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Introduction: A full investigation into the features extracted from voice signals of 
people with and without Parkinson’s disease was performed. A total of 31 people 
with and without the disease participated in the data collection phase. In this study 
subjects’ voice signals were used to let computer decide whether the person is 
suffering from the disease or they are not. 
Methods: Their voice signals were recorded and processed. The relevant features 
were then extracted. Features were fed to different classifiers so as to be let them 
decide whether the subjects have the disease or not. Three different classifiers were 
used in order to rule out any doubt about the validity of classification performance 
on the given data.
Results: The use of a variety of feature selection methods resulted in a good 
performance for the diagnosis of Parkinson. The classifiers’ performances were 
compared with one another and showed that the best performance was obtained 
with a correct rate of 0.9382 when using the KNN classifier.
Discussion: Results reveal that the use of proposed feature selection method 
results in a desirable precision for the diagnosis of Parkinson’s disease (PD). The 
performances were assessed from different points of view, providing different 
aspects of the diagnosis, from which the physicians are able to choose one with 
higher accuracy in the diagnosis.  
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             1. Introduction

arkinson’s disease (PD), is a disorder of the 
nervous system that affects muscle con-
trol. Marked by trembling of the arms and 
legs, muscular rigidity, and poor balance, 
Parkinson’s disease is slowly progressive, 

worsening over time. Eventually symptoms may cause 
problems with walking or talking and, in some people, 
difficulty thinking. Physicians do not know how to 
cure Parkinson’s disease, but drug therapy or surgery 
may alleviate some of the most troubling symptoms. 

P
The National Parkinson Foundation based in Miami, 
Florida, estimates that 1.5 million people in the United 
States are affected with Parkinson’s disease (Lang et al., 
1998), although estimates are difficult to make because 
symptoms of the disease are often mistaken for the nor-
mal effects of aging or are attributed to other diseases. 
Parkinson’s disease occurs in people all over the world, 
with the incidence in men slightly higher than in wom-
en. People most commonly develop Parkinson’s disease 
around the age of 60, and the incidence rises with age 
(Van Den Eeden et al., 2003). However, at least 10 per-
cent of cases occur in people under age 40, and a rare 
form of the disease affects teenagers. 
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    Diagnosing Parkinson’s disease may be difficult, par-
ticularly in the early stages of the disease when symp-
toms resemble other medical conditions, and misdiag-
nosis occurs occasionally. No single laboratory test can 
diagnose the disease. Blood tests, brain imaging tech-
niques such as magnetic resonance image (MRI), posi-
tron emission tomography (PET scan), and single pho-
ton emission computed tomography (SPECT), may be 
used to help doctors exclude other medical conditions, 
such as stroke or brain tumors, that produce symptoms 
similar to those of Parkinson’s disease. Thus, there is no 
unique way of diagnosis among physicians and their di-
agnoses are mostly based on trial and error which is not 
desirable. Amongst others, one of the methods for the 
diagnosis of voice disorders which is commonly used 
by clinicians and vocal therapists is the use of acoustic 
tools that record the changes in pressure at lips or inside 
the vocal tract. Recently, upon signal processing a group 
of experts (Little et al., 2009) found some features in 
the voices of the people with Parkinson’s disease that 
can be used as discriminatory measures to differenti-
ate those who have the disease from those who do not.  
As mentioned before, the disease causes the muscles to 
shake and vibrate unintentionally and that it starts from 
smaller ones (Ho et al., 1998; Logemann et al., 1978). 
The very onset places in which the disorder starts to ap-
pear is the patient’s vocal cords, so as of then the pa-
tient’s voice signal will have some extra oscillations and 
other abnormal deviations from the expected signal that 
can be extracted if it is processed. This is obvious when 
the patient decides to speak and cannot produce the cor-
rect vocal sounds. This vocal impairment is called dys-
arthria.  The problem they experience when trying to 
normally articulate speech is named dysarthria. Symp-
toms of dysarthria include reduced loudness, breathi-
ness (which is a kind of noise mounted on voice signal), 
decreased energy in higher parts of harmonic spectrum 
and exaggerated vocal tremor (Rahn et al., 2007).

