacemakers, anticoagu-
lant use). Further inclusion and exclusion details appear 
in (LaMontagne et al., 2019).

At baseline, participants were categorized by their func-
tional and cognitive states using the global CDR score, 
where CDR=0 represented normal cognitive function 
and CDR=0.5 indicated minimal cognitive impairment. 
The primary outcome of interest was stable reverse mi-
gration among participants who entered with a baseline 
CDR score of 0.5. Out of the 1378 total participants, 185 
individuals enrolled with a baseline CDR of 0.5 and had 
available MR session data. Participants with a baseline 
CDR score of 0.5 were further divided into the following 
four categories based on their migration patterns during 
the follow-up period:
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● CDR-0.5 stables: Participants who showed no migra-
tion, maintaining a CDR score of 0.5 at both baseline 
and follow-up visits.

● CDR-0.5 fluctuators: Participants who fluctuated 
between CDR scores of 0 and 0.5 during the follow-up 
period.

● CDR-0.5 negative migrators: Participants who ex-
hibited negative migration from a baseline CDR score of 
0.5 to a score greater than 0.5 (CDR >0.5).

● Stable reverse migrators: Participants who exhibited 
stable reverse migration from a baseline CDR of 0.5 to a 
CDR of 0 and did not progress to CDR >0 during follow-
up.

The breakdown of these groups is illustrated in the Fig-
ure 1:

Out of the 185 participants with an initial CDR score 
of 0.5:

● Thirty-six participants showed stable reverse migra-
tion to CDR=0 and maintained it throughout follow-up.

● Fifteen participants fluctuated between CDR scores 
of 0 and 0.5 during follow-up.

● Ninety-five participants maintained a CDR score of 
0.5 consistently.

● Thirty-nine participants experienced negative migra-
tion to a higher stage (CDR >0.5).

● Missing data during follow-up visits were also noted 
in each category, as indicated in the flowchart.

Ethical considerations

Based on some studies (LaMontagne et al., 2019), all 
participants in the OASIS-3 dataset provided informed 
consent under the ethical standards set by the Institutional 
Review Board at Washington University School of Medi-
cine. The study adhered to established guidelines for hu-
man subjects' research, ensuring confidentiality and ap-
propriate handling of both clinical and neuroimaging data.

Demographic and clinical assessments

We evaluated ten baseline clinical assessments to cap-
ture demographic, functional, psychiatric, and genetic 
factors potentially linked to stable reverse migration. 
These included age at enrollment, sex, education, so-
cioeconomic status (SES), BMI, total neuropsychiatric 
inventory questionnaire (NPI-Q) score, total geriatric 
depression scale (GDS) score, total National Alzheim-
er's Coordinating Center (NACC) functional assessment 
scale (FAS), APOE ε4 allele of apolipoprotein E gene, 
and mini-mental state examination (MMSE). The NPI-
Q, which assesses 12 behavioral symptoms such as delu-
sions and agitation, evaluates the presence or absence of 
symptoms in the past month and rates their severity as 
mild, moderate, or severe if present. GDS, a screening 
tool for depressive symptoms, has a total score ranging 
from 0 to 15, with higher scores indicating greater sever-
ity of depression. FAS is a 10-item scale that measures a 
patient's ability to perform daily activities, such as pre-
paring a balanced meal, with functional abilities rated 
from 0 (normal) to 3 (dependent).

MRI data acquisition

MRI data were collected on three different Siemens 
scanner models (Siemens Medical Solutions USA, Inc.): 
Vision 1.5T, TIM Trio 3T (two different scanners of this 
model), and BioGraph mMR PET-MR 3T. Participants 

Figure 1. Study design and participant classification
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were placed in a 16-channel head coil for the 1.5T scan-
ners and a 20-channel head coil for the 3T scanners, with 
foam pad stabilizers placed next to the ears to reduce 
motion artifacts during the scans. These technical set-
tings were standardized to minimize potential variability 
introduced by different MRI systems. Further details on 
the MRI acquisition parameters, including technical set-
tings and harmonization strategies, can be found in the 
OASIS-3 database. This resource provides a compre-
hensive overview of the scanning protocols and imag-
ing parameters, ensuring consistency and quality control 
across all data collected (LaMontagne et al., 2019).

MRI post-processing: Volumetric segmentation 
and regional feature assessments

All MRI sessions underwent cortical reconstruction 
and volumetric segmentation of T1-weighted images us-
ing the Desikan-Killiany atlas with the FreeSurfer image 
analysis suite (Fischl, 2012). This procedure yielded 68 
bilateral cortical regions, providing 136 volumetric fea-
tures per subject, including averaged cortical thickness 
and gray matter volumes. For subsequent analyses, ex-
tracted regional gray matter volumes were scaled by the 
total intracranial volume (TIV), computed as the sum of 
gray matter, white matter, and cerebrospinal fluid. This 
adjustment corrects for interindividual variations in over-
all brain size.

Matching up MR session and clinical data

Because MRI scans and clinical questionnaires do not 
always occur during the same visit, we considered clini-
cal data entries within one year before or after each MRI 
session as valid matches. This approach ensured the ac-
curate integration of cognitive and neuroimaging data 
for analysis.

