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Introduction: The 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is a popular 
recreational drug and a major source of substance abuse, which ultimately leads to sensations 
of well-being, elation and euphoria, moderate derealization/depersonalization, and cognitive 
disruptions, as well as intense sensory awareness. The mechanisms involved in memory 
impairment induced by MDMA are not completely understood. 

Methods: The current study used 40 Sprague-Dawley rats, weighted 200 to 250 g. Experiments 
were performed in four groups, each containing 10 rats. The first group of rats was used as the 
control, treated with dimethyl sulfoxide (DMSO). The second group was treated with MDMA. 
The third group was treated with MDMA and CGS (the adenosine A2A receptor agonist, 2-[p-(2- 
carboxyethyl) phenethylamino]-5′-N-ethylcarboxamidoadenosine) (CGS 21680) and the fourth 
group was treated with MDMA and SCH (the A2A receptor antagonist [7-(2-phenylethyl)-5-ami-
no-2-(2-furyl-) pyrazolo-[4, 3-e]-1, 2, 4 triazolo [1,5-] pyrimidine]) (SCH 58261). The drugs 
in all groups were administrated intraperitoneally (i.p.) once a day for 7 days. In 5 rats of each 
group, following perfusion, samples were taken from hippocampi to investigate apoptosis. Ac-
cordingly, the samples were stained using the terminal deoxynucleotidyl transferase-mediated 
dUTP nick end labeling (TUNEL) assay kit, and studied by light microscopy. In other rats, fresh 
tissue was also removed to study the expression of bax and bcl-2 by Western blotting technique. 
Results: It was observed that the coadministration of MDMA with CGS reduced bax expression 
and prevented apoptosis of hippocampal cells. The coadministration of MDMA and SCH 
increased bax expression, and also increased the frequency of hippocampal cell apoptosis. 
Conclusion: The results of the current study showed that administration of CGS with MDMA 
decreased the common side effects associated with MDMA.
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1. Introduction

cstasy (3,4-methylenedioxymethamphet-
amine; MDMA) is a psychoactive halluci-
nogenic compound considered as a source 
of substance abuse worldwide. It is a de-
rivative of amphetamine related to the hal-

lucinogenic compound, and the United Nations estimated 
that worldwide use of ecstasy affects 9 million people 
aged 15 to 64 years. Currently, there are more than 3 
million ecstasy users in Europe, which represent 36% of 
ecstasy users worldwide (Capela, et al., 2009). MDMA 
produces feeling of well-being, comfort, and elation. The 
use of this drug also leads to a sense of moderate dere-
alization/depersonalization, and cognitive distortions, as 
well as intense sensory awareness (Liechti, 2000).

Several studies reported that MDMA has the capacity 
to induce toxicity in neurons. Despite researches in this 
context, precise mechanisms of MDMA are not obvious. 
MDMA induces neuronal damage in several brain areas 
such as the hippocampus, striatum, and cortex (Batta-
glia, Yeh, & DeSouza, 1988; Riezzo, et al., 2010). Sever-
al factors contributed to MDMA-induced neurotoxicity, 
specifically hyperthermia, monoamine oxidase metabo-
lism of dopamine and serotonin, mitochondrial dysfunc-
tion, dopamine oxidation, serotonin transporter action, 
formation of peroxinitrite, glutamate excitotoxicity, and 
importantly deficits in serotonergic biochemical markers 
(Broening, Bowyer, & Slikker, 1995; Fumagalli, et al., 
1999; Pu, Broening, & Vorhees, 1996; Deng & Cadet, 
1999; Sheng, Cerruti, Ali, & Cadet, 1996). 

The hippocampus is a brain area particularly susceptible 
to the neurotoxic effects of MDMA. The hippocampus is 
critical for learning and memory (Kesner, 2007). The most 
complaint of MDMA is impairment in short-term memo-
ry. MDMA users show significant deficiency in delayed 
memory tasks, which directly associate with the increase 
in 5-HT receptor binding ratios. Significantly, those who 
take MDMA have longer reaction time to visual and audi-
tory stimuli, lower visual recall, and lower working mem-
ory scores (Green, Mechan, Elliott, O’Shea, & Colado, 
2003). Deficiency in spatial learning and memory is obvi-
ous in rats treated with MDMA (Sheng, et al., 1996; Gibb, 
Johnson, & Hanson, 1990; Steranka & Rhind, 1987). 

In human abusers of MDMA, the most consistent find-
ing is the impairments in short-term memory (Bolla, 
McCann, & Ricaurte, 1998; Vorhees, Reed, Skelton, & 
Williams, 2004; Able, Gudelsky, Vorhees, & Williams, 
2006). It is shown that the multiple-time administration 
of MDMA produces persistent deficiency in biochemical 

markers of 5-HT axon terminals in some brain areas such 
as hippocampus (Green, et al., 2003; Able, et al., 2006). 