In the field of vocal diagnosis there are a handful of 
methods for recording and sampling voices depend-
ing on what objectives we have (Baken et al., 2000; 
Dejonckere et al., 2001). One of the most famous ap-
proaches is running speech in which the subject is sup-
posed to read a sentence out and their voice is recorded 
simultaneously. The sentence is a standard one and 
forces the subject to pronounce different sounds so as 
to expose their impairments.  Other method is vowel (or 
sustained) phonation in which the subject is supposed to 
pronounce a vowel sound for as long as possible while 
having their voices recorded. Although the first method 
might seem more realistic, second method is sufficient 
to show the desired discriminatory criteria. Normal and 

disordered vowel sounds have a large range of behavior 
including nearly periodic or regular vibration, aperiodic 
or irregular vibration and sounds with no apparent vi-
bration at all. All these types of signal suffer from some 
sort of breathiness of noise. In general vocal problems 
exhibit two characteristic phenomena: increased vibrat-
ing aperiodicity and increased breathiness (Michaelis et 
al., 1998). These categorizations are necessary for the 
analysis of speech signals. Because the mentioned noise 
is remarkable in analysis we cannot use classical meth-
ods (specially linear and deterministic methods like 
Fourier transform or spectrum analyzing) and there is 
a need for some new methods of stochastic signal pro-
cessing (Carding et al., 2004). 

Recently, some new measurement methods have been 
proposed which are based on nonlinear dynamical sys-
tems theory (Kantz et al., 1999; Little et al., 2007). This is 
in accordance with the nonlinear dynamics of voice pro-
duction system which consists of vocal cords, pharynx, 
larynx and so on, each of which is a nonlinear system. 
Therefore, any changes in produced voice signal caused 
by any disease can change the dynamics of the whole sys-
tem. These changes can be detected and the desired fea-
tures extracted. According to the fact that randomness and 
noise are integral parts of the produced voice, as the new 
methods of processing, recurrence pitch entropy density 
(RPDE) and detrended fluctuation analysis (DFA) are ap-
plied to the voice signals as tools for showing the ability 
to detect general voice disorders (Little et al., 2007). An-
other important measure, that has been found invariant to 
the acoustic environment and the gender of the subject, is 
pitch period entropy (PPE) that is proposed by (Little et 
al., 2009), and used in this study.  

These novel characteristics together with classical char-
acteristics which are extracted using conventional meth-
ods make a sum of 22 discriminatory features that can 
differentiate a person with Parkinson from a healthy one 
using some classification method (Little et al., 2009). 
The measurements are provided by (Little et al., 2007). 
A classification method is applied on this data in (Little 
et al., 2009), revealed that these features are valid to be 
used in telemedicine for those who suffer from the dis-
ease. The result was a 0.914 of correct rate using the 
SVM classifier. Although relatively good, in the same 
study there are some features omitted, only one clas-
sifier used and no specific method mentioned for the 
feature selection phase thus ending up to the need for 
evaluation of all possible combinations among all the 
feature set. This will be burdensome and bring about 
lack of justification for the choice made. In addition, 
there is no comparison done on the dataset based on the 
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kind of classifier used. In this paper we will clarify the 
reasons for which our features are chosen based on the 
most state of the art criteria available in the literature 
while simultaneously comparing some widely used 
classifiers’ behaviors that eventually result in a good 
performance for each of them. 