Statistical analyses

Collinearity

To assess multicollinearity among the predictor vari-
ables, we calculated the variance inflation factor (VIF) 
for all included covariates. The VIF was calculated using 
the "vif" function from the "rms" package in R, and it 
was verified that all covariates had VIF values less than 
10, indicating the absence of significant multicollinear-
ity issues.

The MCM description

In this study, we employed a high-dimensional MCM 
to analyze the primary outcome: Stable reverse migra-

tion from a CDR of 0.5 to 0. The MCM approach is 
particularly suited for scenarios where a proportion of 
individuals is resistant to stable reverse migration—re-
maining impaired or fluctuating—while others are sus-
ceptible and may achieve stable reversion. This dual-
population framework allows for detailed modeling of 
both resistance (referred to as being "cured") and the 
timing of stable reverse migration among the suscep-
tible individuals. 

MCMs conceptualize the target population as a mixture 
of susceptible and immune individuals with respect to 
the event of interest, in this case, stable reverse migra-
tion. Let Z represent a certain random variable defined 
as (Equation 1):

1. z=

1, & Susceptible individuals (likely to achieve 
stable reverse migration)
0, & Resistance individuals(resistant to stable reverse 
migration,remaining impaired or fluctuating)

The probabilities of being cured (resistant) and not 
cured (susceptible) are as follows (Equation 2):

2. P(Z=1)=η and P(Z=0)=1-η,

where η is the probability of being resistant to stable 
reverse migration. This condition is particularly relevant 
in the context of neurodegenerative diseases like AD, 
where many individuals do not return to normal cogni-
tive function. The survival function for each subgroup is 
defined as follows (Equation 3):

3. Su(t)=P(T>t|Z=0), Sc(t)=P(T>t|Z=1),

where Su(t) is the survival function for the susceptible 
to stable reverse migration subpopulation, and Sc(t) for 
the resistant (cured) subpopulation. The overall survival 
function for the population is expressed as (Equation 4):

4. S(t)=P(T>t)=η+(1-η)Su(t),

Model components and role of covariates

Incidence model (cure fraction model)

The cure fraction (η) represents the probability of resis-
tance to stable reverse migration. It is modeled using a 
logistic regression function (Equation 5):

5. "logit" (η|x)=xTβ,

where x includes baseline covariates such as clinical 
characteristics (e.g. age, BMI), and structural MRI bio-
markers (e.g. regional brain volumes or cortical thick-
ness), the coefficients β quantify the effect of each co-
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variate on the probability of resistance. For example, a 
positive βk for a specific MRI feature indicates that high-
er values of this feature are associated with increased re-
sistance to stable reverse migration (remaining impaired 
or fluctuating).

Latency model (survival model)

For susceptible individuals (Z=0), the time to stable 
reverse migration (T) is modeled using the Cox propor-
tional hazards model (Equation 6):

6. h(t|x)=h0(t)exp(xTγ),

where x represents the same set of baseline covariates 
as in the incidence model, and γ are the associated co-
efficients. Here, γ captures the effect of each covariate 
on the rate of stable reverse migration. A negative γk for 
a clinical or neuroimaging feature suggests that higher 
values of this feature are associated with a longer time to 
stable reverse migration (slower recovery).

The hdcuremodels package

The hdcuremodels package in R provides a penalized 
approach for fitting MCMs in high-dimensional settings. 
By applying regularization techniques such as LASSO 
or elastic net, it selects the most predictive features while 
guarding against overfitting. This functionality is par-
ticularly beneficial for analyzing large sets of structural 
MRI biomarkers, as it narrows down variables to those 
most relevant for understanding cognitive recovery and 
resistance to recovery.

The package offers functions for model fitting, cross-
validation, and diagnostic assessments, creating a ro-
bust framework for identifying and validating the key 
biomarkers in MCI. In this work, we fitted penalized 
MCM using the LASSO penalty. In addition to evalu-
ating the predictive performance of penalized MCM, 
we employed two key metrics: The C-concordance in-
dex (C-index) and the area under the receiver operating 
characteristic curve (AUC). These metrics help assess 
the model's ability to accurately predict the latency and 
incidence components of the MCM, respectively (Fu et 
al., 2022a). Details on feature selection, model assess-
ment, and uncertainty in the estimations are provided in 
Supplementary A.

3. Results

Description of baseline clinical characteristics 
between study groups

Among the 185 participants with a baseline CDR score 
of 0.5, 36 were categorized as stable reverse migrators 
and 149 as impaired or fluctuated. The groups did not 
differ significantly in gender, SES, BMI, age at entry, or 
education levels. Significant differences were observed 
in APOE ε4 status, with the impaired or fluctuated group 
having a higher median value (P=0.0062). Addition-
ally, stable reverse migrators exhibited slightly higher 
median MMSE scores (P=0.0042) and lower functional 
impairment in daily activities as measured by the FAS 
(P<0.0012). Other clinical measures, including the NPI-
Q and GDS, did not differ significantly between groups 
The baseline demographic and clinical characteristics of 
participants are summarized in Table 1.

Assessing the MCM assumptions

Kaplan-Meier (KM) analysis (Figure 2) revealed that 
a substantial portion of participants did not experience 
stable reverse migration, as indicated by a prolonged 
plateau in the survival curve. We estimated a significant 
cure fraction of 34% (P=0.005), confirming the presence 
of a non-zero cured population. Additionally, the follow-
up duration was sufficient to support the reliability of our 
findings (P=0.006).

