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ABSTRACT

Introduction: Mild cognitive impairment (MCI) is the stage that occurs before Alzheimer’s
disease (AD), and there is a high risk of progression to AD. However, this progression is not
guaranteed, and there is a chance of remaining at this stage. This study aimed to diagnose
possible AD progression among patients with MCI using a combination of resting-state
functional magnetic resonance imaging (fMRI), clinical assessment, and demographic
information for starting treatments in case of progression or reducing medical expenses in case
of future stability.

Methods: Deep learning (DL) methods, including three-dimensional convolutional neural
networks (CNN) and long short-term memory (LSTM) networks, were used in this study.
The models were developed using 266 samples from 81 MCI subjects, with an average of five
years between baseline and the last timepoint.

Results: The results showed that the best validation scores were achieved by the CNN-LSTM
model after integrating clinical attributes, with an accuracy of 92.47%.

Conclusion: The proposed algorithm demonstrated high performance in predicting MCI-to-
AD progression, indicating the potential of DL approaches for processing fMRI data and the
efficiency of data type integration.
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e DL methods, including three-dimensional CNN and LSTM networks, were used in this study to diagnose possible

AD progression.

e The combined CNN-LSTM had a diagnostic accuracy of 92.47%.

e The results highlight the potential of deep learning approaches for processing fMRI data.

Plain Language Summary

Alzheimer’s disease (AD) is the most common cause of dementia in old age and leads to brain damage. Mild cogni-
tive impairment (MCI) is a pre-AD stage in which some of the AD symptoms are poorly experienced. Given that the
AD effects on the brain start years prior to clinical symptoms, it is critical and attainable to predict the conversion of
MCI to AD using brain information. In recent years, many studies have used machine learning methods to predict this
conversion. This novel study aimed to use deep learning methods, including three-dimensional CNNs and long short-
term memory (LSTM) to process fMRI data and diagnose possible conversion from MCI to AD. The results showed
that the combined CNN-LSTM model had a diagnostic accuracy of 92.47%. The algorithm demonstrated high perfor-
mance in predicting MCI-to-AD progression, indicating the potential of deep learning approaches for processing fMRI

data and the efficiency of data type integration.

Introduction

Izheimer’s disease (AD) is the most com-

mon cause of dementia in old age and

causes irreversible damage to the brain.

However, if implemented early in the dis-

ease, proven treatments could be practical

and help weaken the process by stopping

or slowing the destruction of brain tissue
(Weller & Budson, 2018; Yiannopoulou & Papageor-
giou, 2020). Accurate diagnosis of various stages of Al-
zheimer’s is based on cerebrospinal fluid (CSF) pathol-
ogy, an expensive and invasive procedure (Engelborghs
et al., 2017; Anoop et al., 2010). Donepezil, memantine,
galantamine, rivastigmine, and aducanumab are Food
and Drug Administration (FDA)-approved drugs pre-
scribed for AD treatment in the early stages of the dis-
ease (Lietal., 2018; Koola 2020; Ray et al., 2020; Padda
& Parmar, 2024). Mild cognitive impairment (MCI) is a
pre-Alzheimer’s stage in which some of the symptoms of
Alzheimer’s are poorly experienced; therefore, there is a
high risk of developing Alzheimer’s. However, this pro-
gression is not guaranteed, and the individual will likely
return to normal or remain at this stage (Neugroschl &
Wang, 2011; Sanford, 2017). Given that Alzheimer’s ef-
fects on the brain start years prior to clinical symptoms, it
is critical and attainable to predict the conversion of MCI
to AD using brain information (Devanand et al. 2008;
Mantzavinos & Alexiou, 2017). In this case, people can

prepare for the disease from different aspects and start
treatment as early as possible to achieve the best results.

Researchers and clinicians frequently exploit brain
imaging methods, such as magnetic resonance imag-
ing (MRI), positron emission tomography (PET), and
functional MRI (fMRI) for this task. MRI shows the
brain structure with high spatial resolution. PET uses
ionizing radiation to provide insight into the brain’s
anatomy and function with lower spatial resolution than
MRI. FMRI provides knowledge about the anatomy and
metabolic mechanisms of the brain with higher tempo-
ral and spatial resolution than PET, while being harm-
less (Buttenschoen et al., 2008; Judenhofer & Cherry,
2013; Varghese et al., 2013). Other techniques, such as
magnetoencephalography (MEG) have their advantages
and disadvantages (Varghese et al., 2013). Finally, inva-
sive data, such as genetic information and CSF, and the
cheapest, most accessible, and safest data types, such as
clinical cognitive tests, have been used to predict AD
among patients with MCIL.

