4. Discussion
The results of the current study have demonstrated the neuroprotective effect of melatonin after traumatic injury in rats. Acquired data indicate that TBI leads to a significant increase in neuronal cell death in the hippocampus and dentate gyrus, and based on TUNEL staining, the number of apoptotic cells noticeably decreased in the melatonin treatment groups (Mel5 and Mel20). Gao et al. reported that traumatic brain injury causes synaptic and dendritic degeneration in the dentate gyrus (
Gao, Deng, Xu, & Chen, 2011). Also, Hung et al. have shown that melatonin alleviates hippocampal injury following hypoxia (
Hung, Tipoe, Poon, Reiter, & Fung, 2008). Annually, more than 1 million people die following TBI worldwide (
Babaee et al., 2015). Neural inflammation and production of oxidative stress are two major pathological mechanisms of neuronal cell death after TBI (
Cornelius et al., 2013;
Woodcock & Morganti-Kossmann, 2013). To inhibit secondary injuries after primary brain injury, it is essential to limit the neural inflammation via decreasing the astrocyte activation (
Kabadi, Stoica, Loane, Luo, & Faden 2014). Chern et al. have shown that intraperitoneal administration of melatonin improved the neuronal survival rate in ischemic-stroke mice (
Chern et al., 2012).
Besides, melatonin has been assessed as an effective medicine in TBI through increasing glutathione peroxidase and superoxide dismutase activities (Dehghan et al., 2013). The result of this study does not show any noticeable difference between two different doses of melatonin. Ozdemir et al. reported that melatonin significantly reduced oxidative damage induced by TBI in immature rats, which was equally effective at different doses of 5 mg/kg and 20 mg/kg (Ozdemir et al., 2005).
Glial cells activation, particularly astrocytes, occurs in response to different injuries of brain tissue, such as trauma, chemical injuries, tumor formation, brain ischemia, and neurodegenerative disease (Guo et al., 2014;
Hald, Nedergaard, Hansen, Ding, & Heegaard, 2009;
Lee et al., 2010). Activation of astrocytes following brain injury has known as astrogliosis. Previous studies have demonstrated that up‐regulation of GFAP occurs during the astrogliosis phenomenon (
Hostenbach, Cambron, D’haeseleer, Kooijman, & De Keyser, 2014;
Kamphuis et al., 2012). Therefore, this study has focused on astrocyte activation based on GFAP immunoreactivity.
Astrocytes, as the most abundant glial cells in brain tissue (Farina et al., 2007), maybe the target of melatonin. Our findings have shown that the number of astrocytes is decreased in the melatonin treatment groups, which shows the alleviation of astrogliosis induced by TBI. In an experimental study, Ananth et al. demonstrated that domoic acid‐induced astrogliosis is attenuated significantly in the hippocampus of adult rats using exogenous administration of melatonin (
Ananth, Gopalakrishnakone, & Kaur, 2003). Barreto et al. reported that astrocytic-neuronal interactions could act as a neuroprotective strategy against brain injury (
Barreto et al., 2011).
The blood brain barrier has an important role in exacerbating neuronal damage following traumatic brain injury (
Abbott, Patabendige, Dolman, Yusof, & Begley, 2010;
Persidsky, Ramirez, Haorah, & Kanmogne, 2006). In other words, damage of this barrier resulted in entrance of neutrophils, lymphocytes and monocytes to the injured site. Glial cells are then activated and induce inflammation that may promote neuronal death (
Seo et al., 2013;
Ziebell & Morganti-Kossmann, 2010).
In addition, Tsai et al. demonstrated that melatonin administration reduced proinflammatory cytokines via upregulation of STAT1 DNA binding activity (
Tsai, Chen, Tsai, Ching, & Chuang, 2011). However, the modulation actions of melatonin to astrocyte, which was introduced as the primary source of proinflammatory cytokines such as IL‐6β, have not yet been widely examined. Our experiment only shows the neuroprotective effects of melatonin following a short period after brain injury (1 h to 72 h). Thus, additional investigations need to be done to elucidate the molecular mechanism of melatonin to alleviate astrocyte reactivity.
Ethical Considerations
Compliance with ethical guidelines
Animal procedures in this research were done in compliance with the Guide for the Care and Use of Laboratory Animals and certified by the local Animal Ethics Committee of Kerman University of Medical Sciences (Kerman, Iran) in 2016 (EC/KNRC/90‐2).