Penalized MCM outcomes: Latency component

The penalized MCM identified several standardized 
structural MRI features significantly associated with the 
rate of stable reverse migration from a CDR score of 0.5 
to 0 (Table 2). Features with HRs deviating by less than 
10% from 1 were excluded, as such small deviations are 
unlikely to be clinically significant. Features with HR 
greater than one, such as left rostral middle frontal thick-
ness (hazard ratio [HR]=2.06), left medial orbitofron-
tal volume (HR=1.37), right supramarginal thickness 
(HR=1.24), and right precentral thickness (HR=1.18), 
were linked to faster recovery rates.

Conversely, features with HR less than one, including 
right frontal pole thickness (HR=0.48), right transverse 
temporal volume (HR=0.50), left pericalcarine thickness 
(HR=0.73), left frontal pole volume (HR=0.79), right 
inferior temporal volume (HR=0.85), and left posterior 
cingulate thickness (HR=0.86), were associated with 
slower recovery rates. The increase in these features sug-
gests that larger values may reflect maladaptive neuro-
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plasticity, where the brain may compensate in ways that 
are not conducive to cognitive recovery. These structural 
changes could represent early neurodegenerative pro-
cesses that impair brain function over time, limiting the 
potential for full recovery.

Additionally, the clinical measure total NPI-Q was 
significantly associated with a slower recovery rate 
(HR=0.8163). This further supports the idea that neuro-
psychiatric symptoms hinder cognitive recovery by in-
terfering with essential neural circuits for memory and 
executive function.

Penalized MCM outcomes: Incidence component

Similar to the latency component, the penalized MCM 
identified several structural MRI features and clinical 
measures significantly associated with the probability of 
resistance to stable reverse migration (Table 3). Struc-
tural features with odds ratios (OR) greater than one, 
such as left bankssts volume (OR=2.21), right superior 
frontal thickness (OR=1.68), right supramarginal thick-
ness (OR=1.48), and right inferior parietal thickness 
(OR=1.30), were linked to higher odds of remaining 
impaired or fluctuating. These features, particularly in 
regions involved in higher cognitive functions and sen-
sory integration, may reflect maladaptive compensatory 
mechanisms or neuroplasticity, which might hinder re-
covery and contribute to resistance to reverse migration.

Table 1. Demographic and clinical characteristics of stable reverse migrators and impaired or fluctuated participants at baseline

Characteristic
No. (%)/ Median (IQR)

P
Impaired or Fluctuated (n=149) Stable Reverse Migration (n=36)

Gender
Female 64(43) 16(44)

0.87*

Male 85(57) 20(56)

SES 2 (1–3) 2.00 (1=3) 0.17#

Unknown 2 0

BMI 26.7 (24–30.1) 26.9 (24.6=30.9) 0.35#

Unknown 36 9

Age at entry (y) 72 (68=77) 73 (68=77) 0.80#

EDUC 16 (12=16) 16 (13.75=18) 0.15#

APOE 34 (33=34) 33 (33=34) 0.006#

Unknown 2 0

MMSE 27 (25=29) 28.5 (27=29) 0.004#

Total NPIQ 2 (0=4) 1 (0=4.3) 0.24#

Unknown 7 0

GDS 2 (1=4) 1 (0=3) 0.13#

Unknown 9 1

Total FAS 3 (1=6) 1 (0=2) <0.001#

Unknown 7 0

Abbreviations: BMI: Body mass index; EDUC: Education; GDS: Geriatric depression scale; MMSE: Mini-mental state 
examination; FAS: Functional assessment scale; SES: Socioeconomic status. 

*The Pearson’s chi-squared test, #The Wilcoxon rank sum test.
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Conversely, features with OR less than one, including 
left pars orbitalis thickness (OR=0.56), right perical-
carine thickness (OR=0.73), and left insula thickness 
(OR=0.75), were associated with lower odds of resis-
tance to recovery, suggesting that decreased cortical 
thickness in these regions could be linked to a better 
likelihood of recovery.

Additionally, higher BMI (OR=1.20) increased the 
odds of remaining impaired, while higher FAS scores 
(OR=0.51) reduced the odds of resistance to recovery, 
indicating the significant role of functional abilities and 
BMI in predicting recovery outcomes.

Model performance assessment: C-concordance 
index and AUC

The penalized MCM demonstrated strong predictive 
performance, assessed using the C-concordance index 
(C-index) and AUC based on 2000 bootstrap samples. 
The C-index evaluates how well the model predicts the 
timing of stable reverse migration, with a value of 0.845 
(95% CI, 0.843%, 0.872%), indicating excellent accu-
racy in identifying individuals likely to recover sooner 
compared to those who recover later or not at all.

The AUC measures the model's ability to classify in-
dividuals as resistant or susceptible to stable reverse 

migration. The AUC value of 0.905 (95% CI, 0.900%, 
0.905%) highlights the model's strong classification per-
formance. These results validate the model's robustness 
in predicting recovery timing and resistance likelihood 
in individuals with MCI.

