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Introduction: Behavior contagion in social decision-making refers to the alignment of an 
individual’s behavior and decisions with those of others in social interactions. Despite previous 
studies in the field, it remains necessary to understand how brain activities are spatiotemporally 
organized during contagion. Since brain activities include both positive and negative 
fluctuations, monitoring these occurrences in a polar space using a visibility graph (VG) can 
aid in a better understanding of this phenomenon.

Methods: We subjected a healthy group to a psycho-economic task while their EEG was 
simultaneously recorded. The participants’ performances were compared before and after 
observation of others’ preferences in a dictator game task. Subsequently, two groups were 
differentiated based on their behavior contagion rate. Then, the VGs of event-related 
potentials (ERPs) in both contagion and non-contagion groups were compared before and 
after observation. 

Results: Our results indicated that the VG features differentially change in various EEG 
channels. For instance, changes in clustering coefficient, modularity, and efficiency of VGs 
suggested that the number of ERP components varies after contagion, specifically at the 
frontal, frontocentral, centroparietal, and parietal regions. 

Conclusion: This result may raise questions about the ERP analysis of contagion, particularly 
when using the same number and length of components (e.g. P300) for comparing ERPs 
before and after contagion. 
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1. Introduction

everal neurobehavioral mechanisms, in-
cluding trust, social influence, observa-
tional learning, conformity, and behavioral 
contagion, influence human social deci-
sion-making. These mechanisms have been 

extensively studied in social and cognitive neuroscience 
(Charpentier et al., 2020; Mahmoodi et al., 2022; Rilling 
& Sanfey, 2011; Zhang & Gläscher, 2020), often through 
a neuroeconomic approach that employs experimen-
tal designs derived from game theory (Lee, 2008; Rid-
derinkhof et al., 2004; Sanfey, 2007). One particularly 
important phenomenon in social decision-making is be-
havioral contagion, which refers to how the choices of 
others influence an individual’s decision (Suzuki et al., 
2016; Thomas et al., 2022). This contagion can manifest 
in both positive (e.g. altruistic or prosocial) and nega-
tive (e.g. risky or antisocial) behaviors, each governed 
by complex neurobehavioral processes (Dimant, 2019; 
Martínez et al., 2023; Suzuki et al., 2016; Tsvetkova & 
Macy, 2014). Such a phenomenon has been investigated 
using neuroimaging techniques like electroencephalog-
raphy (EEG) and functional magnetic resonance imag-
ing (fMRI). For instance, Suzuki et al. (2016) showed 
that the contagion of risky behaviors due to observing 

the dangerous behavior of others can be explained by 
a neurocomputational approach. In this regard, EEG-
based analysis has raised interest because of its high 
temporal resolution.

Electrophysiological studies, particularly those utiliz-
ing event-related potentials (ERPs), have traditionally 
been used to examine decision-making processes. These 
studies typically analyze ERP components based on two 
factors: Amplitude and latency (Congedo, 2018; Dono-
ghue & Voytek, 2022). One of the shortcomings and 
challenges in past ERP time series studies is the num-
ber of components and the time windows of the compo-
nents. These deficiencies could be covered by visibility 
graph (VG) analysis, as a promising method for under-
standing the nonlinear dynamics of neural time series 
data. Unlike conventional ERP analysis, VG maps time 
series data into a graph structure, which enables us to 
identify hidden patterns within high-volume sequential 
data (Sannino et al., 2017; Sengupta et al., 2013; Sulai-
many & Safahi, 2023; Zheng et al., 2021). Prior research 
suggests that behavioral contagion influences ERP time 
series (Deldoost et al., 2024), making it important to ex-
plore new analytical frameworks that can capture these 
dynamics more effectively. Because ERP time series 
contain both positive and negative fluctuations, examin-

Highlights 

● Behavioural contagion altered clustering coefficient, modularity, and efficiency of the VG in the frontal and 
parietal lobes.

● Modularity and radius of VG had a correlation with behavioural contagion only in the contagion group.