In recent years, many studies have used machine learn-
ing (ML) methods to predict conversion from MCI to AD,
combining neuroimaging and clinical data with relative-
ly good results. Researchers have attempted to solve this
problem using new ML techniques, such as deep learn-
ing (DL), since these methods can discover and learn
hidden patterns and provide more accurate answers (De-
Ture & Dickson, 2019; Tible et al., 2020). There is much
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ML research in neuroimaging-related studies, including
MRI, PET, and fMRI, and researchers often exploit ma-
chine learning techniques to analyze manually extracted
features. Among the mentioned studies, some are as fol-
lows: Hojjati et al. (2017) used a connection matrix to
extract graph properties from resting-state fMRI data.
Several of these features were then selected for evalu-
ation using a support vector machine (SVM). Hojjati et
al. (2018) also combined the characteristics of the same
fMRI and MRI data of the subjects. In recent years, DL
strategies have been used to solve this problem. Abrol
et al. (2019) extracted time-varying features from fMRI,
then deployed a three-dimensional convolutional neural
network (3D-CNN) to extract attributes from MRI data,
and trained an SVM on the combined features. Gao et
al., in 2020 developed a 3D-CNN (containing six layers
of convolution and three layers of max-pooling) based
on MRI images (Gao et al., 2020). Nanni et al. in 2020
planned to compare the performance of transfer learning
models with a 3D-CNN in processing MRI images. To
do this, she designed a simple one-layer convolutional
model and fine-tuned several pre-trained models. Fi-
nally, an average ensemble model was designed on five
retrained models (Nanni et al. 2020). Pan et al. (2020)
developed a novel integrated CNN-based model called
the multi-view separable pyramid network. In this mod-
el, slice-wise and spatial-wise CNNs were performed on
three PET image views (axial, coronal, and sagittal), and
the resulting outputs were combined for classification.
Er & Goularas (2020) used a CNN model whose filters
were trained with an autoencoder to extract prognostic
features from each patient’s volume. Then these features
were delivered to an SVM model for classification. Also,
some of these machine learning studies have deployed
invasive data, such as genetic information and CSF, to
predict MCI to AD (Cui et al., 2011; Zhang et al., 2012;
Gavidia-Bovadilla et al., 2017; Lin et al., 2020). Lin et
al. in 2020 developed an SVM model by combining in-
formation extracted from PET, MRI, CSF, genetic data,
and clinical cognitive tests (Lin et al., 2020). Finally, in
some machine learning studies, clinical cognitive tests
and brain signals have been used to predict Alzheimer’s
(Grassi et al., 2018; Grassi et al., 2019; Poil et al., 2013).
In these studies, large samples were required to obtain
reliable results. Grassi et al. (2018) used clinical and
demographic features. After applying the feature selec-
tion process, several machine learning algorithms were
designed and the best model was an SVM with a kernel-
based radial base function. Also, Grassi et al. (2019)
used only demographic data and cognitive clinical tests.
First, all the features were used; then three more feature
sets were created using three feature selection methods;

November & December 2025, Vol 16, No. 6

and 13 machine learning algorithms were developed ac-
cording to these four sets, resulting in 52 final models.
Furthermore, a weighted averaging model was designed,
by which the results of 52 models were averaged and
presented on the test data. Finally, Xu et al. (2021) used
a general form of Graph2Gauss architecture, a DL-based
method called multiple graph Gaussian embedding
model (MG2G), to classify graph-based features derived
from MEG regional time series.

Nevertheless, none of these studies contains enough
information alone to decisively predict the prognosis
of MCI to AD. Also, some studies have used invasive
predictors, such as CSF and genetics (Cui et al., 2011;
Zhang et al., 2012; Gavidia-Bovadilla et al., 2017; Lin et
al., 2020). To the best of our knowledge, this is the first
study to use DL methods, including three-dimensional
CNNs and long short-term memory (LSTM) to process
fMRI data and address the described problem. These
methods automatically extract and classify features,
which is their primary advantage over conventional
machine-learning techniques. This study aimed to intro-
duce a new approach that combines features extracted
from clinical cognitive tests and neuroimaging data in
a neuronal framework and examine its effectiveness in
improving results.