Funding
This study was extracted from the MSc. thesis of Abdolreza Babaee, and financially supported by Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (EC/KNRC/90‐2).
Authors' contributions
Conceptualization, data collection, and writing original draft: Abdolreza Babaee, Samereh Dehghani-Soltani; Data analysis, writing – review & editing, investigation, supervision: Seyed Hassan Eftekhar-Vaghefi Majid Asadi-Shekaari, Nader Shahrokhi, Mohsen Basiri.
Conflict of interest
The authors declared no conflict of interest.
Acknowledgments
We would like to thank the personnel of the Department of Anatomy, Kerman University of Medical Sciences, Kerman, for their cooperation.
References
Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiology of Disease, 37(1), 13-25. [DOI:10.1016/j.nbd.2009.07.030] [PMID]
Alonso-Alconada, D., Alvarez, A., Lacalle, J., & Hilario, E. (2012). Histological study of the protective effect of melatonin on neural cells after neonatal hypoxia-ischemia. Histology and Histopathology, 27(6), 771-83. http://hdl.handle.net/10201/52455
Ananth, C., Gopalakrishnakone, P., & Kaur, C. (2003). Protective role of melatonin in domoic acid‐induced neuronal damage in the hippocampus of adult rats. Hippocampus, 13(3), 375-87. [DOI:10.1002/hipo.10090] [PMID]
Ananth, C., Gopalakrishnakone, P., & Kaur, C. (2003). Protective role of melatonin in domoic acid-induced neuronal damage in the hippocampus of adult rats. Hippocampus, 13(3), 375-87. [DOI:10.1016/j.freeradbiomed.2008.04.038] [PMID] [PMCID]
Ansari, M. A., Roberts, K. N., & Scheff, S. W. (2008). Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radical Biology and Medicine, 45(4), 443-52. [DOI:10.1016/j.freeradbiomed.2008.04.038]
Asadi-Shekaari, M., Basin, M., & Babaee, A. (2014). The protective effects of walnuts (Juglans regia) on neuronal death and astrocyte reactivity following middle cerebral artery occlusion in male rats. Scientific Journal of Kurdistan University of Medical Sciences, 19(4), 100-8. https://www.cabdirect.org/cabdirect/abstract/20153067335
Babaee, A., Eftekhar-Vaghefi, S. H., Asadi-Shekaari, M., Shahrokhi, N., Soltani, S. D., & Malekpour-Afshar, R., et al. (2015). Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury. Iranian journal of basic medical sciences, 18(9), 867. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620185/
Babaee, A., Nematollahi-Mahani, S. N., Dehghani-Soltani, S., Shojaei, M., & Ezzatabadipour, M. (2019). Photobiomodulation and gametogenic potential of human Wharton’s jelly-derived mesenchymal cells. Biochemical and Biophysical Research Communications, 514(1), 239-45. [DOI:10.1016/j.bbrc.2019.04.059] [PMID]
Babaee, A., Nematollahi-Mahani, S. N., Shojaei, M., Dehghani-Soltani, S., & Ezzatabadipour, M. (2018). Effects of polarized and non-polarized red-light irradiation on proliferation of human Wharton's jelly-derived mesenchymal cells. Biochemical and Biophysical Research Communications, 504(4), 871-7.[DOI:10.1016/j.bbrc.2018.09.010] [PMID]
Babaei, B. F., Zare, S., Heydari, R., & Farokhi, F. (2010). Effects of melatonin and vitamin E on peripheral neuropathic pain in streptozotocin-induced diabetic rats. Iranian Journal of Basic Medical Sciences, 13(2), 1-8. https://www.sid.ir/en/journal/ViewPaper.aspx?ID=168971
Barha, C. K., Ishrat, T., Epp, J. R., Galea, L. A., & Stein, D. G. (2011). Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Experimental Neurology, 231(1), 72-81. [DOI:10.1016/j.expneurol.2011.05.016] [PMID] [PMCID]