● Findings suggest VG features serve as neural predictors of behavioural contagion. 

Plain Language Summary 

The behaviour of others often shapes human decisions. This phenomenon, known as behavioural contagion, plays a 
central role in social life. While this effect is well known, less is understood about how the brain organizes its activity 
when contagion occurs. In this study, we explored the brain mechanisms of behavioural contagion using a combination 
of psychology and neuroscience. Participants played a version of the dictator game, as a social decision task, while 
their brain activity was recorded with EEG. We compared their decisions before and after observing the choices of 
others and divided them into two groups: Those whose decisions changed (contagion group) and those who remained 
consistent (non-contagion group). To analyze EEG signals, we used visibility graph (VG) analysis. We found that 
behavioural contagion was associated with distinct changes in brain networks, especially in frontal and parietal regions. 
Two features of these networks—modularity and radius—were strongly linked with behavioural contagion, suggesting 
that they may serve as neural markers of contagion. Our findings highlight a new way to study how social influence 
shapes human decision-making. By applying the VG to brain signals, we show that the organization of brain activity 
can help explain why some individuals are more susceptible to the behaviour of others. 
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ing them in polar space through graph-based methods 
may provide deeper insights into contagion effects. Giv-
en its ability to model complex nonlinear phenomena, 
VG analysis presents a compelling alternative to tradi-
tional ERP assessment methods (Congedo, 2018).

In this study, we apply VG analysis to ERPs associ-
ated with behavioral contagion in social decision-mak-
ing. The VG approach (Zheng et al., 2021) is a strong 
abstraction of time series ERP data based on points of 
high-volume sequential data (Lacasa et al., 2008). Our 
primary objective is to examine the characteristics of the 
graph structures derived from ERP data in individuals 
who exhibit behavioral contagion. Specifically, we aim 
to determine whether neural indicators of behavior con-
tagion can be identified through these graph-based fea-
tures, including clustering coefficient, local and global 
efficiency, path lengths, modularity, and radius. To in-
vestigate this, we designed an experiment based on the 
dictator game, a well-established task in neuroeconom-
ics and game theory, while simultaneously recording 
brain electrical activity.

By leveraging this novel methodological approach, our 
research seeks to advance the understanding of neural 
mechanisms underlying behavioral contagion and con-
tribute to the development of new analytical techniques 
in cognitive neuroscience.

2. Materials and Methods

Study participants 

The study included 30 healthy participants aged be-
tween 20 and 30 years (mean age: 27±2.1 years), com-
prising 15 men and 15 women, who voluntarily entered 
the test based on public calls, and all were right-handed 
with no history of neurological or psychological disor-
ders and were not on any medication. Among them, 2 
participants were removed. Additionally, 6 USD was al-
located for one hour of testing. 

Stimuli and procedure

The experiment consisted of the following stages: A 
general description of the experiment and addressing 
participants’ questions, followed by the main phase of 
the test after a trial run to ensure their learning. During 
the behavioral task, a modified dictator game (it should 
be noted that various models of the dictator game have 
been used in research) (Engel, 2011), which may be 
interactive or non-interactive, was used, meaning the 
dictator and recipient can switch roles (Grech & Nax, 

2020). In this study, a non-interactive model was used, 
where the dictator does not receive feedback in the form 
of reward or punishment. Both anonymous and identi-
fied peer types are utilized in research (Rilling & San-
fey, 2011). Our version is similar to the paper by Fehr’s 
group (Krajbich et al., 2015), and the paradigm is identi-
cal to that of Mobasseri et al (2025). 

As Heinrich and Weinmann (2013) explained, in the 
classic dictator game introduced by Forsythe et al. 
(1994), the budget constraint has a slope of −1, reflect-
ing the fact that each cent transferred to the recipient 
decreases the dictator’s earnings by the same amount. 
However, in altered versions of the game, this trade-off 
rate—represented by the slope of the budget line—can 
differ (Heinrich & Weimann, 2013).