Materials and Methods
Dataset

In this study, clinical and fMRI data from patients who
had been in the MCI stage were collected from the AD
Neuroimaging Initiative (ADNI) to predict MCI con-
version to Alzheimer’s. ADNI is a multicenter study
designed to develop clinical, imaging, genetic, and bio-
chemical markers for the early diagnosis of AD. Since its
inception, over a decade ago, public-private partnerships
have played a significant role in Alzheimer’s research,
enabling data sharing among researchers worldwide. In
ADNI, when a person is admitted according to inclu-
sion and exclusion criteria, an initial diagnosis is made
based on CSF pathology. Clinical cognitive tests are per-
formed approximately every six months, and the remain-
ing biomarkers are collected at time intervals of one to
two years. This process continues as long as the person
remains in the study, and specialists constantly update
the patient’s diagnostic status. This study aimed to pre-
dict the conversion of MCI to Alzheimer’s by combining
clinical and fMRI data. Thus, information from patients
who had primarily been in the MCI stage was gathered.
Some of these individuals remained moderately in the
MCI phase over the years or eventually returned to nor-
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mal (stable MCI [sMCI] group); however, the rest pro-
gressed to Alzheimer’s after a while (progressive MCI
[PMCI] group). In this study, we excluded subjects who
had been in the study for less than a year. Furthermore,
because we wanted to utilize a combination of imag-
ing and clinical data, given the differences in recording
dates, we first examined the imaging dates for each pa-
tient. Then we considered test results recorded around
the same time (no more than one month apart). There-
fore, the corresponding clinical data were collected for
each imaging series on a single date. If any data were not
available on a given date, the other data were not used.
Finally, we had 81 subjects, 28 had progressed from MCI
to AD, and 53 either remained in MCI or returned to nor-
mal. A total of 266 samples from these individuals were
available, of which 78 belonged to the pMCI class and
188 to the sMCl class. Table 1 presents details of the data
in the two groups. Tesla Phillips 3 Magnetic Resonance
Imaging Scanner was used with echo planar image (EPI)
to record functional and structural images while the par-
ticipants were resting. The size of the functional image
matrix was 64 by 64, and each 3D image of the brain
volume was divided into 48 sections, each section be-
ing 3.3 mm, as well as an 80-degree rotation angle, a
repetition time of three seconds, and a reflection time of
30 ms. Ultimately, 140 functional images were obtained
for each participants. Moreover, we selected 17 clinical
features from the ADNI database, including common
demographic characteristics and cognitive neurophysi-
ological test results. The AD neuroimaging initiative
merge (ADNIMERGE) file, which the ADNI organiza-
tion officially prepares, contains the essential variables
of the data collected. Demographic information includ-
ed age, gender, years of education, and marital status.
Clinical cognitive tests are sum of boxes score of clinical
dementia rate, functional activity questionnaire (FAQ),
mini-mental state examination (MMSE), AD assessment
scale (total of 11 activity scores [ADAS11]), ADAS13,
ADASQ4, Rey auditory verbal learning test (RAVLT)
scores (immediate [RAVLT-I], learning [RAVLT-L],
forgetting [RAVLT-F], and percent-forgetting [RAVLT-
PF)), trail making test version B (TRABSCOR) and the
total delayed recall score of the logic memory subtest
of the Wechsler memory scale-revised (LDELTOTAL)
(Lynch et al., 2005; Chlebowski 2011; Salthouse 2011;
Arevalo-Rodriguez et al., 2015; Marshall et al., 2015;
Fard et al., 2016; Kueper et al., 2018). We also exam-
ined the type of MCI in primary diagnosis (early or late).
Dataset Details, reported in Table 2, show the names and
abbreviations of the 17 clinical features, along with their
statistics in the two groups.

Basic and Clinical

Preprocessing

We first discarded the features, resulting in a loss of more
than 5%. Therefore, the LDELTOTAL feature was discard-
ed, while other clinical features were preserved. Then, we
placed the missing values for the remaining features; we
used the mean for numerical properties and the mode for
categorical features (gender, marital status). We then nor-
malized the numerical data and encoded the categorical fea-
tures as one-hot vectors. Furthermore, we discarded the first
ten measurements among the functional images recorded
for each individual. Then, the following steps were per-
formed to preprocess the images: Slice-timing correction
to the last slice, realignment using a six-parameter rigid-
body spatial transformation, EPI normalization, resampling
to 3-mm isotropic voxels, detrending, smoothing using a
Gaussian filter with FWHM (=4 mm), band-pass filtering
(0.01-0.08 Hz) and elimination of destructive signals such
as global mean signal, six head motion parameters, the CSF,
and the white matter signals. Consequently, in the fMRI da-
taset, the original data dimensions were (64, 64, and 48)
with a time dimension of 140. After the preprocessing step,
the data dimensions were (61, 61, and 73) with a time di-
mension of 130. We used Python 3.8 to preprocess clinical
features, SPM12, and the DPARSF toolbox to preprocess
imaging data. Also, the clinical and imaging data values
were normalized to be between zero and one.

CNN

A CNN is a DL model for processing data with a grid pat-
tern, such as images. These networks are designed to learn
spatial information and have three primary layers: Convolu-
tional, pooling, and fully connected. The convolutional and
pooling layers perform feature extraction, and the fully con-
nected (dense) layer is the classification layer. This network
can convert and reduce input data into a form that is easy
to identify and examine without losing significant informa-
tion. In the convolutional layer, a small matrix of numbers
called a kernel is applied throughout the input by point mul-
tiplication to extract feature maps, which are then provided
to a nonlinear activation function. Next, the pooling layer,
which has no learnable parameters, down-sizes the results;
for instance, the max-pooling layer, the most common type,
retains the maximum value from each patch in a feature
map and discards the remaining values. Finally, the last lay-
ers’ output is converted to a one-dimensional vector by a
flatten layer and given to a (or more) fully connected layer.
Each layer input is connected to the output by a learnable
weight. Finally, in the output, we obtained the probability
of belonging to each class for each case (Yamashita et al.,
2018; Zhang et al., 2019).
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Table 1. Details of the dataset
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No. (%)
Total
sMCI pMCI
Subjects 53(65.43) 28(34.56) 81
Samples 188(70.67) 78(29.32) 266

MCTI: Mild cognitive impairment.