4. Discussion

In this study, we adopted a penalized MCM to exam-
ine the dual pathways of recovery (stable reverse migra-
tion) and resistance to it. This approach distinguishes 
our work from traditional analyses by capturing both 
the subgroup of participants who genuinely revert to 
NC and remain there, as well as those who resist stable 
recovery. By integrating high-dimensional neuroimag-
ing features and key clinical variables (e.g. BMI, FAS 
scores) into the same modeling framework, we have 
offered a more comprehensive understanding of the 
factors influencing cognitive trajectories. The robust 
performance indices (C-index and AUC) underscore the 
reliability of this method in identifying specific brain re-
gions and clinical measures that either facilitate recov-
ery or predispose individuals to sustained impairment. 
This uniqueness lies in the model's ability to illuminate 
how structural and clinical factors interact to shape not 
just the risk of decline, but also the realistic potential for 
cognitive improvement.

Figure 2. The KM survival curve for time to stable reverse migration 

Note: The survival curve illustrates the proportion of individuals who achieved stable cognitive recovery (i.e. a return to a CDR 
score of 0 without further decline). A key observation is the prolonged plateau in the survival curve, which indicates that a 
significant portion of participants did not experience stable reverse migration.
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Table 3. Structural MRI features significantly associated with the probability of resistance to stable reverse migration (stan-
dardized variables)

Feature OR Log (OR)
95 % Confidence Interval for Log(OR)

Lower Upper

Left bankssts volume 2.20527 0.79085 0.79007 0.85552

Right superior frontal thickness 1.67888 0.51813 0.51606 0.63579

Right supramarginal thickness 1.47661 0.38975 0.36898 0.38995

Left parahippocampal thickness 1.47475 0.38849 0.37692 0.39064

Right inferior parietal thickness 1.29878 0.26143 0.06078 0.26522

Left superior parietal thickness 1.29018 0.25478 0.16287 0.25611

Left parahippocampal volume 1.16966 0.15672 0.15283 0.35849

Right caudal middle frontal thickness 1.11447 0.10838 0.08917 0.10945

Left insula thickness 0.75173 -0.28538 -0.28617 -0.21287

Right pericalcarine thickness 0.73134 -0.31287 -0.33834 -0.31185

Left pars orbitalis thickness 0.56175 -0.57669 -0.66175 -0.57494

Note: OR is the odds ratio for being resistant to stable reverse migration (remaining impaired or fluctuating rather than revert-
ing to NC). All features were standardized before model fitting; thus, the OR corresponds to a one-standard-deviation increase 
in each feature. A value above 1 indicates higher odds of non-recovery from MCI.

Table 2. Structural magnetic resonance imaging (MRI) features significantly associated with the rate of stable reverse migration 
(standardized variables)

Feature HR Log (HR)
95 % Confidence Interval for Log (HR)

Lower Upper

Right rostral middle frontal thickness 2.06085 0.72312 0.65001 0.72315

Left medial orbitofrontal volume 1.36537 0.31142 0.23835 0.31435

Right supramarginal thickness 1.23912 0.2144 0.21342 0.42125

Right precentral thickness 1.18059 0.16601 0.06595 0.17085

Left posterior cingulate thickness 0.86049 -0.15025 -0.1518 -0.04232

Right inferior temporal volume 0.8485 -0.16429 -0.20864 -0.14163

Left frontal pole volume 0.79074 -0.23479 -0.23945 -0.07098

Left pericalcarine thickness 0.72522 -0.32129 -0.33971 -0.31857

Right transverse temporal volume 0.49906 -0.69504 -0.69967 -0.61866

Right frontal pole thickness 0.48289 -0.72797 -0.87341 -0.72451

Note: HR is the hazard ratio for stable reverse migration. All features were standardized before model fitting; thus, the HR 
corresponds to a one-standard-deviation increase in each feature. A value above 1 indicates a higher rate of stable reverse 
migration.
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Description of baseline clinical characteristics 
between study groups

The analysis of baseline clinical characteristics be-
tween the stable reverse migrators and impaired or fluc-
tuated groups revealed only modest differences. While 
these variables may not exhibit stark contrasts at the 
group level, they could serve as early indicators of tra-
jectories toward stable reverse migration (recovery) or 
resistance to recovery. Such baseline factors provide 
valuable insights into potential predictors of cognitive 
outcomes and may guide targeted interventions.

The lack of significant differences in demographic fac-
tors such as gender, SES, and BMI is consistent with 
some previous studies that highlight the limited role of 
these variables in early cognitive trajectories. However, 
their subtle contributions should not be dismissed. SES 
and BMI, for instance, have been linked to long-term 
cognitive health in broader populations, with SES re-
flecting access to resources and cognitive stimulation 
(Stern, 2002) and BMI indicating systemic health influ-
ences on the brain (Kim et al., 2016). While these vari-
ables may not directly differentiate recovery and resis-
tance at baseline, they could interact with other factors 
over time, influencing long-term trajectories.

The observed differences in APOE ε4 status under-
line its role as an important early indicator of resistance 
to recovery. Individuals in the impaired or fluctuated 
group exhibited a higher prevalence of APOE ε4, align-
ing with its established association with increased amy-
loid beta deposition and reduced synaptic plasticity (Liu 
et al., 2013). This genetic predisposition may set the 
stage for more pronounced cognitive challenges, mak-
ing APOE ε4 a critical focus for early risk assessment 
and intervention.