2. Methods

2.1. Data Collection  

2.1.1. Experimental Setup

31 people, form both genders, participated in the speech 
recording experiments (Little et al., 2009). They were 
aware of experimental conditions and their consents 
had already been collected. Their age ranged from 46 
to 85 years. Some more detailed information on partici-
pants’ condition is gathered in Table 1. The time since 
their disease diagnosis ranged from 0 to 28 years. It 
should be noted that we, as researchers, are blind to the 
diagnosis and all participants were diagnosed as with 
or without the disease according to experienced physi-
cians. Averagely there were 6 voice signals recorded 
from each of them. There gathered 195 measurements 
altogether from the subjects. Among them, there were 
23 with the disease and the rest 8 were healthy. There 
was a microphone (AKG C420) fitted on their heads, 
8cm from their mouths, recording their voices while 
they pronounced a specific vowel sound for as long as 
they could. Calibration of microphone was done using 
a Class 1 sound level meter (B&K 2238) 30cm distant 
from the speaker. The phonation signal was sent to the 

Table 1. List of subjects with sex, age, Parkinson’s stage and 
number of years since diagnosis.

Note: “H&Y” refers to the Hoehn and 
Yahr PD stage, where higher values in-
dicate greater level of disability (Hoehn 
et al., (1967)). 

Figure 1. Two selected examples of speech signals: (a) 
healthy, (b) subject with PD. The horizontal axis is time in 
seconds, the vertical axis is signal amplitude (no units) (fig-
ure from (Little et al., 2007)).

Subject code Sex Age
Stage 
(H&Y)

Years since 
diagnosis

S01 M 78 3.0 0

S34 F 79 2.5 ¼

S44 M 67 1.5 1

S20 M 70 3.0 1

S24 M 73 2.5 1

S26 F 53 2.0 1½

S08 F 48 2.0 2

S39 M 64 2.0 2

S33 M 68 2.0 3

S32 M 50 1.0 4

S02 M 60 2.0 4

S22 M 60 1.5 4½

S37 M 76 1.0 5

S21 M 81 1.5 5

S04 M 70 2.5 5½

S19 M 73 1.0 7

S35 F 85 4.0 7

S05 F 72 3.0 8

S18 M 61 2.5 11

S16 M 62 2.5 14

S27 M 72 2.5 15

S25 F 74 3.0 23

S06 F 63 2.5 28

S10(healthy) F 46 n/a n/a

S07(healthy) F 48 n/a n/a

S13(healthy) M 61 n/a n/a

S43(healthy) M 62 n/a n/a

S17(healthy) F 64 n/a n/a

S42(healthy) F 66 n/a n/a

S50(healthy) F 66 n/a n/a

S49(healthy) M 69 n/a n/a
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2.1.2. Feature Extraction

In calculations the second half of every signal is ig-
nored, because they are greatly affected by spurious 
dysarthria caused by lack of lung pressure which is ob-
served in those not suffering from PD as well. In this 
way the risk of misinterpretation is reduced and dignity 
of the diagnosis is retained. 

Traditional measures were calculated using the software 
Praat (Boersma and Weenink, 2005, 2001). These mea-
sures rely on the application of successive windows of the 
signal, with the determination of the vibration frequency 
of vocal folds (F0 or pitch period) using peak-picking, 
and location in time of the beginning of each cycle of vi-
bration of the vocal folds (pitch marks) (Boersma, 2005). 
The noise-to-harmonics and harmonics-to-noise mea-
sures are extracted using estimates of signal to noise by 
calculation of autocorrelation of each cycle.

Measures related to the perturbation of amplitude were 
extracted by analyzing vocal cycles. So was calculated 
shimmer. This was done by the investigation of maxi-
mum extent of amplitude sequence in each cycle. The 
difference appears, when averaging mentioned sequenc-
es, and this difference is used as a measure. The same 
method of averaging is used for the period perturbation 
measures and jitter. The only difference is that absolute 
differences between frequencies of each cycle are used 
here. The averaging is applied over a varying number of 
cycles which is then normalized by the overall average.