Note: A total of 266 samples from 81 subjects were available, of which 28 subjects had pMCI, and the rest had sMCI. Seventy-
eight samples belonged to the pMCI group, and the remaining 188 samples belonged to the sMCI group.

LSTM

A LSTM network, a type of recurrent neural network,
detects temporal dependencies in input data. In an LSTM
network, at any time, the node receives its input, out-
put, and hidden states from the previous time step. Then
the output and the hidden state are delivered at their re-
spective times. The hidden mode can be considered the
LSTM’s node memory, which helps it remember input
from previous time steps. Because the node structure is
more complex than normal neuronal nodes, we call it a
cell. This cell has four gates: Input, forget, output, and
input modulation. Each gate has a weight to control how
much information can pass through it, and the activa-
tion function determines that weight. Figure 1 shows the
structure of an LSTM block and how it calculates its out-
put (Zhang et al., 2019; Van Houdt et al., 2020).

Proposed model

Functional MRI is a set of three-dimensional images
recorded for a limited time. Therefore, CNN and LSTM
models can be used to process the fMRI spatial and tem-
poral aspects. To our knowledge, this is the first study
to use DL methods for fMRI processing and to combine
clinical information to predict MCI-to-AD conversion
using the proposed method. First, we evaluated whether
the temporal aspect alone provided sufficient discrimi-
native information. Therefore, we used the automated
anatomical atlas to define and divide the brain into 116
regions; thus, the LSTM network’s input was a 130-
by-116 matrix (130 time points and 116 features). We
designed two LSTM models with 32 and 128 cells to
investigate the effect of the number of LSTM cells per
layer on the model’s diagnostic performance. Since the
output size of all models must have been the same and
equal to 32, a fully connected layer with 32 neurons was
added after the 128-cell layer. The outputs of both mod-
els were then fed into a dense layer with two neurons and
a softmax activation function for classification. Figure 2
shows the LSTM model.

Second, when CNN and LSTM models are combined,
the resulting model is called CNN-LSTM, composed
of a CNN part to extract spatial features, followed by
an LSTM layer to extract temporal information. Figure
3 illustrates the structure of the CNN part of the CNN-
LSTM models. The convolutional part of our proposed
model was three-dimensional to prevent initial informa-
tion loss due to data transformation. It consisted of six
convolutional layers, with a filter size of 3x3 and a stride
of one, and four max-pooling layers with a filter size of
2x2 and a stride of two. The input of this network was
single functional images (regardless of the time dimen-
sion). The output of the last layer was 128 extracted fea-
tures. Since 130 images were available for each sample,
we utilized 130 3D-CNN models, each analyzing images
from a specific time point, and concatenated their out-
puts to feed an LSTM layer (Figure 4). We designed two
CNN-LSTM models since we previously designed two
LSTM models.

Moreover, to investigate the effect of combining clini-
cal data on the results, in all these final models, the 32-¢l-
ement output of the imaging section was concatenated
with the output of a shallow neural network layer whose
input was clinical data. The dense layer had five neurons;
thus, the effect of the image features was about six times
greater than that of the clinical features. Consequently, a
37-size vector was inserted into the classification layer.
Finally, eight networks were developed (two LSTM and
two CNN-LSTM models with and without combining
with the clinical information). Figure 4 shows the CNN-
LSTM model with 128 LSTM cells, combined with
clinical information.

The models were designed in Google Colaboratory (12
GB RAM) using the Keras framework with Tensorflow
as the backend. The Adam optimizer was used to train
the CNN-LSTM models with a learning rate of 0.0001.
To control overfitting, dropout was used; its value was
20% for the inner layers (except the first layer) and the
LSTM layer (32 cells), 30% for the last pooling, and
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Table 2. A total of 14 continuous and three categorical features were selected from ADNIMERGE dataset