Despite the persistent effects of MDMA on 5-HT axon 
terminals, there is evidence that MDMA produces neuronal 
degeneration within the hippocampus (Kermanian, et al., 
2012; Warren, et al., 2007). The mechanism of MDMA-
induced depletion of the central nervous system (CNS) 
serotonin (5-hydroxytryptamine, 5-HT) is believed to in-
volve the generation of Reactive Oxygen Species (ROS) 
(Broening, et al., 1995; Kermanian, et al., 2012; Warren, 
et al., 2007). The process of apoptosis is controlled by a 
diverse range of cell signals, which may originate either 
extracellularly via extrinsic inducers, or intracellularly via 
intrinsic inducers. The involvement of ROS at different 
phases of the neuronal apoptotic pathways is clearly es-
tablished (Maycotte, Guemez-Gamboa, & Moran, 2012). 

Extracellular adenosine acts via receptors coupled with 
G-protein (adenosine receptor subtypes A1, A2A, A2B, and 
A3) and exerts diverse physiological effects (Fredholm, 
Jacobson, Klotz, & Linden, 2001). A number of cellular 
components regulate apoptosis. The Bcl-2 protein can 
inhibit apoptosis by direct action, while Bax and/or Bak 
promote apoptosis (Kuwana & Newmeyer, 2003). The 
current study already found that A2A agonist and CGS 
treatment may protect against MDMA induced apoptosis 
in striatum (Soleimani, Katebi, Alizadeh, Mohammadza-
deh, & Mehdizadeh, 2012). The current study aimed at 
investigating the interaction between A2A receptor and 
MDMA treatment at the molecular level in hippocampus.

2. Methods

2. 1. Drugs and chemicals

MDMA hydrochloride, and other reagents used in the 
present experiment were purchased from Sigma Chemical 
(Sigma, LaJola, CA, USA.); the adenosine A2A receptor 
agonist, (2-[p-(2- carboxyethyl) phenethylamino]-5′-N-
ethylcarboxamidoadenosine) (CGS 21680), and the A2A 
receptor antagonist [7-(2-phenylethyl)-5-amino-2-(2-
furyl-) pyrazolo-[4,3-e]-1,2,4 triazolo [1,5-] pyrimidine] 
(SCH58261) were purchased from Tocris Cookson (Ball-
win, MO, USA). CGS and SCH in a dose of 0.03 mg/kg 
body weight dissolved in 10% dimethylsulfoxide (DMSO) 
were administered intraperitoneally (i.p.) in animals.

2.2. Animals

A total of 40 adult male Sprague-Dawley rats (Pasture 
Institute, Tehran, Iran), weighted 200 to 500 g were used 
in the current study. Rats were maintained at the animal 
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house under standard conditions (food and water ad li-
bitum, 12:12 hours light/dark cycle, 21±3°C). All ex-
periments involving rats were approved by the Animal 
Care Committee of Iran University of Medical Sciences, 
Tehran, Iran. Rats were randomly assigned into 4 ex-
perimental groups (n=10): Control: 10% DMSO 1 mL/
kg, i.p., once a day for seven days. Treatment I: MDMA 
10 mg/kg, i.p., once a day for seven days. Treatment II: 
MDMA+CGS, i.p., once a day for seven days. Treat-
ment III: MDMA+SCH, i.p., once a day for seven days.

At the end of the seventh day, 5 rats in each group were 
decapitated and perfused. Their brains were removed for 
terminal deoxynucleotidyl transferase-mediated dUTP 
nick end labeling (TUNEL) test. TUNEL is a widely 
used method to detect apoptotic cells in tissue sections. 
Five rats in each group were killed and their brains were 
removed for the Western blotting study.

2.3. Tissue preparation

2.3.1. TUNEL staining

Rats were anesthetized with ketamine (100 mg/kg, i.p.) 
and xylazine (10 mg/kg, i.p.) and, then, an incision was 
made on the skin to expose heart. Another incision was 
made on left ventricle to enter the perfusion tube; 10 to 
150 mL of normal saline with 0.1 mL of heparin per-
fused to remove blood from vessels, followed by 150 to 
200 mL of paraformaldehyde 4% in 0.1 M/L phosphate 
buffer (pH 7.4) as fixative solution. Then, whole brains 
were extracted. Tissue was processed for paraffin em-
bedding and sagittally sectioned at 5 μm. The sections 
were deparaffinized and dehydrated by heating at 60°C 
in oven for 60 minutes and, then, rehydrated by xylol and 
graded ethanol solution, respectively. 