Baseline cognitive function, as measured by MMSE 
scores, demonstrated significant differences between 
groups, even though the differences were small at entry. 
These findings highlight the potential of MMSE as an 
early marker of stable reverse migration, emphasizing 
that even slight variations in cognitive function at base-
line should not be overlooked. The higher MMSE scores 
observed in the stable reverse migrators group suggest 
that individuals with better baseline cognitive abilities 
may possess greater neural reserve, enabling recovery 
despite underlying neuropathology (Stern, 2002). This 
finding underscores the importance of routine cognitive 
assessments to identify individuals with a higher likeli-
hood of recovery and to implement early cognitive train-
ing programs that enhance compensatory mechanisms.

Functional impairment in daily activities, captured 
by the FAS, was another significant differentiator be-
tween groups. Stable reverse migrators demonstrated 
lower FAS at baseline, highlighting the importance of 
functional assessments as predictors of recovery. FAS 
not only reflects cognitive health but also points to an 
individual's ability to engage in adaptive behaviors and 
maintain quality of life, which are critical for successful 
recovery (Teng et al., 2010).

The absence of significant differences in neuropsychi-
atric symptoms, as measured by the NPI-Q and GDS, 
suggests that these factors may not serve as strong early 
indicators of cognitive recovery or resistance to recovery 
in the current subpopulation of the dataset. This finding 
contrasts with several studies that emphasize the role 
of depression and behavioral symptoms in accelerat-
ing cognitive decline (Enache et al., 2011; Wilks et al., 
2024). However, it is possible that, in this specific co-
hort, genetic factors and cognitive biomarkers—such as 
gray matter volume and cortical thickness—may over-
shadow the influence of psychiatric symptoms, particu-
larly at baseline. This finding aligns with recent findings 
in the meta-analysis by Mallo et al. (2020), which shows 
that while psychiatric symptoms are generally associated 
with cognitive decline, heterogeneity across studies indi-
cates that these symptoms may not always serve as sig-
nificant predictors, especially in the early stages of MCI.

In summary, the baseline variables such as APOE ε4 
status, MMSE scores, and FAS scores stand out as sig-
nificant predictors, highlighting the potential for targeted 
early interventions. 

Latency component of the MCM: Predictors of 
stable recovery

The latency component of the penalized MCM re-
vealed a complex interplay of structural MRI features 
and clinical measures in predicting the rate of stable re-
verse migration. These findings underscore the impor-
tance of both neuroanatomical characteristics and clini-
cal factors in shaping cognitive recovery, highlighting 
that while some structural features are associated with 
faster recovery, others may hinder it, challenging the 
traditional assumption that larger cortical thickness or 
greater volumes are universally protective.

The positive association of left rostral middle frontal 
thickness with faster recovery aligns with the well-doc-
umented role of the frontal cortex in executive functions 
and cognitive flexibility (Sattari et al., 2022; Stuss & 
Levine, 2002). The frontal cortex is critically involved in 
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processes such as planning, cognitive control, and work-
ing memory. Thus, increased cortical thickness in this 
region may support neuroplasticity, allowing individu-
als to recruit compensatory neural networks, facilitating 
cognitive recovery more effectively. This finding is con-
sistent with prior research suggesting that preserved or 
enhanced structural integrity in the frontal regions may 
bolster cognitive reserve and support adaptive mecha-
nisms (Stern, 2002).

Similarly, the association between left medial orbito-
frontal volume and faster recovery highlights the im-
portance of regions involved in emotional regulation, 
decision-making, and reward processing (Rolls, 2019). 
These findings are in line with prior work suggesting 
that structural integrity in areas related to emotional pro-
cessing could aid cognitive recovery, especially in the 
context of MCI, where maintaining emotional and cog-
nitive stability is crucial.

However, the negative associations observed in regions 
such as right frontal pole thickness (HR=0.48) and right 
transverse temporal volume (HR=0.50) challenge the 
notion that larger cortical measurements in these areas 
necessarily predict better outcomes. These results are 
consistent with recent findings (Williams et al., 2023) 
indicating that increased cortical thickness or volume in 
certain regions may not always be protective. Instead, 
these features may reflect maladaptive neuroplasticity 
or pathological processes such as neuroinflammation or 
tau pathology, which are associated with slower recov-
ery rates (Dickerson et al., 2009). The frontal pole and 
transverse temporal regions are involved in higher-order 
cognitive functions such as decision-making and audito-
ry processing, and alterations in these regions may signal 
early disruptions in the brain's compensatory capacity, 
preventing successful cognitive recovery.

Additionally, the moderate negative associations found 
in regions like left pericalcarine thickness (HR=0.73) 
and left frontal pole volume (HR=0.79) support this nu-
anced interpretation. These areas, involved in visual pro-
cessing and executive integration, show that increased 
thickness or volume in these regions may not necessarily 
promote recovery. Instead, they may reflect compensa-
tory neural processes that, while initially adaptive, are 
inefficient in the long term. This observation diverges 
from previous studies that have emphasized the protec-
tive nature of cortical integrity in these regions (Stern, 
2002), highlighting the importance of understanding re-
gional specificity in recovery pathways.