Barreto, G. E., Gonzalez, J., Torres, Y., & Morales, L. (2011). Astrocytic-neuronal crosstalk: Implications for neuroprotection from brain injury. Neuroscience Research, 71(2), 107-13. [DOI:10.1016/j.neures.2011.06.004] [PMID]
Blasko, I., Stampfer-Kountchev, M., Robatscher, P., Veerhuis, R., Eikelenboom, P., & Grubeck-Loebenstein, B. (2004). How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: The role of microglia and astrocytes. Aging Cell, 3(4), 169-76. [DOI:10.1111/j.1474-9728.2004.00101.x] [PMID]
Boutin, J. A., Audinot, V., Ferry, G., & Delagrange, P. (2005). Molecular tools to study melatonin pathways and actions. Trends in Pharmacological Sciences, 26(8), 412-9. [DOI:10.1016/j.tips.2005.06.006] [PMID]
Burda, J. E., Bernstein, A. M., & Sofroniew, M. V. (2016). Astrocyte roles in traumatic brain injury. Experimental Neurology, 275, 305-15. [DOI:10.1016/j.expneurol.2015.03.020] [PMID] [PMCID]
Chern, C. M., Liao, J. F., Wang, Y. H., & Shen, Y. C. (2012). Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radical Biology and Medicine, 52(9), 1634-47. [DOI:10.1016/j.freeradbiomed.2012.01.030] [PMID]
Cornelius, C., Crupi, R., Calabrese, V., Graziano, A., Milone, P., & Pennisi, G., et al. (2013). Traumatic brain injury: Oxidative stress and neuroprotection. Antioxidants & Redox Signaling, 19(8), 836-53. [DOI:10.1089/ars.2012.4981] [PMID]
Dehghan, F., Hadad, M. K., Asadikram, G., Najafipour, H., & Shahrokhi, N. (2013). Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: Role of oxidative stresses. Archives of Medical Research, 44(4), 251-8. [DOI:10.1016/j.arcmed.2013.04.002] [PMID]
Dehghani-Soltani, S., Shojaee, M., Jalalkamali, M., Babaee, A., & Nematollahi-Mahani, S. N. (2017). Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells. Scientific Reports, 7(1), 1-9.[DOI:10.1038/s41598-017-10655-w] [PMID] [PMCID]
Ding, K., Wang, H., Xu, J., Li, T., Zhang, L., & Ding, Y., et al. (2014). Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: The Nrf2–ARE signaling pathway as a potential mechanism. Free Radical Biology and Medicine, 73, 1-11. [DOI:10.1016/j.freeradbiomed.2014.04.031] [PMID]
Dong, Y., Fan, C., Hu, W., Jiang, S., Ma, Z., & Yan, X., et al. (2016). Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP 3 inflammasome and apoptosis signaling. Journal of Pineal Research, 60(3), 253-62. [DOI:10.1111/jpi.12300] [PMID]
Eftekhar-Vaghefi, S. H., Raygan, S. P., Eftekhar-Vaghefi, S., Dehghani-Soltani, S., & Babaee, A. (2017). An evaluation of tissue destruction time in phrenic nerve after death and counting the number of nerve fibers in C3, C4 and C5 branches. Journal of Babol University of Medical Sciences, 19(3), 59-65. [DOI:10.22088/jbums.19.3.59]
Farina, C., Aloisi, F., & Meinl, E. (2007). Astrocytes are active players in cerebral innate immunity. Trends in Immunology, 28(3), 138-45. [DOI:10.1016/j.it.2007.01.005] [PMID]
Gao, X., Deng, P., Xu, Z. C., & Chen, J. (2011). Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus. PloS One, 6(9), e24566. [DOI:10.1371/journal.pone.0024566] [PMID] [PMCID]
Gee, J. R., & Keller, J. N. (2005). Astrocytes: Regulation of brain homeostasis via apolipoprotein E. The International Journal of Biochemistry & Cell Biology, 37(6), 1145-50. [DOI:10.1016/j.biocel.2004.10.004] [PMID]
In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 14(2), 188-202. [DOI:10.1016/j.stem.2013.12.001] [PMID] [PMCID]
Gutierrez-Cuesta, J., Sureda, F. X., Romeu, M., Canudas, A. M., Caballero, B., & Coto-Montes, A., et al. (2007). Chronic administration of melatonin reduces cerebral injury biomarkers in SAMP8. Journal of Pineal Research, 42(4), 394-402. [DOI:10.1111/j.1600-079X.2007.00433.x] [PMID]
