Volume 9, Issue 6 (November & December 2018)                   BCN 2018, 9(6): 417-428 | Back to browse issues page


XML Print


1- Department of Radiodiagnosis & Imaging, Post Graduate Institute of Medical Sciences, Sharma University of Health Sciences, Rohtak, Haryana, India.
2- Department of Neurosurgery, Post Graduate Institute of Medical Sciences, Sharma University of Health Sciences, Rohtak, Haryana, India.
3- Department of Biotechnology & Molecular Medicine, Post Graduate Institute of Medical Sciences, Regional Cancer Centre, Sharma University of Health Sciences, Rohtak, Haryana, India.
Abstract:  

Introduction: This study was conducted to grade meningiomas based on relative Cerebral Blood Volume (rCBV) and Apparent Diffusion Coefficient (ADC) to help surgeons plan the approach and extent of operation as well as decide on the need of any adjuvant radio/chemo therapy. The current and evolving genomic, proteomic, and spectroscopic technologies are also discussed which can supplement the current radiologic methods and procedures in grading meningiomas.
Methods: A total of 35 patients with meningioma prospectively underwent basic MR sequences (T1W, T2W, T2W/FLAIR) in axial, sagittal and coronal planes followed by Diffusion Weighted (DW) imaging having b value of 1000 (minimum ADC values used for analysis). Then, gadobenate dimeglumine/meglumine gadoterate was administered (0.1 mmol/kg at a rate of 4 mL/s) followed by saline flush (20 mL at a rate of 4 mL/s). Next, T2*W/FFE dynamic images were acquired; dynamics showing maximum fall in intensity was used for creating rCBV and relative Cerebral Blood Flow (rCBF) maps and calculating rCBV.
Results: Both maximum rCBV and minimum ADC within the tumor were not significant for differentiating benign from malignant meningiomas. A cut-off maximum rCBV of 2.5 mL/100 g in peritumoral edema was 75% sensitive, 84.6% specific, and 83.3% accurate in differentiating benign from malignant meningiomas. 
Conclusion: Benign and malignant meningiomas can be differentiated based on maximum rCBV in peritumoral edema but ADC values within the tumor are insignificant in differentiating benign and malignant tumors. rCBV values within tumor, however, may be helpful in subtyping meningiomas, especially transitional and meningothelial meningiomas. 

Type of Study: Original | Subject: Clinical Neuroscience
Received: 2017/01/23 | Accepted: 2017/05/5 | Published: 2018/11/1