The correlation dimension (D2) is calculated by time 
delay embedding the signal to recreate the phase space 
of nonlinear dynamical system that is proposed to gen-
erate the speech signal (Kantz et al., 1999).

Ignoring the calculation method for this measure given 
in (Little et al., 2007), the recurrence period density en-
tropy (RPDE) is a factor showing the non periodicity of 
the signal. This measure is a good evidence for general 
voice disorders. As we know, general voice pathologies 
perturb the normal activity of vocal folds, not allowing 
them produce regular vibration. 

The next measure is named detrended fluctuation analy-
sis (DFA). This measure shows the self-autocorrelation 
or self-similarity of noise in speech signal. The more 
self-similar this noise, the more problems may exist in 
voice production.

The noise heard in voice is mostly the product of tur-
bulence of the air through the vocal folds. In dysphonic 

Table 2.  Extracted features. 

Note: * means the same explanation as previous line.

No. Feature Explanation

1 MDVP: Fo(Hz) Average vocal fundamental 
frequency

2 MDVP:Fhi(Hz) Maximum vocal fundamental 
frequency

3 MDVP:Flo(Hz) Minimum vocal fundamental fre-
quency

4 MDVP:Jitter(%) A measure of variation in funda-
mental frequency

5 MDVP:Jitter(Abs) *

6 MDVP:RAP *

7 MDVP:PPQ *

8 Jitter:DDP *

9 MDVP:Shimmer A measure of variation in 
amplitude

10 MDVP: 
Shimmer(dB) *

11 Shimmer:APQ3 *

12 Shimmer:APQ5 *

13 MDVP:APQ *

14 Shimmer: DDA *

15 NHR A measure of ratio of noise 
to tonal components in the voice

16 HNR *

17 RPDE A nonlinear dynamical 
complexity measure

18 D2 *

19 DFA Signal fractal scaling exponent

20 spread1 A nonlinear measure of 
fundamental frequency variation

21 spread2 *

22 PPE *

computer using CSL 4300B hardware (KayElemetrics). 
The signal is then sampled at a rate of 44.1 kHz with 16 
bit resolution. For the sake of brevity latter reference is 
recommended to the reader for more information. The 
22 features shown in Table 2 are extracted, some from 
amplitude, some from the fundamental frequency and 
so on. Two example of speech signals are shown in Fig. 
1, one from a healthy subject and the other from a pa-
tient. The differences are quite simple to recognize.
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disorders like incomplete vocal fold closure, there ap-
pear some self-similarity features of noise in speech 
signal which can be taken into consideration as mea-
sure for differentiating those who have the disease from 
those who do not. 

A new measure is introduced in (Little et al., 2009). For 
the sake of awareness we have a glance at its calcula-
tion in this article. There is a normal variation in natural 
pitch (F0) which is observed in normal speech signal. 
This variation is characterized by smooth vibrato and 
microtremor (Schoentgen and Deguchteneere, 1995). 
The variation is distorted in people with PD. Of course, 
this fact is more remarkable during sustained phonation 
(Cnockaert et al., 2008), and that is one of the reasons 
for the choice of sustained phonation rather than run-
ning speech. 

For the calculation of this measure, firstly, the pitch se-
quence of the phonation is obtained and converted to the 
logarithmic semitone scale, p(t), where p is the semitone 
pitch at time t. Then using a standard linear whitening 
filter, the linear temporal correlations in the semitone 
sequence are removed. This procedure will provide the 
analysis for the roughness of variations in the mentioned 
sequence to produce the relative semitone variation se-
quence r(t). Secondly, a discrete probability distribution 
of occurrence of relative semitone variations, P(r), is 
constructed. Finally, the entropy for this distribution is 
calculated which characterizes the extent of oscillations 
in the sequence of relative semitone pitch period varia-
tions. The increase in this entropy is corresponding to 
better variations over and above natural healthy varia-
tions in pitch observed in healthy speech production. 

