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Introduction: Psychological stress impairs cognitive performance and affects mood states. 
This study compares the effect of four types of psychological stress (crowding, relocation, 
isolation, and restraint) on locomotor activity, learning, and memory, as well as anxiety-like 
behaviors performed by the open field, elevated plus maze, and passive avoidance tests.

Methods: Wistar rats were randomly assigned to different groups of crowding, relocation, 
isolation, and restraint stress, and control. The stress induction was administered for 21 
consecutive days (6 h/day). To evaluate various types of behaviors, the open field, elevated 
plus maze, and passive avoidance tests were employed.

Results: According to the PA test results, the latency to enter the darkroom decreased 
significantly in all stress groups, especially in the crowding and isolation stress groups. 
However, it had an inverse relationship with serum corticosterone (CORT) levels. The total 
dark stay time increased significantly in the restraint and crowding stress groups, and also 
particularly, in the isolation stress group. In the isolation stress group, the number of darkroom 
entries decreased significantly. All stress groups spent a significantly shorter time in the open 
arms of the EPM apparatus. Finally, the total distance traveled, in the open field test was 
significantly lower in all stress groups, particularly in the isolation stress group.

Conclusion: Crowding and social isolation were the two stress types that had the most adverse 
effect on cognitive performance, as they induced stress-driven anxiety-like behaviors, probably 
due to increased CORT secretion. A high or low population of social density may create a 
condition, in which the nervous system could not efficiently manage stress, particularly at 
chronic levels.
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1. Introduction

sychological stress is a common term to 
describe the processes that contribute to the 
onset and continuation of various mental 
and physical conditions. These stress types 

enable higher-order brain structures to provide addition-
al interpretation of perceived danger (Fuchs & Flügge, 
2003). Additionally, they need cortical processing and 
depend on former experiences or current activations. 
Moreover, the psychological information would be as-
sembled within limbic circuits (hippocampus, amygdala, 
and prefrontal cortex) to induce neuroendocrine and be-
havioral responses (Fuchs & Flügge, 2003). Therefore, 
it is a common daily occurrence in today’s society that 
people experience various types of stress (Alkadhi, 
2013). Stress activates the hypothalamic pituitary adre-
nal axis and the secretion of glucocorticoids or cortico-
steroids in rodents like corticosterone (CORT) (Radah-
madi et al., 2015), which can affect cognitive functions, 
such as learning, memory, and mood states (Abou-Hany 
et al., 2018; Khani et al., 2018). Psychological stress 
could be categorized based on timing and type (Dastg-
erdi et al., 2020; Radahmadi et al., 2017). The effect of 

stress on physiological and psychological procedures is 
recognized by its stimulation aspects (Crestani, 2016). 
Some brain structures, including the limbic system and 
amygdala, are involved in causing various types of stress 
(Herman et al., 2005). Therefore, stress may result in a 
variety of behavioral issues (Hodgson et al., 2004; Wat-
son et al., 2005). Nowadays, the most prevalent stress 
types in different societies are crowding, relocation, 
isolation, and restraint stress (emotional stress). Previ-
ous studies have reported that crowding, relocation, 
isolation, and restraint stress have destructive effects on 
physiological systems and behaviors (Chotiwat & Har-
ris, 2006; Dastgerdi et al., 2017; Davenport et al., 2008; 
Eid et al., 2010; Hodgson et al., 2004; Watson et al., 
2005). Social isolation stress has commonly coincided 
with anxiety-like behaviors, cognitive impairments, re-
duced social interactions, and weight loss (Qin et al., 
2011). While stress has been indicated as beneficial or 
harmful to neural health, in some cases it has not affected 
neural health (Radahmadi et al., 2013). Therefore, stress 
may exhibit paradoxical effects on cognitive functions 
and behaviors (Schwabe & Wolf, 2013), depending on 
the secretion of stress hormones at different levels. Com-
pared to physical stress, psychological stress affects the 

Highlights 

• Crowding and social isolation stresses had the most adverse effect on cognitive functions.

• Crowding and social isolation stresses induced stress-driven anxiety-like behaviors.

•A high or low social density may create a condition that the brain could not efficiently manage stress.