References
1. Arai, M., Kashihara, K., & Kaizaki, Y. (2006). Enhancing gliotic cyst wall with microvascular proliferation adjacent to a meningioma. Journal of Clinical Neuroscience, 13(1), 136-9. [DOI:10.1016/j.jocn.2005.02.015] [PMID] [DOI:10.1016/j.jocn.2005.02.015]
2. Buetow, M. P., Buetow, P. C., Smirniotopoulos, J. G. (1991). Typical, atypical, and misleading features in meningioma. Radiographics, 11(6), 1087-106. [DOI:10.1148/radiographics.11.6.1749851] [PMID] [DOI:10.1148/radiographics.11.6.1749851]
3. Carvalho, L. H., Smirnov, I., Baia, G. S., Modrusan, Z., Smith, J. S., Jun, P., et al. (2007). Molecular signatures define two main classes of meningiomas. Molecular Cancer, 15(6), 64. [DOI:10.1186/1476-4598-6-64] [DOI:10.1186/1476-4598-6-64]
4. Demir, M. K., Iplikcioglu, A. C., Dincer, A., Arslan, M., & Sav, A. (2006). Single voxel proton MR spectroscopy findings of typical and atypical intracranial meningiomas. European Journal of Radiology, 60(1), 48-55. [DOI:10.1016/j.ejrad.2006.06.002] [PMID] [DOI:10.1016/j.ejrad.2006.06.002]
5. Eberlin, L. S., Norton, I., Orringer, D., Dunn, I. F., Liu, X., Ide, J. L., et al. (2013). Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 110(5), 1611-6. [DOI:10.1073/pnas.1215687110] [PMID] [PMCID] [DOI:10.1073/pnas.1215687110]
6. Filippi, C. G., Edgar, M. A., Ulug, A. M., Prowda, J. C., Heier, L. A., & Zimmerman, R. D. (2001). Appearance of meningiomas on diffusion-weighted images: Correlating diffusion constants with histopathologic findings. American Journal of Neuroradiology, 22(1), 65-72. [PMID] [PMID]
7. Gangadhar, K., Santhosh, D., & Fatterpekar, G. M. (2013). Imaging features of intracranial meningiomas with histopathological correlation: A relook into old disease. Nepalese Journal of Radiology, 3(1), 14-32. [DOI:10.3126/njr.v3i1.8713] [DOI:10.3126/njr.v3i1.8713]
8. Gao, X., Zhang, X. N., Zhang, Y. T., Yu, C. S., & Xu, D. S. (2011). Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors. Chinese Medical Journal, 124(12), 1906-10.
9. Hakyemez, B., Yildirim, N., Erdogan, C., Kocaeli, H., Korfali, E., & Parlak, M. (2006). Meningiomas with conventional MRI findings resembling intraaxialtumors: Can perfusion-weighted MRI be helpful in differentiation? Neuroradiology, 48(10), 695-702. [DOI:10.1007/s00234-006-0115-y] [PMID] [DOI:10.1007/s00234-006-0115-y]
10. Harting, I., Hartmann, M., Bonsanto, M. M., Sommer, C., & Sartor, K. (2004). Characterization of necrotic meningioma using diffusion MRI, perfusion MRI, and MR spectroscopy: Case report and review of the literature. Neuroradiology, 46(3), 189-93. [DOI:10.1007/s00234-003-1144-4] [PMID] [DOI:10.1007/s00234-003-1144-4]
11. Ignjatovic, J., Stojanov, D., Stojanovic, N., Stefanovic, I., Benedeto Stojanov, D., Petrovic, S., et al. (2014). ADC is not reliable in determinating subtypes of meningiomas. Central European Journal of Medicine, 9(6), 773-7. [DOI:10.2478/s11536-013-0315-x] [DOI:10.2478/s11536-013-0315-x]
12. Iwado, E., Ichikawa, T., Kosaka, H., Otsuka, S, Kambara, H., Tamiya, T., et al. (2012). Role of VEGF and matrix metalloproteinase-9 in peritumoral brain edema associated with supratentorial benign meningiomas. Neuropathology, 32(6), 638-46 [DOI:10.1111/j.1440-1789.2012.01312.x] [PMID] [DOI:10.1111/j.1440-1789.2012.01312.x]
13. Jensen, R., & Lee, J. (2012). Predicting outcomes of patients with intracranial meningiomas using molecular markers of hypoxia, vascularity, and proliferation. Neurosurgery, 71(1), 146-56. [DOI:10.1227/NEU.0b013e3182567886] [PMID] [DOI:10.1227/NEU.0b013e3182567886]
14. Jensen, R. L., Mumert, M. L., Gillespie, D. L., Kinney, A. Y., Schabel, M. C., & Salzman, K. L. (2014). Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro-Oncology, 16(2), 280-91. [DOI:10.1093/neuonc/not148] [PMID] [PMCID] [DOI:10.1093/neuonc/not148]
15. Jensen, R. L., Soleau, S., Bhayani, M. K., & Christiansen, D. (2002). Expression of hypoxia inducible factor-1 alpha and correlation with preoperative embolization of meningiomas. Journal of Neurosurgery, 97(3), 658-67. [DOI:10.3171/jns.2002.97.3.0658] [DOI:10.3171/jns.2002.97.3.0658]
16. Kaynar, M. Y., Sanus, G. Z., Hnimoglu, H., Kacira, T., Kemerdere, R., Atukeren, P., et al. (2008). Expression of hypoxia inducible factor-1alpha in tumors of patients with glioblastoma multiforme and transitional meningioma. Journal of Clinical Neuroscience, 15(9), 1036-42. [DOI:10.1016/j.jocn.2007.07.080] [PMID] [DOI:10.1016/j.jocn.2007.07.080]
17. Kircher, M.F., de la Zerda, A., Jokerst, J. V., Zavaleta, C. L., Kempen, P. J., Mittra, E., et al. (2012). A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Medicine, 18(5), 829-34. [DOI:10.1038/nm.2721] [PMID] [PMCID] [DOI:10.1038/nm.2721]
18. Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumors of the central nervous system. ActaNeuropathol, 114(2), 97-109. [DOI:10.1007/s00401-007-0243-4] [PMID] [PMCID] [DOI:10.1007/s00401-007-0243-4]