An EEG recording was also conducted simultaneously. 
These experimental stages are conceptually illustrated in 
Figure 1. Overall, the behavioral experiment consisted 
of three phases: Phase 1, which involved the individual’s 
own decisions; phase 2, which involved observing oth-
ers’ decisions (first predicting someone else’s choice and 
then observing); and phase 3, which involved the indi-
vidual’s own decisions.

General description of the experiment 

Preparation and familiarization with the 
experiment 

First, explanations about the generalities of the experi-
ment were provided, stating that the dictator game was 
explained to them, and it was emphasized that there is 
no concept of right/wrong or good/bad choices, nor any 
winning/losing in this experiment, to minimize potential 
effects of these factors. Then, the preparation of the EEG 
cap and device was done, and a trial was conducted to 
ensure the participant had learned the tasks.

Leaving the laboratory and starting the recording 

To prevent social priming of the participant by the ex-
perimenter (Gilder & Heerey, 2018), after ensuring that 
the participant fully understood the experiment and was 
briefed, the experimenter visibly left the laboratory and 
discreetly monitored the participant to minimize the effect 
of the experimenter’s presence on the participant’s deci-
sion-making. To reduce stress, they were advised to call 
out loudly whenever needed for the experimenter to come 
(although no one felt the need to do so during this time).
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End of the experiment and answering potential 
questions from the participant 

At this stage, potential questions from the participant 
were answered, and in addition to monetary compensation, 
a certificate of appreciation was also awarded to them.

Behavioural analysis

To observe the behavior contagion, based on similar 
studies (Suzuki et al., 2016), the differences between the 
decisions in the first and third phases of the experiment, 
that is, the differences between one’s decision-making 

before and after observing the decisions of others, were 
examined in such a way that the differences in trials in 
decision-making were calculated using MATLAB soft-
ware, version R2018b. Then, the participants were divid-
ed into two groups: Contagion and no contagion. Based 
on recent studies to determine the threshold, behavioural 
contagion rate was chosen (Mobasseri et al., 2025) such 
that participants with a difference in the number of deci-
sions in phases 1 and 3 greater than or equal to 6 were 
classified as the contagion group, while the remaining 
participants with a smaller difference were placed in the 
no contagion group.

Figure1. Experimental procedure

Figure 2. Schematic shape of the VG
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EEG recording and preprocessing

The data obtained from EEG was recorded using a 
64-channel gel-based device with a sampling rate of 
1000 Hz. Data acquisition was performed with a mono-
polar setup, and the EEG cap was placed on the subjects’ 
heads using the standard 10-20 method. 

In the preprocessing stage of the data, motion artifacts, 
eye blink noise, eye movement noise, EMG noise, and 
ECG noise were removed using the ICA method. A band-
pass filter from 0.1 to 30 Hz was applied to the data, which 
was processed using MATLAB-based software EEGLAB 
version 2023.0. The obtained data were then analyzed us-
ing ERPLAB version 9.20, considering a 200-ms window 
before and an 800-ms window after the stimulus.

Data analysis

VG 

After obtaining the ERP time series, these time series 
were analyzed using the VG analysis approach, such that 
the ERP time series for each EEG channel was consid-
ered input. After calculating the VG network analysis 
using Python software, version 3.8 with the NetworkX 

library, the values related to the VG were separately cal-
culated for each EEG channel for the first phase and the 
third phase of the experiment. The graph features includ-
ed clustering coefficient, path lengths, global efficiency, 
local efficiency, modularity, and radius. 

The VG is defined as below if and only if: 
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Figure 2. Schematic Shape of the Visibility Graph 
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 Statistical Analysis 

Behavioral data consisted of continuous integer types, and visibility graph data included 
clustering coefficient, path length, global efficiency, local efficiency, modularity, and radius 
of discrete type, all of which were continuous decimal types. After calculating the 
quantitative values of the graph features, the Kolmogorov-Smirnov test was used to check for 
normality. Then, considering the non-normal distribution of the data, the Wilcoxon signed-
rank statistical test was used to examine significance. Finally, the family-wise error (FWE) 
correction method with the Bonferroni-Hochberg approach was employed to determine the 
most significant components in each EEG channel for each graph feature to create the related 
maps and diagrams. 