Plain Language Summary 

Stress activates the secretion of glucocorticoids (e.g. corticosterone (CORT)) which can affect cognitive functions, 
such as learning, memory, and mood states. Psychological stress could be categorized based on timing and type. 
Nowadays, the most prevalent stress types in different societies are crowding, relocation, isolation, and emotional 
stress. Previous studies have reported that crowding, relocation, isolation, and restraint stress have destructive effects on 
physiological systems and behaviors. The most prevalent psychological stress types in society that lead to such adverse 
effects are not indicated. Hence, understanding the effects of various types of prevalent social stress on cognitive 
functions and behavior is important. Overall, learning occurred at different levels in all types of stress although the 
lowest level of learning occurred under isolation stress conditions. The crowding and isolation stress, as two models 
of social density stress, had further destructive effects on the impairment of cognitive functions in comparison with 
the relocation and emotional stress. As such, these stress models seem to severely impair learning, memory, memory 
consolidation, locomotor activity, and body weight. The crowding and isolation stress increased anxiety-like behaviors 
and serum CORT levels more than other types of stress, (i.e. relocation and emotional stress). Thus, stress, which was 
caused by social density (housing density: Crowding and spatial isolation), led to the most negative effects on memory 
and mood, probably due to different CORT levels, as the main stress hormone. Finally, high or low populations of 
social density may create a condition, in which the nervous system could not efficiently handle stress, at chronic levels 
in particular.
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physiological system more adversely due to the interac-
tions of the limbic system. However, the most prevalent 
psychological stress types in society that lead to such ad-
verse effects are not indicated. Hence, understanding the 
effects of various types of prevalent social stress on cog-
nitive performance and behavior is important. The cur-
rent study investigates the effects of four major types of 
psychological stress (crowding, relocation, isolation, and 
restraint) on locomotor activity, learning, memory, anx-
iety-like behaviors, body weight differences (BWDs), 
serum CORT levels, and their correlations in rats.

2. Materials and Methods

Study animals

A total of 40 male Wistar rats, aged approximately 3 
months (weight=250−300 g), were obtained from the Is-
fahan Royan Institute for the experiments. The rats were 
housed in similar cages with 42×27×15 cm3 dimensions 
(Tajhiz Gostar Omid Iranian Co., Tehran, Iran) under 
controlled conditions (light on from 07:00 to 19:00, 
50%±5% humidity, and 23±2°C room temperature) and 
ere given ad libitum water. The study was approved by 
the Ethics Committee of Animal Use at the Isfahan Uni-
versity of Medical Sciences. After a 1-week adaptation 
period, the animals were randomly assigned to five equal 
groups (n=8) as follows: Control (Co), crowding stress 
(Cro-St), relocation stress (Rel-St), isolation stress (Iso-
St), and restraint stress (Res-St). During the test period, 
the rats in the Co group were handled similarly to those 
in other groups. All behavioral tests were accomplished 
between 14:00 and 16:00 on day 21 (Figure 1). 

In this study, different behavioral tests, including the 
open field test (OFT), elevated plus maze test (EPM), 
and passive avoidance (PA) test were performed, respec-
tively. To investigate the lasting effects of exposure to 
chronic stress on different behavioral variables, 30-min 
intervals were given between behavioral tests on day 
21, after the last stress session. As shown in Figure 1, 
the passive avoidance test was performed as the last be-
havioral test in all experimental groups. Therefore, the 
received shock in the shuttle box did not affect the ani-
mals’ anxiety-like behaviors. All measured parameters in 
the OFT and EPM tests had changed due to the lasting 
effects of chronic stress. 

Experimental procedures

Stress paradigm

Crowding stress was generated by increasing the 
population density in specified areas (Eid et al., 2010). 
In other words, inadequate space for the same number 
of subjects leads to crowding stress (Calhoun, 1973). 
Therefore, twice the original number of rats were placed 
in a normal cage (i.e. 8 rats instead of 4) to increase the 
population density and generate crowding stress (Eid 
et al., 2010). During the relocation stress, the animals 
experienced environmental changes and displacement 
disturbances as the new condition was felt as a threat to 
their lives (Watson et al., 2005). Accordingly, the second 
group was relocated to a new cage with an unfamiliar 
conspecific to generate relocation stress. Also, to induce 
isolation stress, the animals were placed in different cag-
es separately (individual housing) before being placed 
in their home cage (group housing). During the stress 

Figure 1. Timeline of all experimental groups

Notes: Animals were exposed to different stress types (relocation, restraint, crowding, and isolation stress). Different behavior-
al tests were respectively OFT, EPM, and PA, with an interval of 30 mins between each on day 21 (after the last stress session).