19. Moffat, B. A., Chenevert, T. L., Meyer, C. R., Mckeever, P. E., Hall, D. E., Hoff, B. A., et al. (2006). The functional diffusion map: An imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia, 8(4), 259-67. [DOI:10.1593/neo.05844] [PMID] [PMCID] [DOI:10.1593/neo.05844]
20. Monleón, D., Morales, J. M., Gonzalez Segura, A., Gonzalez Darder, J. M., Gil Benso, R., Cerdá Nicolás, M., et al. (2010). Metabolic aggressiveness in benign meningiomas with chromosomal instabilities. Cancer Research, 70(21), 8426-34. [DOI:10.1158/0008-5472.CAN-10-1498] [PMID] [DOI:10.1158/0008-5472.CAN-10-1498]
21. Nagar, V. A., Ye, J. R., Ng, W. H., Chan, Y. H., Hui, F., Lee, C. K., et al. (2008). Diffusion-weighted mr imaging: Diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. American Journal of Neuroradiology, 29(6), 1147-52. [DOI:10.3174/ajnr.A0996] [PMID] [DOI:10.3174/ajnr.A0996]
22. Qi, Z. G., Li, Y. X., Wang, Y., Geng, D. Y., Li, K. C., Shen, T. Z., et al. (2008). Lipid signal in evaluation of intracranial meningiomas. Chinese Medical Journal, 121(23), 2415-9.
23. Reszec, J., Hermanowicz, A., Rutkowski, R., Turek, G., Mariak, Z., Chyczewski, L. (2015). Expression of MMP-9 and VEGF in meningiomas and their correlation with peritumoral brain edema. BioMed Research International, 2015, 646853. [DOI:10.1155/2015/646853] [PMID] [PMCID] [DOI:10.1155/2015/646853]
24. Russell, DS., Rubinstein, U. (1989). Pathology of tumors of the nervous system. Baltimore: Williams & Wilkins. [PMID]
25. Santelli, L., Ramondo, G., Della Puppa, A., Ermani, M., Scienza, R., d'Avella, D., et al. (2010). Diffusion-weighted imaging does not predict histological grading in meningiomas. Acta Neurochirurgica, 152(8), 1315-9. [DOI:10.1007/s00701-010-0657-y] [PMID] [DOI:10.1007/s00701-010-0657-y]
26. Sanverdi, S. E., Ozgen, B., Oguz, K. K., Mut, M., Dolgun, A., Soylemezoglu, F., et al. (2012). Is diffusion-weighted imaging useful in grading and differentiating histopathological subtypes of meningiomas? European Journal of Radiology, 81(9), 2389-95. [DOI:10.1016/j.ejrad.2011.06.031] [PMID] [DOI:10.1016/j.ejrad.2011.06.031]
27. Sharma, S., Ray, S., Moiyadi, A., Sridhar, E., & Srivastava, S. (2014). Quantitative proteomic analysis of meningiomas for the identification of surrogate protein markers. Scientific Reports, 4, 7140. [DOI:10.1038/srep07140] [PMID] [PMCID] [DOI:10.1038/srep07140]
28. Stadnik, T. W., Chaskis, C., Michotte, A., Shabana, W. M., van Rompaey, K., Luypaert, R., et al. (2001). Diffusion-weighted MR imaging of intracerebral masses: Comparison with conventional MR imaging and histologic findings. American Journal of Neuroradiology, 22(5), 969-76. [PMID] [PMID]
29. Taghva, A., Khalessi, A. A., Kim, P. E., Liu, C. Y., & Apuzzo, M. L. (2010). From atom to brain: Applications of molecular imaging to neurosurgery. World Neurosurgery, 73(5), 477-85. [DOI:10.1016/j.wneu.2010.02.058] [PMID] [DOI:10.1016/j.wneu.2010.02.058]
30. Toh, C. H., Wei, K. C., Chang, C. N., Peng, Y. W., Ng, S. H., Wong, H. F., et al. (2014). Assessment of angiographic vascularity of meningiomas with dynamic susceptibility contrast-enhanced perfusion-weighted imaging and diffusion tensor imaging. American Journal of Neuroradiology, 35(2), 263-9. [DOI:10.3174/ajnr.A3651] [PMID] [DOI:10.3174/ajnr.A3651]
31. Watson, M. A., Gutmann, D. H., Peterson, K., Chicoine, M. R., Kleinschmidt DeMasters, B. K., Brown, H. G., et al. (2002). Molecular characterization of human meningiomas by gene expression profiling using high-density oligonucleotide microarrays. The American Journal of Pathology, 161(2), 665-72. [DOI:10.1016/S0002-9440(10)64222-8] [DOI:10.1016/S0002-9440(10)64222-8]
32. Yin, B., Liu, L., Zhang, B. Y., Li, Y. X., Li, Y., & Geng, D. Y. (2012). Correlating apparent diffusion coefficients with histopathologic findings on meningiomas. European Journal of Radiology, 81(12), 4050-6. [DOI:10.1016/j.ejrad.2012.06.002] [PMID] [DOI:10.1016/j.ejrad.2012.06.002]
33. Young, G. S. (2007). Advanced MRI of adult brain tumors. Neurologic clinics, 25(4), 947-73. [DOI:10.1016/j.ncl.2007.07.010] [PMID] [DOI:10.1016/j.ncl.2007.07.010]
34. Zhang, H., Rödiger, L. A., Shen, T., Miao, J., & Oudkerk, M. (2008). Perfusion MR imaging for differentiation of benign and malignant meningiomas. Neuroradiology, 50(6), 525-30. [DOI:10.1007/s00234-008-0373-y] [PMID] [PMCID] [DOI:10.1007/s00234-008-0373-y]
35. Zhu, F., Zhou, Y., Wang, C., Gao, J., & Qi, J. (2002). Perfusion MRI evaluation of correlating perfusion constants with histologic findings in meningiomas. Paper presented at International Society for Magnetic Resonance in Medicine. Berkeley, California, USA, 11-17 May 2019.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.