2.2. Feature Vector Preparation

2.2.1. Preprocessing

At the first step of feature preparation, an outlier remov-
al method was tested trying to improve the efficiency 
of the classifiers. For this purpose, firstly, we chose a 
coefficient for the standard deviation based on which we 
could decide how big the span of the desired values of 
the observations was to be. Then, considering different 
values for the mentioned coefficient it was seen that the 
resulting performance did not improve, showing that re-
ducing the number of observations in this special case, 
may be because of few number of observations, does 
not help us. So outlier removal was not considered a 
case of improvement anymore. Some of the results on 
outlier removal are provided in Table 3. Data normaliza-
tion seemed to be necessary to be applied to the data at 

hand, because the span of variation was so much dif-
ferent from one feature to another, and this would have 
discriminate some features from some others in the 
classifier’s view. We applied normalization using both 
linear and nonlinear formulations and according to the 
better performance resulted, the nonlinear one (softmax 
scaling with the free parameter r set to 0.5) was selected 
(Theodoridis and Koutroumbas, 2010). This method 
squashes data values nonlinearly in the interval [0,1].

2.2.2. Feature Selection

So far we had 22 features at hand that we are supposed 
to choose from, the best subset. The word ‘subset’ is 
used because it is desirable to reduce the number of fea-
tures to a manageable size so as to firstly, reduce the 
complexity of classifier and secondly, to disregard the 
features that do not help us improving the performance 
of classifier if there is any. Firstly, for reaching a num-
ber that shows the optimum number of features which 
are considered informative enough, and that can lead 
the classifier towards its highest performance, we had 
to evaluate each feature individually. These features are 
supposed to be assessed based on some criteria which 
show the information that each of them contains. Be-
cause some of the features are extracted from the same 
parameters in the voice signals they showed a highly 
correlated dispersion in feature space. For the sake of 
improvement, one of every two features which showed 
a correlation rate over 95% was dismissed. The dis-
missed features are MDVP:Jitter(%), MDVP:RAP, 
MDVP:PPQ, MDVP:Shimmer, MDVP:Shimmer(dB), 
Shimmer:APQ3, Shimmer:APQ5 so there are 15 fea-
tures left. According to the fact that there exist a few 
criteria in the literature that can prioritize the features 
independently we utilized in this study the most com-
mon ones which are Fisher’s Discriminant Ratio (FDR), 
t-test and ROC curve. For more information on these 
criteria the reader is referred to (Theodoridis and Kou-
troumbas, 2010; Theodoridis and Koutroumbas, 2009; 
Duda, 2000).

Table 3. The effect of outlier removal on classification per-
formance (SVM classifier).

Coefficient 
Value

Number of 
Features Left

Classifier’s 
Correct Rate

Original data 195 0.9144

1 146 0.9042

2 183 0.9099

3 194 0.9135



Spring 2011, Volume 2, Number 3

17

Basic and Clinical

Now knowing the number of features required to at-
tain the best performance it is time for choosing the best 
subset of the 7 features. If the exhaustive search is used 
there will be 6435 combinations for a combination of 
7 out of 15 and they all need to be evaluated to find 
the best combination that leads to the best performance. 
It is proposed to use some criteria to prioritize the best 
subsets. The criteria used in this study are divergence, 
Bhattacharyya distance and scatter matrices which are 
the most prevalent in the literature of classification on 
this matter (Theodoridis and Koutroumbas, 2010). Gen-
erally speaking, each of these criteria somehow evalu-
ates the difference that exists between features whether 
it is distance or dispersion or any other difference. We 
applied all three criteria on the 15 features and found the 
best subset of 7 using a Sequential Backward Selection 
(SBS) technique (Theodoridis and Koutroumbas, 2009). 
Thus in this way instead of having to do a collection of 

Table 4. Chosen feature sets provided using different fea-
ture vector selection criteria.