Abbreviations: Hab.PA: Habituation phase in passive avoidance test; PAL: Passive avoidance learning phase; PAM: Passive 
avoidance memory phase. 
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period, each rat was placed in a cage in isolated condi-
tions without other mates (Khani et al., 2018; Song et 
al., 2021). Finally, in the last experimental stress group, 
the rats were placed in plexiglas cylindrical restrainers to 
generate restraint stress (Adachi et al., 2021), commonly 
characterized by either physical or physiological types 
of stressful stimuli (Dastgerdi et al., 2017; Sunanda et 
al., 2000). All of these stress types were induced for 21 
consecutive days (6 h/day, from 08:00 to 14:00).

Behavioral paradigm

Passive avoidance test

PA was used to assess learning, memory, memory con-
solidation, and locomotor activity (Vohora et al., 2000). 
The PA apparatus (64×25×35 cm3) contained two iden-
tical rooms (light and dark, 32×25×35 cm3) with grid 
floors and a sliding door. A stimulator was used to ad-
minister electric shocks to the floor. The apparatus ha-
bituation impacts the performance of behavioral tasks 
negatively. The passive avoidance test includes three 
phases of habituation, learning, and memory. Based on 
the common protocols in several studies, on day 19, each 
rat was placed in the apparatus for 300 s (habituation) to 
diminish the novelty effects of the PA apparatus (Tatem 
et al., 2014). On day 20, the rats were placed in the light-
room individually (learning phase). The sliding door 
was raised after 10 s. As the rat fully entered the dark-
room, this door was closed and a single electric shock 
(0.5 mA, 50 V, 3 s; once) was delivered to the animal’s 
foot (Huang et al., 2013). The initial latency (IL) to cross 
through the darkroom (the pre-shock latency) was re-
corded on day 20. On the next day (day 21), the memory 
phase was performed and the latency of entrance to the 
darkroom was measured up to a maximum delay of 300 
s. The memory experiment was terminated if the rat did 
not enter the darkroom within 300 s. If the rat avoided 
the darkroom entry and stayed in the lightroom, a posi-
tive response was recorded (Dastgerdi et al., 2018). The 
total dark stay time was attributed to memory consoli-
dation or storage of new information (Dastgerdi et al., 
2018). The number of entries to the darkroom was inter-
preted as locomotor activity (Vohora et al., 2000). Also, 
the difference between the IL and latency after a day was 
considered the occurrence of learning (Dastgerdi et al., 
2018). The animal’s ability to remember the foot shock 
was attributed to memory acquisition.

Elevated plus maze test

EPM test is commonly used to assess stress levels and 
anxiety-like behaviors (Walf & Frye, 2007). In this study, 

the EPM apparatus comprised a black opaque Plexiglas 
structure, elevated 70 cm above the ground. The apparatus 
consisted of two open arms (60×10×10 cm) and two closed 
arms (60×10×30 cm), extended from the central platform 
(10×10 cm). On day 21, each animal was separately placed 
in the center of the EPM apparatus, facing the open arms. 
According to the EPM criteria for anxious behaviors, an ex-
pert recorded the number of open arm entries (OAE) and 
the total time spent in the open arms (OAT) within 300 s 
(Foldi et al., 2019). The Equations 1 and 2 were used to 
calculate the percentage of OAE 

1. (OAE%=[OAE/Total entries to the open and closed 
Arms]×100)

2. (OAT%=[OAT/300]×100) (Serafim et al., 2012).

Open field test 

Another experiment to assess mobility and anxiety-like 
behaviors is OFT (Hines & Minton, 2012). The OFT 
equipment consists of a box-shaped platform (90×90×60 
cm3), including painted grids that mark the floor with 
square crossings. In this experiment, the apparatus was 
placed in a silent room with no stressful stimulation. On 
day 21, the rats were placed separately at the center of the 
device before the test. Their activities within 300 s were 
recorded by a mounted video camera that had tracking 
software (Ranjbar et al., 2017). Each animal was only 
tested once in this apparatus. The number of passages 
through the center of the platform and the total distance 
traveled on this platform were recorded as indices for 
anxiety-like behaviors and locomotor activity (Ranjbar 
et al., 2017). After each experiment, the rat was removed 
from the apparatus. Then, the square was wiped with a 
cotton towel (soaked in 70% alcohol) to eliminate the 
odorant signals (Quillfeldt, 2016).