Subsequently, the relationship between behavioral changes and significant changes in the 
brain graph features in the first and third phases of the experiment will be calculated using 
Pearson correlation. 

Results 
  

Behavioral Results  

x𝑚𝑚+𝑖𝑖 <  x𝑛𝑛  +  
(𝑛𝑛 −  𝑚𝑚 + 𝑖𝑖 )

𝑛𝑛 − 𝑚𝑚 (x𝑚𝑚  − x𝑛𝑛)         

 ∀𝑖𝑖 ∈  𝑍𝑍+∶  𝑖𝑖 <  𝑛𝑛 −  𝑚𝑚 

 

Figure 4. Overview of task paradigm

a) During the task, participants must choose between left and right options in each changing trial. (The amount of self/other 
is more than other/self in each random trial) This part is repeated in all phases, whereas phase 2 is the observational phase. 

b) In phases 1 and 3, the subjects must select and make decisions, but in phase 2, subjects must observe others’ decisions while 
they predict each of the other selections. The duration of each test phase was approximately 15 minutes and depended on the 
response time of the subjects.
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Statistical analysis

Behavioral data consisted of continuous integer types, 
and VG data included clustering coefficient, path length, 
global efficiency, local efficiency, modularity, and radius 
of discrete type, all of which were continuous decimal 
types. After calculating the quantitative values of the 
graph features, the Kolmogorov-Smirnov test was used 
to check for normality. Then, considering the non-nor-
mal distribution of the data, the Wilcoxon signed-rank 
statistical test was used to examine significance. Finally, 
the family-wise error (FWE) correction method with the 
Bonferroni-Hochberg approach was employed to de-
termine the most significant components in each EEG 
channel for each graph feature to create the related maps 
and diagrams.

Subsequently, the relationship between behavioral 
changes and significant changes in the brain graph fea-
tures in the first and third phases of the experiment will 
be calculated using Pearson correlation.

3. Results

Behavioral results 

The results of the behavioral data show that 13 individ-
uals were placed in the contagion group and 15 individu-
als in the no-contagion group, such that the individuals 
in the contagion group changed more than 6 decisions 
before and after the second phase (observing others’ 
behavior). The results of the behavioral analysis in the 
two groups, contagion and no contagion, are presented 
in Table 1.

After conducting the Wilcoxon statistical test in the 
first and third phases for the visibility features of the 
contagion group, significant channels with a P<0.05 for 
each feature are presented in Table 2.

The topoplots obtained from the averages and P of each 
feature of the VG are shown in Figure 5. These average 
topoplots are for phase 1 and phase 3 of the experiment, 
as well as for comparing phase 1 and phase 3 with P.

The first column indicates the average of features in 
phase 1, the second column indicates the average of fea-
tures in phase 3, and the third column indicates the P 
value of differences between phase 3 and phase 1. 

Note that A refers to clustering coefficient, B to global 
efficiency, C to local efficiency, D to path lengths, E to 
radius, and F to modularity.

For the relationship between behavioral changes and 
changes in each of the graph features, the most signifi-
cant EEG channel was calculated. According to Figure 
6, regression lines with coefficients r and P were drawn, 
showing that the highest significant relationship was 
for radius (r=0.689, P=0.009) and modularity (r=0.586, 
P=0.035).