Continuous N Mean+SD/% Missing
Variables Description Values
pMCI sMCI (%)
Age Age in years 73.39+6.47 70.51+7.56 0.0
PTEDUCAT Years of education 15.54+2.5 15.99+2.77 0.0
CDRSB Sum of boxes score of the clinical dementia ratio 2.47+1.04 1.03+0.68 1.88
FAQ Functional assessment questionnaire 6.58+5.19 1.62+2.6 2.25
MMSE Mini-mental state examination 26.65%1.69 28.12+1.9 15
ADAS11 Sum of scores of 11 tasks of the AD assessment scale 13.51+4.05 7.68+3.86 15
ADAS13 Sum of scores of 13 tasks of the AD assessment scale 21.29#5.6 11.91+5.84 1.88
ADASQ4 Score of task 4 of AD assessment scale 6.88+2.13 3.7242.2 1.5
RAVLT-l Immediate score of the Rey auditory verbal learning test 30.26+8.59 37.32+£10.77 2.25
RAVLT-L Learning score of the Rey auditory verbal learning test 2.95+1.98 5.06+2.67 2.25
RAVLT-F Forgetting score of the Rey auditory verbal learning test 5.9+2.11 4.49+2.26 2.25
RAVLT-PF Percent forgetting score ?:gtfgssltﬁey auditory verbal learn- 83.44423.1 52.77+30.17 225
TRABSCOR Trial making test, version B 122.28+64.46 97.88+58.19 4.13
IDEToTAL  Ot@l delayed r\/evc:C'LZf::fn‘;f;Efﬁ%;g"g;g subtest of 4174312 9:3.88 259
PTGENDER 0.0
Male Sex, (male and female) 51.28 52.12
Female 48.71 47.78
PTMARRY 0.0
Married 78.2 68.61
Never married Marital status 2.56 3.72
Widowed 19.23 12.76
Divorced 0.0 14.89
DX_bl 0.0
EMCI Subtypes of MCl: Early MCI (EMCI) and late MCI (LMCI) 44.87 69.14
LMcl 55.12 30.85

40% for the 128-cell LSTM layer. Also, L2 regulation Training and evaluation
was used for the dense layers (32 and 5 neurons) with

a coefficient of 0.001. Due to hardware limitations, the We trained and tested our models using 5-fold stratified
data were delivered to the model in batches, with a maxi- cross-validation (CV). In this method (Schaffer 1993),
mum of three for the CNN-LSTM models. the dataset is divided into five folds; four for training,
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Figure 1. Architecture of a LSTM block (Van Houdst et al., 2020)

Figure 2. The LSTM models

and one for testing. The folds could be stratified, mean-
ing that the ratio of each class (sMCI, pMCI) is nearly
equal across folds and the whole dataset. Our training
and test sets needed to be independent. Therefore, we
randomly divided all the data into five parts, each con-
taining about 20% of the data, and ensured that the parts
were independent across patients; in other words, sam-
ples from the same subject were assigned to the same set.
In our dataset, several samples were available for each
participant. Also, we attempted to ensure that 30% of the
samples in each set belonged to class one. Consequently,
we had 81 subjects: 28 in the pMCI class, and 53 in the
sMCI class. A total of 266 samples from these individu-
als were available, of which 78 belonged to the pMCI
class and the remaining 188 to the sSMCI class. In 5-fold
CV, in testing, approximately 16 subjects (5 pMCI and

11 sMCI) and 53 samples (15 pMCI and 38 sMCI) are
used per fold. Eventually, five training and testing sub-
sets were produced, and all models were trained on each
training set and evaluated on its corresponding test set.
Also, we reserved 10% of each training set for evalua-
tion to assess the appropriateness of the models’ design
during training. Thus, we had five sets of training, test-
ing, and evaluation, with ratios of 70%, 20%, and 10%,
respectively. Notably, clinical data preprocessing for the
training and test sets was performed separately to pre-
serve the independence of the two sets. Finally, to report
and compare the performance of the models, the evalu-
ation metrics of accuracy, sensitivity, specificity, area
under the receiver operating characteristic (ROC) curve
(AUC), and confusion matrix were calculated across the
five test sets.

Figure 3. The structure of the CNN part of the CNN-LSTM models
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Figure 4. The 128-CNN-LSTM model after combining with clinical features

Results

Figure 5 shows the mean accuracy and loss curves in
the 5-fold CV training procedure of the CNN-LSTM
models for the training and validation sets in four models
(CNN-LSTM models with 32 and 128 cells and before
and after combining with the clinical data). The models
were trained for approximately 80 iterations. We opti-
mized the model architecture and hyperparameters by
trial and error, examining learning progress based on
validation and training metrics to avoid overfitting.

The Mean+SD values of accuracy, sensitivity, specific-
ity, and AUC metrics for the five test subsets are reported
for eight models (LSTM models with 32 and 128 cells,
CNN-LSTM networks with 32 and 128 cells, before and
after combining with clinical data) in Table 3.