Determination of serum CORT levels

On day 22, the rats were anesthetized with an intraperi-
toneal injection of urethane (1.5 g/kg; Sigma-Aldrich 
Chemical Co., USA), and then sacrificed between 16:00 
to 17:00. The blood samples were taken from the ani-
mal’s trunk. Subsequently, the serum was separated by 
centrifugation (6000 rpm, 20 min) to be stored at -80°C 
until the analyses. The serum CORT levels were mea-
sured using a commercial enzyme-linked immunosor-
bent assay CORT kit (Zellbio Co., Germany). The detec-
tion limit for the rat CORT was set to 0.1–20 ng/mL and 
sensitivity at 0.05 ng/mL (coefficient of variation per-
centage [C.V.%] for the intra- and inter-assay was less 
than 10% and 12%, respectively).
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Body weight differences 

The body weight was measured on day 1 and day 21. 
The difference between the final and initial weight for 
each animal was calculated by Equation 3:

3. (BWD=(BWFinal -BWInitial).

Statistical analysis 

All data were analyzed using the one-way analysis of 
variance, followed by the Tukey post hoc test for multi-
ple groups. In addition, the paired sample t-test was used 
to compare the IL and the latency after a day (within 
groups). Using the Pearson correlation analysis (coef-
ficient of determination [R2]), the correlation analyses 
of behavioral tests and BWDs with serum CORT lev-
els were investigated. Furthermore, all data were esti-
mated as Mean±SE of the mean. Meanwhile, a P<0.05 
was considered statistically significant. The calculations 
were performed using the SPSS software, version 26 
(IBM SPSS Inc., Chicago, USA).

3. Results

Effects of stress on the passive avoidance test

As shown in Figure 2A, IL had no significant differ-
ence in the experimental groups. The latency of entrance 
to the darkroom after a day was significantly lower in 
the Rel-St, Res-St, Res-St, Cro-St, and Iso-St groups 
(P<0.05, P<0.01, P<0.001, and P<0.001, respectively) 
compared to the Co group (Figure 2B); accordingly, 

memory impairment occurred as a result of different 
stress types, particularly in the Cro-St and Iso-St groups. 
Also, the latency after a day in the Iso-St group was sig-
nificantly lower (P<0.01) compared to the Rel-St group 
(Figure 2B). 

IL and latency after a day were analyzed using a paired-
sample t test to evaluate the within-group latency chang-
es. Significant differences were observed between IL 
and the latency after a day in all experimental groups 
(Co group: P<0.001; Rel-St, Res-St, and Cro-St groups: 
P<0.01; Iso-St group: P<0.05). These results indicated 
the occurrence of learning in these groups (Figure 3). 
However, the lowest and highest degrees of learning oc-
curred in the Iso-St and Co groups, respectively.

The total dark stay time was significantly higher in the 
Res-St, Cro-St, and Iso-St groups (P<0.05, P<0.01, and 
P<0.001, respectively). However, compared to the and 
Co and Rel-St group, it was significantly higher only in 
the Iso-St group (P<0.05) (Figure 4A). 

The number of entries to the darkroom had no sig-
nificant differences in the Rel-St, Res-St, and Cro-St 
groups compared to the Co group. However, it was sig-
nificantly lower in the Iso-St group (P<0.05) compared 
to the Co group. These results suggested locomotor 
activity reduction in the PA apparatus due to isolation 
stress (Figure 4B).

Figure 2. Darkroom entries

A) Initial Katency, B) Latency after a day in the passive avoidance test apparatus for all groups (n=8) before and after receiving 
the foot shock

Notes: The results are expressed as Mean±SE of the mean (one-way analysis of variance, followed by the Tukey post hoc test). 
*P<0.05, ** P<0.01, and ***P<0.001 compared to the Co, ƟƟP<0.01 compared to the Rel-St. 
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Effects of stress on the elevated plus maze test

The OAE% decreased significantly in all stress groups 
(Rel-St group: P<0.05; other stress groups: P<0.001) 
compared to the Co group. Furthermore, OAE% had 
significant decreases in the Cro-St and Iso-St groups 
(both P<0.001) compared to the Rel-St group. Similarly, 
OAE% was significantly lower in the Cro-St and Iso-
St groups (both P<0.05) compared to the Res-St group 
(Figure 5A). 