Hakemi, S. G., Sharififar, F., Haghpanah, T., Babaee, A., & Eftekhar-Vaghefi, S. H. (2019). The effects of olive leaf extract on the testis, sperm quality and testicular germ cell apoptosis in male rats exposed to busulfan. International Journal of Fertility & Sterility, 13(1), 57-65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334023/
Hald, A., Nedergaard, S., Hansen, R. R., Ding, M., & Heegaard, A. M. (2009). Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. European Journal of Pain, 13(2), 138-45. [DOI:10.1016/j.ejpain.2008.03.014] [PMID]
Hall, E. D., Vaishnav, R. A., & Mustafa, A. G. (2010). Antioxidant therapies for traumatic brain injury. Neurotherapeutics, 7(1), 51-61. [DOI:10.1016/j.nurt.2009.10.021] [PMID] [PMCID]
Hickie, I. B., & Rogers, N. L. (2011). Novel melatonin-based therapies: Potential advances in the treatment of major depression. The Lancet, 378(9791), 621-31. [DOI:10.1016/S0140-6736(11)60095-0]
Hostenbach, S., Cambron, M., D’haeseleer, M., Kooijman, R., & De Keyser, J. (2014). Astrocyte loss and astrogliosis in neuroinflammatory disorders. Neuroscience letters, 565, 39-41. [DOI:10.1016/j.neulet.2013.10.012] [PMID]
Hung, M. W., Tipoe, G. L., Poon, A. M. S., Reiter, R. J., & Fung, M. L. (2008). Protective effect of melatonin against hippocampal injury of rats with intermittent hypoxia. Journal of Pineal Research, 44(2), 214-21. [DOI:10.1111/j.1600-079X.2007.00514.x] [PMID]
Kabadi, S. V., Stoica, B. A., Loane, D. J., Luo, T., & Faden, A. I. (2014). CR8, a novel inhibitor of CDK, limits microglial activation, astrocytosis, neuronal loss, and neurologic dysfunction after experimental traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism, 34(3), 502-13. [DOI:10.1038/jcbfm.2013.228] [PMID] [PMCID]
Kamphuis, W., Mamber, C., Moeton, M., Kooijman, L., Sluijs, J. A., & Jansen, A. H., et al. (2012). GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PloS One, 7(8), e42823. [DOI:10.1371/journal.pone.0042823] [PMID] [PMCID]
Lee, M., Cho, T., Jantaratnotai, N., Wang, Y. T., McGeer, E., & McGeer, P. L. (2010). Depletion of GSH in glial cells induces neurotoxicity: Relevance to aging and degenerative neurological diseases. The FASEB Journal, 24(7), 2533-45. [DOI:10.1096/fj.09-149997] [PMID]
Leszek, J., E Barreto, G., Gasiorowski, K., Koutsouraki, E., & Aliev, G. (2016). Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: Role of brain innate immune system. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 15(3), 329-36. [DOI:10.2174/1871527315666160202125914] [PMID]
Liang, H. W., Qiu, S. F., Shen, J., Sun, L. N., Wang, J. Y., & Bruce, I. C., et al. (2008). Genistein attenuates oxidative stress and neuronal damage following transient global cerebral ischemia in rat hippocampus. Neuroscience letters, 438(1), 116-20. [DOI:10.1016/j.neulet.2008.04.058] [PMID]
Marmarou, A., Foda, M. A. A. E., Van Den Brink, W., Campbell, J., Kita, H., & Demetriadou, K. (1994). A new model of diffuse brain injury in rats: Part I: Pathophysiology and biomechanics. Journal of Neurosurgery, 80(2), 291-300. [DOI:10.3171/jns.1994.80.2.0291] [PMID]
Mortezazadeh, F., Fathabady, F. F., Norouzian, M., Noureddin, S., Rouholamini, S. E. Y., & Babaee, A., et al. (2018). Investigating the effect of tumor necrosis factor Alpha on placenta and gene related bone formation of newborn mice. Journal of Research in Medical and Dental Science, 6(5), 133-8. https://www.researchgate.net/profile/Mohsen-Basiri/publication/331311088_