Clinical assessments also played a role in predicting 
recovery outcomes. The higher total NPI-Q scores, 
which indicate a greater neuropsychiatric burden, were 
associated with slower recovery rates. This finding is 
consistent with earlier studies linking neuropsychiatric 
symptoms, particularly depression and anxiety, with 
reduced cognitive recovery (Enache et al., 2011). Neu-
ropsychiatric symptoms may interfere with recovery-
promoting behaviors, such as cognitive engagement and 
physical activity, and may exacerbate neurobiological 
stress, hindering the neuroplasticity required for suc-
cessful recovery.

In conclusion, the latency component of the MCM 
highlights the complexity of recovery trajectories in in-
dividuals with CDR=0.5. Increased cortical thickness 
and volume in certain regions facilitate recovery, while 
in others, such structural changes may hinder it, suggest-
ing maladaptive neuroplasticity or the presence of early 
neurodegenerative processes. These findings empha-
size the importance of regional specificity in interpret-
ing structural biomarkers and caution against viewing 
cortical measurements as universally protective factors. 
Future research should aim to delineate the underlying 
mechanisms of these contrasting effects, focusing on the 
interplay of structural changes, neuropsychiatric symp-
toms, and recovery-promoting interventions.

Incidence component of the MCM: Predictors of 
resistance to stable recovery

The incidence component of the penalized MCM pro-
vides important insights into the structural and clinical 
factors that increase the likelihood of individuals remain-
ing in an impaired or fluctuating state rather than achiev-
ing stable reverse migration. These findings offer a critical 
perspective on the barriers to cognitive recovery and high-
light potential avenues for targeted interventions.

Key structural MRI features identified as contributors to 
resistance to recovery included regions, such as the left 
bankssts volume, right superior frontal thickness, and left 
parahippocampal thickness and volume. Notably, the left 
bankssts volume demonstrated the strongest association, 
with an odds ratio of 2.21, indicating that a 1 standard 
deviation increase in this region more than doubles the 
odds of remaining impaired. This finding aligns with prior 
studies suggesting that larger cortical volume in certain 
regions may reflect compensatory but inefficient neuro-
plasticity, where the brain attempts to maintain function 
but with limited success, potentially due to maladaptive 
structural changes (Dickerson et al., 2009).
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Similarly, right superior frontal thickness (OR=1.68) 
and left parahippocampal thickness (OR=1.48) were as-
sociated with slower recovery rates. These regions are 
involved in cognitive functions such as memory integra-
tion, executive control, and sensory processing, indicat-
ing that disruptions or larger volumes in these areas may 
hinder the brain's capacity to engage in effective neuro-
plastic adaptation, leading to resistance to recovery. The 
findings suggest that larger structures in these areas may 
signal pathological neuroplasticity, preventing true cog-
nitive improvement.

Conversely, certain structural features were found to 
be protective against resistance to recovery. The left pars 
orbitalis thickness (OR=0.56) emerged as the most sig-
nificant protective factor, reducing the likelihood of re-
sistance by 44% for every 1 standard deviation increase. 
The right pericalcarine thickness (OR=0.73) and left 
insula thickness (OR=0.75) also exhibited protective ef-
fects, with smaller volumes in these regions associated 
with lower odds of resistance to recovery. These findings 
align with studies that emphasize the importance of pre-
served structural integrity in certain brain regions, which 
can promote neural resilience and functional recovery 
(Stern, 2002). Smaller volumes in these areas might in-
dicate efficient compensatory changes or structural in-
tegrity that supports cognitive recovery in individuals 
with MCI.

Clinical factors also played a crucial role in under-
standing resistance to recovery. Higher BMI (OR=1.2) 
was associated with an increased likelihood of remain-
ing impaired, aligning with existing literature that links 
obesity and systemic inflammation to cognitive de-
cline and neurovascular burden (Dye et al., 2017). On 
the other hand, higher functional status, as indicated by 
higher total FAS scores (OR=0.51), reduced the odds of 
resistance to recovery. This result is somewhat counter to 
typical findings, which generally associate greater func-
tional impairment with poorer recovery outcomes (Cum-
ming et al., 2008; Needham et al., 2012). However, our 
study suggests that individuals with higher functional 
impairment may have received more targeted interven-
tions or support, which could have facilitated recovery 
despite their higher FAS scores. This observation points 
to the importance of personalized interventions that take 
functional status into account.

These findings contribute to the growing body of evi-
dence that structural features interact in complex ways to 
influence resistance to cognitive recovery. While larger 
cortical volumes in certain regions, such as the bankssts, 
may reflect inefficient compensatory mechanisms, 

smaller structures in protective regions, such as the pars 
orbitalis and insula, may reflect areas where structural 
integrity promotes neural resilience. These results are 
consistent with recent studies challenging the assump-
tion that increased cortical thickness or volume is always 
beneficial. Instead, they highlight the need for a nuanced 
interpretation of these markers, considering their poten-
tial to either support or hinder cognitive recovery de-
pending on the context (de Chastelaine et al., 2023).

The findings from the incidence component under-
score the multifaceted nature of resistance to recovery. 
By identifying both risk and protective factors, this study 
provides a roadmap for personalized interventions. Strat-
egies such as targeted cognitive rehabilitation, weight 
management, and functional impairment training hold 
promise for reducing resistance to recovery and enhanc-
ing the likelihood of stable reverse migration.

Limitations and future research directions

While this study provides valuable insights into the 
predictors of recovery and resistance to stable reverse 
migration, several limitations should be acknowledged. 
Addressing these limitations in future research will en-
hance the robustness and applicability of the findings.