4. Discussion

In this research, we sought a model for the brain mech-
anism of behavioral contagion based on the VG, as this 
type of modeling represents a novel approach for pro-
cessing brain signals according to previous studies (Su-
laimany & Safahi, 2023). Since the VG transforms time 
series data into a graph, we used this nonlinear model to 
analyze ERP data, as the nature of these brain signals is 
inherently complex and nonlinear (Poikonen et al., 2023; 
Zhang & Hu, 2024). After conducting behavioral experi-
ments and simultaneously recording EEG, we calculated 
the features of the VG for the ERPs obtained from it. For 
the contagion group, the results are observable in a topo-
plot for the mean and also the significance levels of the 
comparison between phases 1 and 3 of the experiment. 
On the other hand, considering the most significant EEG 
channels in this contagion group, the results indicate that 
the obtained clustering coefficient feature in channel P7 
is the most significant area of the brain for this feature. 
Additionally, for the obtained pathlengths feature, chan-
nel CP3 is the most significant, while for the obtained 
global efficiency feature, the most significant channel 
is also CP3. For the obtained local efficiency feature, 
the most significant channel is P7, and for the obtained 
modularity feature, the most significant channel is PO3. 
Furthermore, for the obtained radius feature, the most 
significant channel is also PO3. Given that these areas 
were exclusively observed in the contagion group, in 
behavior contagion, based on the results of the clus-
tering coefficient and local efficiency, individuals are 
more influenced by visual and spatial cues. Therefore, 
improving visual-spatial information processing should 
enhance sensitivity to the behavior of others, which is 
associated with increased social information processing 
through observing others. 

Regarding the results of global efficiency and path 
lengths in the left centroparietal region, it is associated 
with better integration of sensory-motor and social infor-
mation. Therefore, concerning the behavior contagion, 
it can be concluded that better coordination between 
observing the behaviors of others and decision-making 
for contagion is likely related. Additionally, the results 
of modularity in the PO3 region signify more indepen-
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Figure 5. Topoplots of VG features achieved from event-related potential signals
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dent and modular processing of spatial social informa-
tion. Thus, it can be concluded that regarding behavior 
contagion, there is more specialized processing of visual 
and social information in this area, with a greater focus 
on social cues, which may indicate a higher sensitivity 
to the behaviors of others that play an important role in 
behavior contagion. In addition to the results from ra-
dius, in the PO3 region, it can be concluded that this 

area of the brain may play an important role in the brains 
of individuals in the contagion group and sends pro-
cessed social information faster. Previous studies have 
also shown that the parieto-occipital region is related to 
the decision-making selection phase, which is corrobo-
rated by our findings in this study, showing alignment 
with previous results (Weinstein, 2023). Previous stud-
ies have shown that social influence is more related to 

Table 2. Significant channels for VG features in the contagion group

Significant Channels With P<0.05Feature

Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, FT7, FC5, FC3, FC1, FC6, C5, C3, C1, TP9, TP7, CP5, CP3, CP1, P7, P5, P3, P1, 
P2, PO3, POz, PO8, O1, Oz, O2Clustering coefficient

CP3Path length

FC5,C5,C1,CP5,CP3,CP1,P5,P6Global efficiency

Fpz, Fp2, AF3, F7, F5, F3, F1, FC5, FC3, FC1, C5, TP9, TP7, CP5, CP3, P7, PO3, O2Local efficiency