Criterion 7 Chosen Features

Divergence MDVP: Fo(Hz), MDVP: Fhi(Hz), DFA, 
spread1,  spread2, D2, PPE

Bhattacharyya 
Distance

MDVP: Fo(Hz), MDVP: Fhi(Hz), 
MDVP:APQ,spread1,HNR, spread2, DFA

Scatter Matrices MDVP: Fhi(Hz), spread1, DFA, 
Shimmer:DDA, RPDE, D2, PPE

Incrementing one by one the number of features 
that had already been prioritized and using them in a 
SVM classifier and simultaneously evaluating the per-
formance of classifier it was revealed that the highest 
performance is achieved when using a combination 
of 7 most prior features, using the three classifiers at 
hand. It is confirmed by the resulted curves shown in 
Fig. 2 using the three mentioned criteria. As it is ob-
vious when using 7 features two of the criteria (t-test 
and ROC curve) reach their maximum and the third one 
(Fisher) is almost in its peak so that the justification for 
the choice.

Figure 2. Feature-performance curve. The three prevalent 
criteria have been used to evaluate the effect of number of 
features on classifier performance. SVM classifier with rbf 
kernel is used and Hold-out method is used for evaluation.

32767 evaluations for all combinations of 15 features 
we did a total search of 93 combinations. The calcula-
tion of this total search number is based on the formula 
for SBS searching technique (Duda et al., 2000). 

The best combination is found according to some 
criterion and after that we did the evaluation of perfor-
mance for each of the three criteria. The computational 
cost in (Little et al., 2009) is considered of importance 
any more, using this method. The results are shown 
in Table 4. For more information on these criteria and 
also SBS method the reader is referred to (Duda et al., 
2000). According to the resulted 7 features chosen by 
the criteria and the fact that there are a total of 13 spe-
cific features mentioned by the three criteria, it can be 
concluded that the three criteria are highly correlated in 
result. We decided to choose the features proposed by 
divergence criterion (based on the best resulting perfor-
mance of classifier) and will use them in the following 
section. They are MDVP: Fo(Hz), MDVP: Fhi(Hz), 
DFA, spread1,  spread2, D2 and PPE.

3. Results

Now we have got the best subset of seven features ac-
cording to divergence criterion. Our next goal is to un-
derstand how different classifiers would behave when 
encountering the chosen data and to compare their per-
formance. Now we are sure that our subset is the best 
one among all existing subsets and we can focus on the 
classification part. We used the commercial software 
MATLAB1 for all our computations and programs in 
this study. The adopted classifiers are Support Vector 
Machine (SVM), K-Nearest Neighbor (KNN) and some 
discrimination-function-based (DBF) classifiers. For 
the evaluation of classification there are different meth-
ods in the literature that each of them has some pros and 
some cons. K-fold cross-validation, HoldMout cross 
validation, Holdout method and Random subsampling 

1 .  MATLAB is a registered trademark of The Math Works, Inc., Natick, MA.
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methods are instances (Theodoridis and Koutroumbas, 
2009). 

We made use of the four above-mentioned methods to 
evaluate the performance of classifiers firstly to bring 
about a comparison case and secondly to cover all com-
mon methods of evaluation assuring that it provides 
enough evidence on the dignity of the calculations. 
There are some free parameters for these methods and 
for classifiers that have been chosen based on the best 
resulting performance for classifiers. They are K=3 for 

K-fold cross-validation, M=1 for Leave-M-out method 
and considering half of the samples for training and the 
rest for testing purpose in random sub-sampling. For 
SVM classifier we used RBF kernel function with the 
sigma value of 1, in KNN classifier K equals 4 and for 
DBF classifier we chose diag-quadratic discrimination 
function with the prior probabilities chosen according 
to number of samples in each class. According to the 
fact that the number of measurements are 147 and 48 for 
class1 (Patient) and class2 (Normal) respectively, prior 
probabilities are 0.674 and 0.326 respectively. 