The evaluation values for the 32-cell LSTM network
before combining with clinical features were 71.8% (ac-
curacy), 9.00% (sensitivity), 97.32% (specificity), and
61.51% (AUC). In this model, we observed an increase
in accuracy (78.94%), sensitivity (31.66%), specificity
(98.4%), and AUC (68.42%) after combining with clini-
cal information. In the next step, by increasing the LSTM

Figure 5. Mean of accuracy and loss curves in the cross-validation process for the CNN-LSTM model with 32 and 128 cells

before and after combining with clinical data
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Figure 6. ROC/AUC curves of the LSTM and CNN-LSTM models with 32 and 128 cells before and after combining with clini-
cal data

Figure 7. Confusion matrices of the best performing LSTM and CNN-LSTM models before combining with clinical in 1 fold
(54 samples)

Figure 8. Confusion matrices of the best performing LSTM and CNN-LSTM models after combining with clinical in 1 fold (54
samples)
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Table 3. Mean+SD of cross-validated scores of the LSTM and CNN-LSTM models with 32 and 128 cells before and after com-

bining with clinical data

Mean1SD
Model Data
AUC (%) Accuracy (%) Sensitivity (%) Specificity (%)
fMRI 61.51+0.11 71.5+1.21 09+3.21 97.32£1.7
LSTM (32)
fMRI+clinical 68.42+0.53 78.94+1.33 31.66+4.04 98.40+1.3
fMRI 70.07+0.19 74.81+1.88 14.16+4.92 1000
LSTM (128)
fMRI+clinical 75.99+0.62 79.69+1.49 38.5t1.14 96.27+3.62
fMRI 90.62+051 86.84+1.2 69.33+3.98 94.15+1.03
CNN-LSTM (32)
fMRI+clinical 93.75+0.88 89.47+1.9 78.16+3.34 94.16+1.94
fMRI 92.4+0.42 89.84+0.95 83.33+3.1 92.54+1.1
CNN-LSTM (128)
fMRI+clinical 96.67+0.71 92.47+1.71 92.33+2.42 92.55+1.95

Abbreviations: fMRI: Functional magnetic resonance imaging; CNN-LSTM: Convolutional neural network-long-short term

memory; AUC: Area under the ROC curve.

model’s cell account to 128 before combining with clini-
cal data, the accuracy, sensitivity, specificity, and AUC
increased to 74.81%, 14.16%, 100%, and 70.07%, re-
spectively. Finally, the 128-cell LSTM model, in com-
bination with the clinical data, achieved the best perfor-
mance among the LSTM models, with AUC (75.99%),
accuracy (79.60%), and sensitivity (38.5%). For the
CNN-LSTM networks, we also observed that increasing
the number of recurrent layer cells improved results. The
validation metrics for the 32-cell CNN-LSTM model be-
fore combining with clinical, were 86.84% (accuracy),
69.33% (sensitivity), 94.15% (specificity), and 90.62%
(AUC). Then, by increasing the number of cells to 128,
we observed improvements in accuracy (89.84%), sensi-
tivity (83.33%), specificity (92.54%), and AUC (92.4%).
As with the CNN-LSTM models, we also observed in-
creased evaluation parameter values after adding clinical
features, and both models achieved higher sensitivity,
accuracy, and AUC. Finally, the 128-cell CNN-LSTM
model achieved the best results when combined with the
clinical data. It reached 92.47 % accuracy, 96.67% AUC,
92.33% sensitivity, and 92.55% specificity.

Figure 6 shows the ROC and AUC diagrams of the
LSTM and CNN-LSTM models with 32 and 128 cells
before and after combining with clinical data. The 128-
cell CNN-LSTM model, combining fMRI and clinical
data, demonstrated the best results. Also, it is shown and
concluded that the combination with the clinical predic-
tors made the models more sensitive to the pMCI class

since the curves started from points with higher true-
positive rates. Finally, Figures 7 and 8 show confusion
metrics of the best-performing LSTM and CNN-LSTM
models (before adding clinical information) and (after
adding clinical information). It is also illustrated that
combining with clinical data increased the true-positive
rates while decreasing false-negative rates, meaning that
the models became more sensitive toward the pMCI
cases after combining clinical attributes. Lastly, accord-
ing to the confusion matrices, the 128-cell CNN-LSTM
models were the only networks with more false-positive
rates than false-negative rates. After combining with
clinical data, this model misdiagnosed only three sam-
ples from about 50 test set cases. It is worth noting that
a false-positive rate higher than a false-negative rate is
desirable, especially in medical issues, since incorrectly
diagnosing a patient as unwell is less medically expen-
sive than the other way around.