Ozdemir, D., Uysal, N., Gonenc, S., Acikgoz, O., Sonmez, A., & Topcu, A., et al. (2005). Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiological Research, 54(6), 631. https://www.researchgate.net/profile/Osman-Acikgoz/publication/8013574_
Pazar, A., Kolgazi, M., Memisoglu, A., Bahadir, E., Sirvanci, S., & Yaman, A., et al. (2016). The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage. Journal of Pineal Research, 60(1), 74-83. [DOI:10.1111/jpi.12292] [PMID]
Pekny, M., & Nilsson, M. (2005). Astrocyte activation and reactive gliosis. Glia, 50(4), 427-34. [DOI:10.1002/glia.20207] [PMID]
Persidsky, Y., Ramirez, S. H., Haorah, J., & Kanmogne, G. D. (2006). Blood–brain barrier: Structural components and function under physiologic and pathologic conditions. Journal of Neuroimmune Pharmacology, 1(3), 223-36. [DOI:10.1007/s11481-006-9025-3] [PMID]
Pineau, I., Sun, L., Bastien, D., & Lacroix, S. (2010). Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain, Behavior, and Immunity, 24(4), 540-53. [DOI:10.1016/j.bbi.2009.11.007] [PMID]
Pourhoseini, S., Bakhtiari, M., Babaee, A., Ostovan, M. A., Eftekhar-Vaghefi, S. H., & Ostovan, N., et al. (2017). Increased risk of coronary perforation during percutaneous intervention of myocardial bridge: What histopathology says. Journal of Cardiovascular and Thoracic Research, 9(2), 108-12. [DOI:10.15171/jcvtr.2017.18] [PMID] [PMCID]
Reiter, R. J., Tan, D. X., Osuna, C., & Gitto, E. (2000). Actions of melatonin in the reduction of oxidative stress. Journal of Biomedical Science, 7(6), 444-58. [DOI:10.1007/BF02253360] [PMID]
Seifman, M. A., Gomes, K., Nguyen, P. N., Bailey, M., Rosenfeld, J. V., & Cooper, D. J., et al. (2014). Measurement of serum melatonin in intensive care unit patients: Changes in traumatic brain injury, trauma, and medical conditions. Frontiers in Neurology, 5, 237. [DOI:10.3389/fneur.2014.00237] [PMID] [PMCID]
Seo, J. H., Miyamoto, N., Hayakawa, K., Pham, L. D. D., Maki, T., & Ayata, C., et al. (2013). Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. The Journal of Clinical Investigation, 123(2), 782-6. [DOI:10.1172/JCI65863] [PMID] [PMCID]
Mortavazi, S., Habib, A., Ganj-Karami, A., Samimi-Doost, R., Pour-Abedi, A., & Babaie, A. (2009). Alterations in TSH and thyroid hormones following mobile phone use. Oman Medical Journal, 24(4), 274-300. [PMCID] [PMID]
Soltani, S. D., Babaee, A., Shojaei, M., Salehinejad, P., Seyedi, F., & JalalKamali, M., et al. (2016). Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells. Lasers in Medical Science, 31(2), 255-61. [DOI:10.1007/s10103-015-1846-y] [PMID]
Tsai, M. C., Chen, W. J., Tsai, M. S., Ching, C. H., & Chuang, J. I. (2011). Melatonin attenuates brain contusion-induced oxidative insult, inactivation of signal transducers and activators of transcription 1, and upregulation of suppressor of cytokine signaling-3 in rats. Journal of Pineal Research, 51(2), 233-45. [DOI:10.1111/j.1600-079X.2011.00885.x] [PMID]
Varshosaz, J., Taymouri, S., Pardakhty, A., Asadi-Shekaari, M., & Babaee, A. (2014). Niosomes of ascorbic acid and α-tocopherol in the cerebral ischemia-reperfusion model in male rats. BioMed Research International, 2014. [DOI:10.1155/2014/816103] [PMID] [PMCID]
Woodcock, T., & Morganti-Kossmann, C. (2013). The role of markers of inflammation in traumatic brain injury. Frontiers in neurology, 4, 18. https://www.frontiersin.org/articles/10.3389/fneur.2013.00018/full
Ziebell, J. M., & Morganti-Kossmann, M. C. (2010). Involvement of pro-and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics, 7(1), 22-30. [DOI:10.1016/j.nurt.2009.10.016] [PMID] [PMCID]