Results of classification are gathered in Table 5 to 7 
for the mentioned classifiers respectively. For each of 
the classifiers correct rate, error rate, specificity and sen-
sitivity are calculated. These criteria are defined in the 
following. By definition sensitivity relates to the test’s 
ability to identify positive results. Here, if our test has 

high sensitivity then a negative result would suggest the 
absence of disease. For example, a sensitivity of 100% 
means that the test recognizes all actual positives – i.e. 
all sick people are recognized as being ill. So does the 
specificity for negative results.

Table 5.  Classification performance for SVM classifier.

SVM Correct Rate Error Rate Sensitivity Specificity

Random Subs. 0.9175 0.0825 0.6400 0.9861

Holdout 0.9113 0.0887 0.6792 0.9877

K-fold 0.9128 0.0872 0.6875 0.9864

LeaveMout 0.9000 0.1000 0.8000 1

Average 0.9104 0.0896 0.7016 0.9900

A high rate of specificity shows the ability of our test 
to rule out the disease in the subject. Conclusively, the 

highest rate is desired for all these criteria but the error 
rate. 

Table 6.  Classification performance for KNN classifier.

KNN Correct Rate Error Rate Sensitivity Specificity

Random Subs. 0.9533 0.0467 0.8333 1

Holdout 0.9165 0.0835 0.7917 0.9575

K-fold 0.9333 0.0667 0.8750 0.9524

LeaveMout 0.9500 0.0500 0.9000 1

Average 0.9382 0.0617 0.8500 0.9774

Table 7.  Classification performance for DFB classifier.
DFB classifier Correct Rate Error Rate Sensitivity Specificity

Random Subs. 0.8031 0.1969 0.5833 0.8904

Holdout 0.7911 0.2089 0.6375 0.8416

K-fold 0.8103 0.1897 0.6458 0.8639

LeaveMout 0.8833 0.1167 0.8000 0.9667

Average 0.8220 0.1780 0.6666 0.8906
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Table 8 provides a comparison between the three clas-
sifiers from different views. As it is obvious, averagely 
the highest correct rate and sensitivity rate are resulted 
by the KNN classifier, which are 0.9382 and 0.85 re-
spectively, and the highest specificity is provided by 
SVM classifier which is 0.99. This means that KNN 
classifier has the most ability to recognize positive cases 
of PD while the SVM classifier showed the most able to 
diagnose negative cases. Generally speaking, based on 
the correct rate which is the most general criterion for 
precision, KNN is the best classifier among the men-
tioned classifiers to differentiate between the people 
with PD and those without it.  

4. Discussion

The main reason behind such studies as ours is to try to 
computerize the diagnosis process. The more computer-
ized the diagnosis, the less expert intervention needed 
and so the less subjective diagnosis made. So the main 
goal of this study was to provide physicians with some 
diagnostic tool for Parkinson’s disease, enabling them 
to make earlier diagnosis. This diagnosis would not be 
subjective as well. Subjective interpretation of a disease 
can be the result of factors such as experience, knowl-
edge and even the mood of that physician at the time of 
diagnosis which is not desirable. It was tried to provide 
diagnosis through speech signals. By providing a basic 
concept for feature selection in this matter not only did 
our study reduced the computational costs (especially 
when coping with bigger databases) of previous works 
but also it improved the classification performance 
which is equivalent to a better diagnosis. The satisfac-
tory performance of classification which is achieved 
means implicitly the self sufficiency of the method and 
the lack of need for physician’s intervention. That is the 
desired result.

It is noted that the features of speech signals used in 
this study were extracted so as to expose some mal-
functions of nervous system in PD. Different features 
can be extracted each of which might be representing 
some other problems. This piece of work can be used 
as a monitoring tool for telemedicine if used regularly 
by the physician at a remote surgery. In this way voice 
signals are checked for small changes during the time. 
This is our future goal to achieve.
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