Then, the histological samples were incubated in pro-
teinase K (15 μg/mL) for half an hour. After that, the sec-
tions were quenched in 3% hydrogen peroxide/metha-
nol for 10 minutes, in dark at room temperature. After 3 
washes in Tris wash buffer (each 5 minutes), the sections 
were incubated with TUNEL reaction mixture for 1 hour 
at 37°C. Sections were washed in Tris wash buffer 3 
times for 5 minutes each and, then, incubated with POD 
for 15 minutes at 37°C. Again, sections were washed in 
Tris wash buffer 3 times for 5 minutes each and, then, 
color development was performed in the dark room with 
DAB for 15 minutes. Then, hematoxylin solution was 
used as counter stain. After washing in Tris wash buffer 
3 times for 5 minutes, the number of TUNEL positive 
CA1 neurons per mm length of the medial CA1 pyra-
midal cell layer was counted carefully in 5 sections per 

animal. Cell counts from the hippocampus on each of 
the 5 sections were averaged to provide the mean value.

2.3.3. Western blot analysis

After anesthesia, craniotomy was performed and the 
brain was removed and placed on ice. The meninges were 
removed and hippocampus was separated from the hemi-
spheres, snapped frozen in liquid nitrogen, and stored at 
−70°C. Collected tissues were homogenized in an ice-cold 
homogenizing buffer (50 mM Tris-HCl, 150 mM NaCl, 1 
mM ethylenediaminetetraacetic acid (EDTA), and 0.5 mM 
Triton X-100, pH 7.4) and protease inhibitor cocktail tablets 
(Roche, Germany) for 1 hour and, then, were centrifuged 
(Eppendorf, Hamburg, Germany) at 12 000 g for 20 min-
utes at 4°C. The supernatant was removed and the protein 
concentration was determined with a Bio-Rad assay system 
(Bio-Rad, San Francisco, CA, USA). The protein extracts 
(10 μg) were run on a 10% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS–PAGE), and electrob-
lotted on to nitrocellulose membranes (Millipore, USA). 

The membranes were, then, stained with washable 
Ponceau S solution to confirm equal protein loading. 
After washing the membranes with distilled water, 
they were blocked with Tris-buffered saline containing 
0.02% Tween-20 and 5% of nonfat milk. Antibodies 
for Bax (mouse monoclonal, 1:1000 dilution; Beyotime 
Biotech) and Bcl-2 (mouse monoclonal, 1:1000 dilution; 
Beyotime Biotech) were applied at 4°C. The blots were, 
then, washed and incubated with respective alkaline 
phosphatase-coupled secondary antibodies (Bio-Rad) at 
1:10000 dilutions. After extensive washing, the protein 
bands detected by the antibodies were analyzed. Values 
were compared using densitometric measurements us-
ing an image analysis system (UVI doc, Houston, Texas, 
USA) and explain by optical density (OD) ratio.

2.4. Statistical analysis

Data were shown as mean±structural equation modeling 
(SEM). All statistical analyses were conducted by SPSS 
software version 15. Differences between the groups were 
performed using one-way ANOVA and the Tukey test. A 
value of P<0.05 was considered statistically significant.

3. Results

3.1. CGS decreased and SCH increased the cell 
apoptosis induced by MDMA

The number of TUNEL-positive cells in MDMA 
treated rats were significantly higher than those of the 
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control group (P<0.05). Interestingly, the number of TU-
NEL-positive cells significantly reduced in CGS group 
compared to MDMA group (Figure 1). The number of 
TUNEL-positive cells in rats with antagonist treatment 
(SCH) significantly increased when compared to that of 
MDMA group (P<0.05) (Figure 2).

3.2. Involvement of Bcl-2 and Bax Proteins in the 
cell apoptosis-induced MDMA

The expression of bcl-2 significantly increased in 
MDMA+CGS group, compared with MDMA group 
(P<0.05). The expression of bcl-2 significantly decreased 
and bax expression significantly increased in MDMA 
group, compared with the control group (P<0.05). The 
bax expression increased in rats with antagonist treat-
ment (SCH), compared with MDMA group (Figure 3).

The data are shown as means±SEM. The number of 
rats in each group was 5. The data were analyzed by one-
way ANOVA, followed by the Tukey Test (P<0.05).