A significant reduction of OAT% was observed in all 
stress groups (Rel-St group: P<0.05; other stress groups: 
P<0.001) compared to the Co group. Furthermore, 
OAE% in the Cro-St and Iso-St groups showed signifi-
cant decreases (both P<0.01) compared to the Rel-St 
group (Figure 5B). 

Figure 3. Initial latency (IL) and latency after a day in the passive avoidance apparatus before and after the foot shock (within-
groups; n=8)

Notes: The results are expressed as Mean±SE of the mean (paired sample t-test). +P<0.05, ++P<0.01, and +++P<0.001 initial latency 
relative to latency after a day. 

Figure 4. A) The total dark stay (DS) time and B) Number of entries to the darkroom after a day in the passive avoidance ap-
paratus for all groups (n=8)

Notes: The results are expressed as Mean±SE of the mean (one-way analysis of variance, followed by the Tukey post hoc test). 
*P<0.05, **P<0.01, and ***P<0.001 compared to the control group (Co), ƟP<0.05 compared to the Rel-St. 
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Effects of stress on the open field test

The number of entries to the platform’s center was sig-
nificantly lower in the Cro-St and Iso-St groups (both 
P<0.01) compared to the Co group (Figure 6A). Also, 
this value had a significant decrease in the Cro-St and 
Iso-St groups (both P<0.01) in comparison with the Rel-
St group (Figure 6A), although it was significantly lower 
in the Cro-St and Iso-St groups (both P<0.05) compared 
to the Res-St group.

The time spent in the central area of the OFT platform 
showed a significant decrease only in the Iso-St group 
(P<0.05) compared to the Co group (Figure 6B).

A significant decrease in the total distance traveled was 
observed in all stress groups (Res-St, Rel-St, and Cro-St 
groups: P<0.01; Iso-St group: P<0.001) compared to the 
Co group (Figure 6C). However, the highest decrease in 
exploration activities was observed in the Iso-St group in 
comparison with other stress groups.

Figure 5. The percentage of open arms entries (OAE%) (A), and time spent in the open arms (OAT%) (B) in the elevated plus 
maze test in different groups (n=8) 

Notes: The results are expressed as Mean±SE of the mean (one-way analysis of variance, followed by the Tukey post hoc test). 
*P<0.05 and ***P<0.001 compared to the control group (Co), ƟƟP<0.01 and ƟƟƟP<0.001 compared to the Rel-St, €P<0.05 compared 
to the Res-St. 

Figure 6. A) Number of entries to the center of the platform, B) Time (s) spent in its center, and C) Total distance (cm) traveled 
in the open field test in different groups (n=8)

Notes: Results are expressed as Mean±SE of the mean (one-way analysis of variance, followed by the Tukey post hoc test). 
*P<0.05, **P<0.01, and ***P<0.001 compared to the control group (Co), ƟƟP<0.01 compared to the Rel-St, €P<0.05 compared to the 
Res-St. 
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Effects of stress on serum CORT levels 

Serum CORT levels increased in all stress groups 
(Rel-St group: P<0.05; Res-St group: P<0.01; Cro-St 
and Iso-St groups: P<0.001) compared to the Co group. 
Furthermore, the serum CORT levels showed significant 
enhancement in the Iso-St group (P<0.05) compared to 
the Rel-St group (Figure 7).

Effects of stress on body weight differences

Compared to the Co group, the BWDs significantly 
declined in all stress groups (Rel-St group: P<0.05; 
other stress groups: P<0.01) compared to the Co group 
(Figure 8). 

Figure 7. Comparisons of the serum CORT levels (ng/mL) in all experimental groups (n=8)

Notes: Results are expressed as Mean±SE (one-way analysis of variance, followed by the Tukey post hoc test). *P<0.05, **P<0.01, 
and ***P<0.001 compared to the control group (Co), ƟP<0.05 compared to the Rel-St. 

Figure 8. Comparison of the body weight differences in all experimental groups (n=8)

Notes: Results are expressed as Mean±SE of the mean (one-way analysis of variance, followed by the Tukey post-hoc 
test).*P<0.05 and **P<0.01 compared to the control group (Co). 
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Correlation analyses of behavioral tests and body 
weight differences with serum CORT levels 

In the correlation analysis of the PA test data, the latency 
after a day exhibited no significant correlation with serum 
CORT levels in the Co group (R2=0.2327). However, they 
had significant negative correlations in the Rel-St, Res-St, 
Cro-St, and Iso-St groups (R2=0.5934, 0.2619, 0.5945, and 
0.6616, respectively; P<0.05) (Figure 9A). These find-
ings supported the proposition that the serum CORT levels 
should be involved in the memory impairment in the Cro-St 
and Iso-St groups, as per the PA test. 