Sample characteristics and generalizability

The study focused on individuals with a baseline CDR 
score of 0.5, representing a specific cognitive trajectory. 
This approach allows for a detailed exploration of re-
covery and resistance but may not generalize to broader 
populations with different cognitive statuses or neuro-
logical conditions. Our study specifically addresses the 
underexplored transition from CDR=0.5 to CDR=0, 
which has received limited attention in previous studies, 
including Duran et al. (2022) and Wilks et al. (2024).

While this focused approach is a strong point, it also 
presents a limitation in terms of sample characteris-
tics. Future research should include individuals with 
other cognitive states, such as those with NC (CDR=0) 
or more advanced cognitive impairments (CDR >0.5), 
and more diverse demographic cohorts. This approach 
would help clarify the generalizability of our findings 
and identify unique predictors of cognitive recovery and 
resistance across different cognitive stages. 

Additionally, our study used a ±1-year window for 
matching clinical and MRI data, which was necessary 
for dataset completeness but may have introduced vari-
ability in the temporal alignment of assessments. This 
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temporal mismatch could affect the precision of the ob-
served relationships between neuroimaging features and 
clinical outcomes. 

To further validate our findings and explore their appli-
cability across different contexts, future research could 
apply the model to datasets from studies such as Duran 
et al. (2022) or Wilks et al. (2024). Comparative analysis 
of these datasets could provide additional insights and 
strengthen the generalizability of our results across vary-
ing populations and clinical settings.

Complex dynamics of feature influence in MCM 
components

The results of the MCM highlight how structural MRI 
features influence the rate of stable reverse migration 
(latency) and resistance to recovery (cure component). 
While most features exhibit expected patterns—where 
protective effects on recovery rates align with reduced 
resistance—one feature demonstrates a distinct and par-
adoxical role.

Right supramarginal thickness is associated with HR 
>1 (1.24) in the latency component and OR >1 (1.48) in 
the cure component. This paradoxical pattern suggests a 
complex, context-dependent role for this feature. It may 
facilitate reverse migration by enhancing compensatory 
mechanisms or structural resilience in individuals pre-
disposed to recovery (Stern, 2002). Under certain condi-
tions, it might contribute to resistance, possibly due to 
the persistence of pathological states in individuals with 
greater impairments (de Chastelaine et al., 2023; Wil-
liams et al., 2023).

The duality in the effects of right supramarginal thick-
ness is rare but not unprecedented in the literature on 
cure models. It underscores the complexity of structural 
brain features in recovery dynamics, reflecting potential 
heterogeneity in their mechanisms of action across dif-
ferent subpopulations or clinical contexts. Alternatively, 
the feature may represent a proxy for two competing 
processes: Promoting compensatory mechanisms in 
some individuals while reflecting maladaptive structural 
changes in others. This paradoxical role aligns with re-
cent conceptualizations of cortical thickness alterations, 
which propose that regional brain metrics may serve as 
biomarkers for adaptive or maladaptive processes de-
pending on the pathological context (Dickerson et al., 
2009; Stern, 2002).

These findings emphasize the multifaceted roles of 
structural MRI features in the recovery process. Future 
research should explore the mechanisms underlying 
these dynamics to tailor interventions that maximize re-
covery potential and minimize resistance, ultimately im-
proving patient outcomes. Validation using multi-modal 
imaging techniques such as positron emission tomogra-
phy (PET) and functional MRI (fMRI), along with cross-
validation in independent datasets (e.g. ADNI, AIBL), 
will be essential to better understand these complex rela-
tionships and their implications for clinical practice.

Potential interventions and causality

The study's observational design limits its ability to es-
tablish causal relationships between identified predictors 
and cognitive outcomes. Interventional studies that target 
modifiable factors, such as functional impairment in dai-
ly activities or BMI, will be critical for confirming their 
causal roles in recovery or resistance. Moreover, explor-
ing the efficacy of interventions tailored to specific struc-
tural vulnerabilities, such as neuromodulation or cognitive 
training focused on regions like the frontal pole or para-
hippocampal cortex, could yield actionable insights.

5. Conclusion

This study provides a nuanced understanding of cogni-
tive trajectories in individuals with CDR=0.5, highlight-
ing the dual pathways of stable reverse migration (recov-
ery) and resistance to recovery. By using the penalized 
MCM, we identified key structural MRI features and 
clinical measures that predict both recovery likelihood 
and timing. Key regions such as the left rostral middle 
frontal cortex and left medial orbitofrontal volume facili-
tate recovery, while right frontal pole and left bankssts 
volume are linked to resistance. These findings empha-
size that increased cortical thickness or volume can ei-
ther promote recovery or reflect maladaptive neuroplas-
ticity, depending on the region.

This work also highlights the importance of address-
ing modifiable factors like neuropsychiatric symptoms 
and BMI. Lifestyle interventions, including weight man-
agement, physical activity, and psychiatric care, may 
enhance recovery outcomes. These results underscore 
the need for personalized interventions that combine 
neuroimaging, psychiatric management, and lifestyle 
modifications to optimize cognitive recovery. This work 
bridges structural neuroscience and clinical practice, lay-
ing the foundation for future research aimed at develop-
ing targeted strategies to maintain cognitive health. 
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Supplementary A 

Estimation with the hdcuremodels package

The hdcuremodels package estimates the parameters of 
the mixture cure model using the maximum penalized 
likelihood approach (Fu et al., 2022; Fu & Archer, 2024). 
This method integrates both the cure (resistance to re-
covery) and survival (time of stable reverse migration) 
components in a unified manner. The package is particu-
larly well-suited for high-dimensional datasets, such as 
those involving neuroimaging biomarkers, enabling ro-
bust parameter estimation and variable selection.