FC4, T7, PO3Modularity

PO3, PO8Radius

Table 1. Demographics of the subjects with behavioral contagion scores

No Contagion GroupContagion Group

Behavioral
ResultAge (y)GenderSubject IDBehavioral

ResultAge (y)Gender Subject ID

130Male11423Female1

-520Female2830Female2

125Female3825Male3

027Male4823Male4

-128Male5826Female5

128Male61530Female6

325Female7926Female7

024Female8623Male8

129Male91925Female9

-230Male10727Female10

-528Female111130Male11

227Male121130Male12

325Female131028Male13

130Male14Removed from the list14

125Female15Removed from the list15
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the DLPFC and TPJ regions. Our data in this study also 
aligns with previous results, suggesting that these areas 
play an effective role in the transmission of others’ be-
havior. Previous studies have shown that social decision-
making is more closely associated with vmPFC regions. 
This area is critical for prosocial decision-making in so-
cial decisions. Our findings in this study are consistent 
with previous results, and we may refer to the role of 
prosocial decision-making versus antisocial when mak-
ing decisions regarding the spread of behavior, which is 
associated with the involvement of this area of the brain 
(Lockwood et al., 2024). Additionally, previous studies 
have indicated that a specific neural network is engaged 
in decision-making under social influence, involving the 
rTPJ, DLPFC, and vmPFC regions. Our data in this study 
are consistent with these findings, further supporting the 
role of these brain regions in behavioral contagion and 
the networked nature of brain function (Hu et al., 2022). 
Moreover, prior research has demonstrated that the oc-
cipitoparietal region is associated with social conformity 
and behavioral contagion. Our findings also align with 
these studies, suggesting the crucial role of this region in 
the contagion of behavior (Berns et al., 2005). Consider-
ing that a significant correlation was observed only in 
the contagion group between modularity (r=0.7, P<0.05) 
and radius (r=0.6, P<0.05) with behavioral changes—
while this correlation was absent in the no-contagion 
group—it can be concluded that this relationship may 
serve as a specific neural marker for behavioral conta-
gion, indicating a neural mechanism underlying social 
imitation. Therefore, PO3 appears to be a brain region 
where increased processing differentiation (as reflected 
by the modularity index) and faster information integra-
tion (as indicated by the radius index) could lead to be-

havior contagion. In addition, given that the predictive 
indices of VG-based behavior contagion were observed 
more in the left side of the brain, it can be inferred that 
behavior contagion exhibits laterality in the brain.

One of the limitations of this study is the task design, as 
we generalized human-computer interaction to human-
human interaction. This study lacks face-to-face interac-
tion data and differs from real-world human communi-
cation conditions (Ibanez, 2022; Sonkusare et al., 2019). 
Therefore, future studies are recommended to use hyper-
scanning EEG recording, which allows for simultaneous 
brain activity recording of two individuals (Hakim et al., 
2023). Considering the different results obtained from 
various VG parameters across different channels, future 
research should utilize the VG analysis approach with 
community detection to distinguish ERP components 
better (Zheng et al., 2021), especially in studies related 
to behavioral contagion. Additionally, to account for cul-
tural effects (Henrich et al., 2023), since culture has a 
significant impact on the formation of our social norms 
and our judgment of others, perhaps the influence of cul-
ture could be considered important in the behavior con-
tagion. This is because if an altruistic or selfish behavior 
is to spread, individualistic or collectivistic cultural fac-
tors may be involved in our evaluation of the behavior 
and its contagion. In an individualistic culture, people 
are more focused on their personal interests and indi-
vidual goals, whereas in a collectivistic culture, people 
prioritize the group’s benefit. Studies show that people 
from collectivist cultures (e.g. East Asia, Latin America) 
tend to give more in the dictator game than those from 
individualist cultures (e.g. U.S., U.K.) (Henrich et al., 
2005). However, given the phenomenon of cultural evo-
lution and the complexity of modern societies (Mesoudi, 

Figure 6. Regression lines to indicate relationships between behavioural changes and changes in VG features

Note: Note that a refers to changes in modularity and behaviour in PO3 and b to changes in radius and behaviour in PO3.
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2016), further research should be conducted regarding 
the generalization of results based on community cul-
ture, and future studies with larger datasets are recom-
mended. Moreover, given the role of hormones such as 
oxytocin in social decision-making (Flechsenhar et al., 
2024), it is suggested that future research designs incor-
porate this factor.

5. Conclusion

In this study, the neural mechanism of behavioral 
contagion was examined. Using nonlinear time series 
analysis of ERP with the VG method, we identified a 
neural marker for behavioral contagion. Specifically, the 
features modularity and radius showed a direct relation-
ship with behavioral contagion in the group exhibiting 
this behavior, whereas this relationship was absent in the 
group without contagion. These findings suggest that 
modularity and radius can serve as neural predictors of 
behavioral contagion.
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