In the correlation analysis of the EPM test data, the 
OAE% presented no significant correlation with serum 
CORT levels in the Co group (R2=0.983). However, they 
had significant negative correlations in the Rel-St, Res-St, 
and Cro-St groups (R2=0.5556, 0.2220, 0.5945, and 0.5199, 
respectively; P<0.05) and Iso-St group (R2=0.775; P<0.01) 
(Figure 9B). These findings supported the proposition that 
serum CORT levels should be involved in anxiety-like be-
haviors in all stress groups, as per the EPM test.

In the correlation analysis of the OFT data, the total 
distance traveled revealed no significant correlation 
with serum CORT levels in the Co group (R2=0.424). 
According to Figure 9C, there were significant negative 
correlations in the Rel-St, Res-St, and Cro-St groups 
(R2=0.6278, 0.7398, R2=0.6848, respectively; P<0.05 in 
all groups) and Iso-St group (R2=0.8129; P<0.01). These 
findings supported the proposition that serum CORT 
levels should be involved in locomotor activity in all 
stress groups, as per the OFT.

Another correlation analysis between the BWD data 
and serum CORT levels exhibited no significant correla-
tion in the Co group (R2=0.3242). However, significant 
negative correlations were observed in the Rel-St, Res-
St, Cro-St, and Iso-St groups (R2=0.6815, 0.383, 0.5544, 
and 0.6614, respectively; P<0.05) (Figure 9D). These 
findings supported the proposition of serum CORT lev-
els should be involved in body weight loss under stress.

Figure 9. The latency after one day in the passive avoidance test (a), OAE % in the elevated plus maze test (b), distance in the 
OFT (c), and body weight differences (d) based on the CORT levels in the experimental groups

Notes: Results are expressed as Mean±SE of the mean (Pearson correlation test).

Abbreviations: OAE: Open arm entries; OFT: Open field test, CORT: Corticosterone. 
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4. Discussion

This study investigated the effects of four major types 
of psychological stress, namely crowding, relocation, 
isolation, and restraint (emotional stress), on learning, 
memory, memory consolidation, locomotor activity, 
anxiety-like behaviors, and BWDs in rats, as well as the 
correlations between their results. 

According to the present PA data, learning occurred 
at different levels in all experimental groups. However, 
the lowest degree of learning occurred under the isola-
tion stress. In line with current findings, learning was 
reported to have occurred under stress (Dastgerdi et al., 
2018) because stress influences the onset and intensity 
of learning as a cognitive brain function (Rafah Sami, 
2009). Although stress did not impede learning, it im-
paired brain performance byblocking the changes re-
garding habit memory formation (Schwabe et al., 2010). 
The impact of stress on learning has nevertheless been 
controversial. Based on different studies, stress either 
adversely or positively affected learning, or did not af-
fect it at all depending on various high and low ranges 
of stress curve (distress and eustress, respectively) (Joëls 
et al., 2006; Rudland et al., 2020; Salehi et al., 2010). 
Moreover, stress altered the equilibrium between multi-
ple underlying systems involved in learning and memory 
(Vogel & Schwabe, 2016). 

According to other PA findings, memory was impaired 
in all chronic stress conditions, and memory consolida-
tion was impaired by restraint, crowding, and especially 
isolation stress. Further findings related to the hormonal 
levels indicate that stress-driven memory deficits mainly 
occurred because of the changes in the CORT levels. 
Meanwhile, the correlations between our findings in the 
PA test with the serum CORT levels verify this proposi-
tion. Previous studies have stated chronic stress as an in-
evitable phenomenon that has impaired memory through 
the secretion of stress hormones (e.g. CORT) and other 
neurochemical factors (Jeong et al., 2006; Sandi & 
Pinelo-Nava, 2007; Sunanda et al., 2000). In addition, 
the comparison between previous studies demonstrated 
that isolation stress was more destructive to memory 
processing compared to restraint stress (Hosseini Dast-
gerdi et al., 2021; Khani et al., 2022). Other findings in 
this study suggested that cognitive performance strongly 
corresponds with social density (the average conspecif-
ic encounter rate in an animal population). A research 
study indicated that social density was influenced by the 
physical area and availability of resources in the habi-
tat (Love & Zelikowsky, 2020). In humans and rodents, 
social stress could be triggered by interpersonal encoun-