Discussion

This study evaluated and compared the performance
of DL techniques in diagnosing the conversion of MCI
to Alzheimer’s over an average of five years. We used
rs-fMRI, neurophysiological test results, and common
demographic characteristics as noninvasive, clinically
available predictors. Our primary focus was to extract ap-
propriate, sufficient features from the imaging data and
then improve the results by combining them with clinical
information. Since fMRI data are a series of 3D images
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Table 4. Summary of related works predicting the conversion of MCI subjects to AD

. Results (%)
Ref. Modality S(ul:\j/lecclt)s Pl Method (Validation)
p AUC Sen Spe Acc
Ghafoori & -
Shalbaf (2022) fMRI+clinical 81(28) 5 3D-CNN (5-CV) 91.72 75.58 92.57 87.59
El-Sappagh et al. Neuroimaging+ sMCI: 473 MAE:
(2022) clinical pMCI: 140 e i 0.1375 L b b3
Er & Goularas Auto-encoder+ CNN/ SVM
(2020) MRI 294 (125) 25 (10-CV) NR 924 80.4 87.2
. - SVM
Lin et al. (2020] Multivariate 251 (110) 3 (10-CV, 100 repeat) 94.7 NR NR 87.1
Gao et al. (2020) MRI 297 (168) 3 3D-CNN (5-CV) 81 77 76 76
Nanni et al. 2020) MRI 474 (240) 4  Average 2D-CNNftransfer ., o NR NR NR
learning (CV)
. - Weighted average ensem-
Grassi et al. (2019) Clinical 550 (197) 4 ble /52 ML models (5-CV) 88 77.7 79.9 NR
Temporal + convolutional
Abrol et al. (2019) fMRI+MRI 134 3 features/ SVM (3-CV, 10 78 NR NR NR
repeat)
Grassi et al. (2018) Clinical 184 (48) 4 SVM (10-CV) 96.2 NR NR NR
Hojjati et al. Graph theory/ SVM
(2018) fMRI+MRI 80 (18) 4 (9-CV) 98 94.97 100 97
Hojjati et al. Graph theory/ SVM
(2017) fMRI 80 (18) 3 (9-CV, 1000 repeat) 95 83.83 90.1 91.4
Present fMRI+clinical 81 (28) 5 3D-CNN-LSTM (5-CV) 96.67 92.33 92.55 92.47

Abbreviations: fMRI: Functional magnetic resonance imaging; MCI: Mild cognitive impairment; AD: Alzheimer’s disease;
CNN-LSTM: Convolutional neural network-long-short-term memory; ML: Machine learning; SVM: Support vector machine;
AUC: Area under the ROC curve; NR: Not reported; PI: Prediction interval (in years); CV: Cross-validation; MAE: Mean ab-

solute error.

recorded over a limited time, it would make sense to use
a 3D CNN to extract their spatial features, followed by
an LSTM layer to learn their temporal information, re-
sulting in a CNN-LSTM network. Also, to confirm that
studying both spatial and temporal aspects of fMRI was
required to achieve good results, LSTM models were
separately trained for comparison. According to the re-
sults (Table 3), considering both aspects of the informa-
tion contained in fMRI undoubtedly enhanced the per-
formance. We also observed that the number of cells in
the LSTM layers affected model performance. Accord-
ing to AUC and accuracy metrics, an improvement was
observed when increasing the number of cells from 32
to 128. Finally, after combining with clinical informa-
tion, the CNN-LSTM model with 128-cell outperformed
other models based on an AUC of 96.67%, an accuracy
of 92.47%, a sensitivity of 92.33%, and a specificity of
92.55%.

Among the results from all models (Table 3), the LSTM
networks performed poorly compared to the CNN-
LSTM models, suggesting that the LSTM did not extract

suitable features from fMRI. This could be due to several
factors. First, the structure of LSTM might not have been
adequate. We tried to maintain consistency in our work;
therefore, by deleting the CNN parts from the proposed
CNN-LSTM models, we obtained our LSTM models. As
a result, LSTM models with more layers, different num-
bers of units, and different structural architectures could
achieve better performance. Second, it could be because
of the atlas we used; other atlases divide the brain into
different regions and provide us with more and different
time series. One last possible factor is the type of fMRI
used here, which was a resting-state rather than a task-
related one. Given that LSTM is mainly concentrated
on temporal details rather than spatial ones, it could be
pointed out that resting-state form contains less valuable
temporal data than task-related fMRI; thus, apparently,
not much information was provided here. Therefore, we
deduced that the spatial aspect of the fMRI data played
a pivotal role in the diagnostic abilities of the models.
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We have designed our models based on the charac-
teristics extracted from a combination of imaging data
and clinically available noninvasive information. In all
of these final models, the output of the imaging section
(32 in length) was connected to the output of a 5-neu-
ron dense layer (clinical), delivering a vector containing
37 elements to the classification layer. All four models
performed better than their basic form when combined
with clinical information. Because the models had more
information to make decisions, their final results im-
proved. It was also observed that integrating clinical data
with imaging increased the sensitivity of the models to
class one (Table 3, Figure 6, and Figure 7). Finally, we
observed that the proposed method for the combination
affected two critical issues: First, the models reached the
appropriate results faster (based on the performance of
the models on the evaluation data) because, the model
had more information to identify. Second, it could have
led to overfitting if the number of neurons in the clinical
layer increased or the training process lasted longer.