Complete-data likelihood

In the complete-data likelihood function for the mix-
ture cure model, Zi is the observed cure status and δi is 
the censoring indicator, where δi=1 indicates that the 
individual experienced stable reverse migration (event 
is observed), and δi=0 indicates that the event is right-
censored. The complete-data likelihood is given by:

LC (θ)=∏η (xi)
Zi [1-η(xi)]

1-Zi[h (ti | Zi=0,βi )
δi S(ti |Zi=0,βi 

) ]1-Zi,

where η(xi) is the probability of being resistant to 
recovery, modeled as η(xi)=

exp(xi
Tβ)

1+exp(xi
Tβ). The term 

h(ti|Zi=0, βi) is the hazard function for a susceptible in-
dividual (Zi=0), which captures the instantaneous risk 
of experiencing stable reverse migration at time ti. The 
survival function S(ti Zi=0,βi) represents the probability 
that a susceptible individual has not experienced stable 
reverse migration by time ti, and is defined as S(ti|Zi=0, 
βi )=exp(-∫0

ti) h (s|Zi=0, βi) ds).

Penalized complete-data log-likelihood

To improve estimation in high-dimensional settings, 
the hdcuremodels package applies a LASSO penalty 
to the complete-data log-likelihood. The penalized log-
likelihood is expressed as:

lp (β, γ, λ, ν)=logLC(β, γ, λ, ν)-λβ 
p

j=1
∑ | βj| -λγ 

q

k=1
∑|γk|,

where logLC (β, γ, λ, ν) is the log of the complete-data 
likelihood. The terms λβ∑

p
j=1 |βj| and λγ

q

k=1
∑|γk| represent the 

LASSO penalties applied to the cure model coefficients 
(β) and survival model coefficients (γ), respectively. 
These penalties enforce sparsity, allowing the model to 
select the most important covariates while regularizing 
the estimation process.

Tuning hyper parameters (λβ and λγ)

The optimal values of the tuning parameters, λβ and λγ, 
for both cure and latency components were determined 
using the 5-fold cross-validation method. Using two 
separate 5-fold cross-validation procedures for the cure 
and latency components allowed us to tune each part of 
the model independently, ensuring that both components 
were optimized for their respective predictive goals. 
the one standard error rule is applied for selecting the 
optimal parameters. This error rule selects the simplest 
model whose evaluation criterion is no more than one 
standard error worse than the best model’s evaluation 
criterion. This dual optimization strategy was particu-
larly important given the different objectives of the cure 
component (identifying individuals likely to be cured) 
and the latency component (modeling time of rever-
sion or progression). The implementation of the cross-
validation method was facilitated by the hdcuremodels 
package, which provides efficient tools for performing 
cross-validation and selecting optimal tuning parameters 
(Fu & Archer, 2024).

Assessing model assumptions

Testing the cure fraction

The KM survival curve for the dataset revealed a long 
plateau that did not drop to zero, suggesting that some 
individuals remained event-free throughout the study pe-
riod. This plateau is indicative of the presence of a non-
zero cure fraction, implying that there is a significant 
subgroup of resistance to stable reverse migration. The 
presence of such a plateau provides visual evidence sup-
porting the use of a cure model. To further validate this 
observation, we performed a hypothesis test as described 
by Maller et al., (1996) in which the null hypothesis is 
that the cured fraction is zero (η=0).

FU test for sufficient follow-up

To further ensure that the cure model is appropriate, it is 
crucial to verify that the follow-up duration is sufficient 
to observe the events of interest. This involves assessing 
whether the follow-up time was adequate to capture both 
the stable reversion from CDR=0.5 to CDR=0 and the 
potential resistance to this event. We employed the Fu 
test, which tests the null hypothesis that the follow-up 
duration is insufficient.

N

i=1
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Bootstrap for quantifying uncertainty in model 
estimation

The following steps outline how the bootstrap method 
(Davison, 1997) was applied to the high-dimensional 
cure model:

Resampling and model refitting: Using the random 
permutation method, 2000 bootstrap samples were gen-
erated by resampling the original dataset with replace-
ment. For each resampled dataset, the high-dimensional 
cure model was refitted to obtain new estimates of the 
regression coefficients and performance indices.

Empirical distribution: For each regression coefficient 
and performance indices, the bootstrap process yielded 
an empirical distribution. This distribution allows us to 
estimate the variability and uncertainty of the param-
eter estimates effectively. By analyzing these empirical 
distributions, we are able to determine the robustness of 
each coefficient.

 Confidence interval construction: 95% confidence in-
tervals were derived using the bootstrap percentile meth-
od, which involves taking the 2.5th and 97.5th percentiles 
of the bootstrap distribution for each parameter estima-
tion. This approach provides a non-parametric way to as-
sess the precision of our model estimates without mak-
ing assumptions about the normality of the data.
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