ters, arguments, and fights (Love & Zelikowsky, 2020). 
In comparison to moderate levels of social density, ex-
tremely low or high levels of social density create a situ-
ation, in which the nervous system may not efficiently 
handle stress, especially chronic stress. With the increase 
in population, the behavior of individuals changes. 
Crowding increases the stress level as the competition 
for limited resources exacerbates and leads to increased 
aggression (Agrell et al., 1995). 

According to the result of the PA test, locomotor ac-
tivity was decreased in the subjects enduring isolation 
stress. However, the effect of stress on locomotor ac-
tivity remains paradoxical as reduced (Sestakova et 
al., 2013) or increased locomotor activity (Weiss et al., 
2000) is discussed in various studies. In these studies, 
besides behavioral assessment methods, stress duration 
and type have influenced the results concerning loco-
motor activity as well (Ranjbar et al., 2016). Along with 
altered secretion of hormones like glucocorticoids (Mi-
randa & Oliveira, 2015), different mechanisms might 
be involved in stress-related memory impairment and 
behavioral changes. This includes the secretion of neu-
rotransmitters (serotonin, dopamine, and norepineph-
rine) (Brenes et al., 2008; Dalesman & Lukowiak, 2011) 
and brain morphological changes (reduced expression 
of new neurons, synaptic proteins, dendritic density and 
length of neurons) (Bianchi et al., 2006). 

The findings of the EPM test showed a significant re-
duction in the time spent in the EPM open arm and the 
number of entries to the open arm in all stress groups. 
The crowding and isolation stress increased anxiety-like 
behaviors more than other types of stress. Another study 
demonstrated that animals’ behaviors on the EPM plat-
form were influenced by the stress type (Nazeri et al., 
2017). In the present study, the increased serum CORT 
levels seemed to elevate anxiety-like behaviors. In line 
with other studies, the correlations between EPM find-
ings and serum CORT levels confirmed that CORT has 
an influential role in causing anxiety-like behaviors. As 
such, longer and continuous periods of social isolation 
induce a cascade of negative behaviors in animal mod-
els, humans, and neural mechanisms, facilitating this 
shift (Love & Zelikowsky, 2020). The network organi-
zation of structural connectomes will begin to differ in 
stress conditions related to social isolation. For instance, 
some measures of the network structure, such as modu-
larity (i.e. the strength of network division into modules) 
and small-worldness (the degree a network could be 
cluster-organized) decrease, indicating greater homoge-
neous connections (Liu et al., 2016). These changes de-
pend on the outcome of the disrupted inter-hemispheric 
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and inter-modular connections in the dorsolateral orbito-
frontal cortex (Liu et al., 2016). Other studies have con-
firmed the association of social isolation with decreased 
myelination, altered dendritic development, decreased 
plasticity in the prefrontal cortex (Makinodan et al., 
2012; Medendorp et al., 2018), and changes in the pre-
frontal cortex connectivity (Hermes et al., 2011), in par-
ticular concerning the prefrontal cortex-amygdala circuit 
(Castillo-Gómez et al., 2017). Also, the serotonergic fi-
ber density in the inferior colliculus is a factor that is re-
duced by developmental isolation (Keesom et al., 2017). 
Moreover, chronic isolation stress induces a phenotype 
with similar aspects to anxiety, depression, and social 
withdrawal in adult rodents (Ieraci et al., 2016; Liu et al., 
2012; Scaccianoce et al., 2006).