4. Discussion

The current study investigated the influence of adenos-
ine receptor agonist and antagonist on the MDMA in-
duced apoptosis in hippocampus. A major finding of is 
the current study was that MDMA can cause apoptosis 
intra hippocampus mediated by A2A adenosine recep-
tors via mitochondrial pathways. Schmued and Bowyer 
(1997) showed that in 70% of the mice, degeneration of 
neurons occurred in the different species within 5 days 
after methamphetamine administration, which occasion-
ally took place in the hippocampus and cortex (Schmued 
& Bowyer, 1997). In fact, it was shown that metham-
phetamine (METH)-induced increases in TUNEL-pos-
itive cells, and caspase-3 activation, and poly (ADP-ri-

Figure 2. Western blot analysis of BAX expression in the rat hippocampi. *: P>0.05
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Figure 1. Tunel assay of hippocampi. A: control, B: MDMA, C: MDMA+CGS, D: MDMA+SCH groups. Black arrow shows 
apoptotic cells. *: P>0.05
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bose) polymerase (PARP) cleavage are all attenuated in 
Cu/Zn-SOD mice (Deng & Cadet, 2000). 

The current study found similar results showing that 
the number of TUNEL-positive cells in MDMA-treated 
rats significantly increased. It is known that bcl-2 fam-
ily plays a key role in the apoptosis induced by amphet-
amines (Montiel-Duarte, et al., 2002; Capela, et al., 2007). 
MDMA induces modifications in the expression of the 
splice variants of the bcl-x gene in neurons (Stumm, et al., 
1999). The fact was that MDMA diminished Bcl-XL pro-
tein levels pointed out to mitochondria as a target for its 
pro-apoptotic effect, since Bcl-2 family proteins modulate 
the permeabilization of mitochondrial membranes and the 
subsequent liberation of pro-apoptotic factors such as cy-
tochrome C (Tsujimoto, Shimizu, Narita, & Tsujimoto, 
1999). Bcl-2 inhibits the release of the cytochrome C 
from mitochondria and cause inhibition of caspase activa-
tion and apoptosis (He, Xu, Yang, Zhang, & Li, 2004). 

It was previously reported that METH induces significant 
increases in the pro-death bcl-2 family genes bad, bax and 
bid, and decreases in the anti-death genes bcl-2 and bcl-xl 
(Cadet, Jayanthi, & Deng, 2005; Jayanthi, Deng, Bordelon, 
Mccoy, & Cadet, 2001). Moreover, an increase caspase-3 
activity was reported in the hippocampus of rats followed 
by a neurotoxic does of MDMA (Tamburini, 2006). The 
current study results suggested that MDMA administration 
might cause increases in the pro-death/anti-death ratio of the 
bcl-2 family of genes leading to apoptosis in hippocampus.

In agreement to the current study results, it was al-
ready reported that METH treatment downregulated 

bcl-2 in the striatum in mice (Imam, et al., 2001). Au-
thors’ previous study described that coadministration 
of MDMA with A2A adenosine antagonist, SCH pro-
duces a proapoptotic effect, increasing the expression 
of bax mRNA in rat striatum (Cadet, Ordonez, & Or-
donez, 1997). The current study found that the number 
of TUNEL-positive cells in CGS and MDMA treated 
group significantly reduced, compared to that of MD-
MA-treated group. Decrement of apoptosis after the use 
of A2A receptor agonists are related to the changes of 
bax and bcl-2 expression that protect neurons after isch-
emia (Rosin, Hettinger, Lee, & Linden, 2003; Zamani, 
et al., 2013; Soleimani, et al., 2012; Zamani, Katebi, 
Mehdizadeh, Mohamadzadeh, & Soleimani, 2012) It 
was already reported that increased expression of bcl-2 
can prevent apoptosis of immortalized neuron cells by 
methamphetamine (Rosin, et al., 2003). 

Jayanthi et al. (2001) reported that injection of meth-
amphetamine causes the activation of apoptotic path-
ways such as upregulation of bax and downregulation of 
bcl-2. It was in agreement with the current study results 
describing that MDMA treatment cause upregulation of 
bax and downregulation of bcl-2. The presented results 
significantly reversed by adenosine receptor agonists 
and intensified by adenosine receptor antagonists. Ker-
manian et al. (2012) also indicated that A2A agonist can 
protect against MDMA neurotoxic effects. The current 
study results suggested that MDMA induced apoptosis 
intra hippocampus was partly mediated via the mito-
chondrial pathway and was significantly associated with 
the adenosine A2A receptors. These data might suggest 

Figure 3. Western blot analysis of BCL-2 expression in the rat hippocampi. *: P>0.05
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that adenosine agonist could be used as an agent to treat 
MDMA induced neurotoxic effects.

The current study investigated the involvement of the 
selective adenosine A2A receptor agonists in the devel-
opment of apoptosis associated with acute MDMA in-
jection. The results indicated that stimulation of the ad-
enosine A2A receptor plays a certain role in modulating 
the neuroadaptive changes appearing during MDMA 
treatment, and that the adenosine A2A receptor agonists 
may serve as useful drugs to protect MDMA injury. 
Hence, the current investigation introduced adenosine 
A2A agonists as possible vehicles for pharmacotherapy 
of MDMA dependence.
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