Many studies have attempted to solve the problem of
predicting AD among patients with MCI. Even though
some studies provided machine learning techniques with
a good level of accuracy, the data used by their algo-
rithms was a combination of invasive data, which makes
the proposed methods less applicable in real life. Table
4 summarizes the articles that predicted conversion from
MCI to AD. As mentioned in this table and in a review
of studies using neuroimaging biomarkers for AD pre-
diction (Valizadeh et al., 2025; Zarei et al., 2025), MRI,
fMRI, and PET are the most commonly used modalities.
CNNs from DL and SVMs from machine learning were
the most common algorithms, with CNN-based models
achieving higher average performance than other tech-
niques. All articles similar to the present article used CV
for training and evaluation, and the values of accuracy,
AUC, sensitivity, and specificity are reported in the ta-
ble. Also, in reviewing the articles, one should pay atten-
tion to the number of folds in the CV method, prediction
interval (in years), and the number of pMCI samples.
For example, in articles (Hojjati et al., 2017; Hojjati et
al., 2018), data from 80 people were used; 18 of them
belonged to the pMCI class, and in the CV method, the
data were divided into nine parts. Finally, a two-stage
framework for AD progression detection is proposed. In
the first stage, a multiclass classification task is used to
diagnose a patient in three classes (cognitively normal,
MCI, or AD) by LSTM with an accuracy of 93.87%.
In the second stage, a regression task is used to predict
the exact conversion time for patients with MCI. In the
regression stage, the LSTM model achieved the best re-
sults with mean absolute error of 0.1375.

Basic and Clinical

Our proposed method has some advantages and limita-
tions compared to existing research. The clinical cognitive
tests used in the present study are the most attainable and
noninvasive data types that are regularly registered for a
basic diagnosis before any further assessments. However,
the information provided from different exams has over-
laps, and patients could get weary of taking all 12 tests.
Although fMRI has advantages over other imaging meth-
ods, it is time-consuming and motion-sensitive, which can
be inconvenient. Another essential point is that this study’s
Alzheimer’s prediction time interval was an average of
five years. In other studies, the prediction time was be-
tween three and four years, and we know that the predic-
tion operation is more difficult with increasing prediction
time. Also, due to the data imbalance and the fact that most
samples belonged to the sMCI class, the models tended
to this class by default. As a result, simple models were
not responsive, and reliable outputs were not delivered,
making it challenging to design a suitable model. Finally,
to the best of our knowledge, DL methods for processing
functional images and combining them with clinical data
to predict AD have not been studied. The advantage of us-
ing deep neural networks in image analysis, such as fMRI,
is that the image structure remains intact. Compared to
conventional machine learning methods, deep neural net-
works can automatically analyze raw data, extract features,
and classify data. Thus, no information is lost at first, and
then, depending on the architecture of the designed model,
the relevant features are provided. In this research, we
aimed to design a DL model that converted a volume into
128 single attributes while losing as little information as
possible. Therefore, one of the main reasons CNN-LSTM
outperforms other machine learning techniques in pro-
cessing fMRI data is that we do not need to preprocess the
data before feeding it to the model. Thus, the data structure
is preserved, while it is not the case for machine learning
methods. It should be noted that deep neural networks are
complex and computationally intensive and require robust
hardware to train. Overall, DL methods require more po-
tent hardware, more time, experience, and careful attention
to precision to be designed and trained without overfitting
or underfitting. Also, adjusting the rising number of hy-
perparameters in DL models is challenging since they are
closely affected by each another. Nevertheless, we wanted
to explore their utility and performance to our advantage
due to their novelty and potential.

Despite the promising results presented here, several
other structures can be designed for the LSTM and the
CNN-LSTM models in future studies. The changes that
can be considered include the number of LSTM layers,
the number of cells, and the type of recurrent layer, and
changing it to a gated recurrent unit neural network. Fur-
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thermore, according to the atlas data, other independent
structures can be designed for the recurrent model. It is
also recommended that models be designed and evaluated
on a wider range of test and training samples. In addition,
it is suggested that transfer learning methods be used in
the design of the CNN model, and especially the CNN-
LSTM model, to check the possibility of improving the
results with these techniques. Lastly, it may be feasible to
use a subset of carefully selected clinical features to either
generate better results or provide greater patient comfort
by reducing the time spent on clinical tests.

Conclusion

In the present study, a 3D-CNN-LSTM algorithm was
developed that was highly sensitive in correctly identi-
fying MCI patients who may develop AD between six
months and an average of five years. We have shown
that combining clinical data with fMRI based on the
proposed approach yields better results. We also showed
that processing both spatial and temporal aspects of rs-
fMRI data is crucial for achieving decent outcomes.
Finally, our model outperformed other ML methods
based on AUC (96.67%), accuracy (92.47%), sensitivity
(92.33%), and specificity (92.55%), and can be used for
initial clinical diagnosis.
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