Based on the present OFT findings, the exploration 
activity was decreased in the subjects of the Iso-St and 
Cro-St groups that exhibited anxiety-like behaviors. 
Therefore, isolation and crowding stress types were 
more destructive than the other stress groups in this 
study. The locomotor activity decreased in all stress 
groups, especially in the Iso-St group. The changes in 
locomotor activity on the OFT platform were related to 
the serum CORT levels and were accordingly confirmed 
by the correlation analysis of the OFT findings with se-
rum CORT. Another study reported that crowded hous-
ing (for mice) reduced exploration, locomotor activity, 
and anxiety-like behaviors in the OFT and EPM tests 
(Reiss et al., 2007). Furthermore, environmental factors 
seem to affect the expression of behavioral phenotypes. 
Therefore, social housing, as a stress factor, could affect 
psychological reactivity significantly. Also, there were 
locomotor activity differences in response to various 
stress types in the OFT and PA tests. Some behaviors, 
like locomotor activity, originate from certain brain ar-
eas; hence, their evaluation requires specific behavioral 
methods. In other words, specific behavioral tests should 
be considered for different behavioral assessments. 
Moreover, the open field is a more specific test for the 
evaluation of the passive avoidance test.

Based on current findings regarding hormonal changes, 
different stress types, particularly crowding and isolation 
stress, increased serum CORT levels more significantly 
than other stress types. According to previous studies, 
adrenal gland weight increased with the greater popu-
lation density, indicating a probable increase in adrenal 
function (Love & Zelikowsky, 2020). In addition, isola-
tion, restraint, relocation, and crowding stress increased 
CORT levels in rats (Djordjevic et al., 2003; Khani et 
al., 2018; Radahmadi et al., 2020). In another study, 
isolation stress strongly affected behavior but did not 

enhance plasma CORT levels, which were induced by 
other stressors (Scaccianoce et al., 2006). These differ-
ences might be related to the methodology, age, gender, 
physical area, as well as stress duration, and type (Ra-
dahmadi et al., 2017; Ranjbar et al., 2016). It is critical 
to determine the time when social isolation level and du-
ration begin to have detrimental effects on the subject 
(Love & Zelikowsky, 2020). The role of other variables, 
such as the group size and housing duration, should be 
considered as well (Van Loo et al., 2001).

According to BWD findings, all types of chronic stress 
decreased body weight gain significantly. A relationship 
between weight changes and CORT levels should be well 
noted as the BWD findings and serum CORT correlation 
confirmed it. Meanwhile, some metabolic processes are 
mediated by glucocorticoids; thus, psychological stress 
could lead to body weight loss (Qin et al., 2011; van der 
Kooij et al., 2018). However, it was previously indicated 
that crowding increased adiposity without weight gain 
(Lin et al., 2015). Concerning stress-related body weight 
loss, a study has reported that epinephrine and norepi-
nephrine stimulated hormone-sensitive lipase, whereas 
cortisol increased lipid cell sensitivity to epinephrine and 
norepinephrine (Lafontan & Langin, 2009). The secre-
tion of corticotrophin-releasing hormones due to stress 
could decrease food ingestion and body weight (Hein-
richs et al., 2001). The BWDs were related to stress ex-
posure (Ranjbar et al., 2016). In another research study, 
various types of chronic stress, except chronic restraint 
stress, induced body weight loss because of the stress ex-
posure (Marin et al., 2007). Finally, the potential effects 
of stress caused by social density could be highlighted as 
a neuroendocrine stress response, regulated or deregulat-
ed by the hypothalamic pituitary adrenal axis, as well as 
behavioral and neural alterations that are either primary 
or secondary responses to psychogenic stress (Love & 
Zelikowsky, 2020). However, understanding those brain 
mechanisms concerning chronic social stress that have 
such subserving adaptive functions should be of primary 
concern. This is because social stress is the major cause 
of stress stimuli in humans that lead to psychopathology. 
However, further cellular, biochemical, and structural re-
search is needed to explain its underlying physiological 
mechanisms.

5. Conclusion

Overall, learning occurred at different levels in all ex-
perimental groups although the lowest level of learning 
occurred under isolation stress conditions. The crowd-
ing and isolation stress, as two models of social density 
stress, had further destructive effects on the impairment 
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of cognitive functions in comparison with the reloca-
tion and emotional stress. As such, these stress models 
severely impair learning, memory, memory consolida-
tion, locomotor activity, and body weight. The crowd-
ing and isolation stress increased anxiety-like behaviors 
and serum CORT levels more than other types of stress, 
(i.e. relocation and restraint stress). Thus, stress, which 
was caused by social density (housing density: Crowd-
ing and spatial isolation), led to the most negative effects 
on memory and mood, probably due to different CORT 
levels, as the main stress hormone. Finally, high or low 
populations of social density may create a condition, in 
which the nervous system could not efficiently handle 
stress, at chronic levels in particular.
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