دوره 9، شماره 1 - ( January & February 2018 1396 )                   جلد 9 شماره 1 صفحات 14-5 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimzadegan M, Soodi M. Comparison of Memory Impairment and Oxidative Stress Following Single or Repeated Doses Administration of Scopolamine in Rat Hippocampus. BCN 2018; 9 (1) :5-14
URL: http://bcn.iums.ac.ir/article-1-766-fa.html
Comparison of Memory Impairment and Oxidative Stress Following Single or Repeated Doses Administration of Scopolamine in Rat Hippocampus. مجله علوم اعصاب پایه و بالینی. 1396; 9 (1) :5-14

URL: http://bcn.iums.ac.ir/article-1-766-fa.html


متن کامل [PDF 696 kb]       |   چکیده (HTML) 
متن کامل:  
نوع مطالعه: Original | موضوع مقاله: Behavioral Neuroscience
دریافت: 1395/2/13 | پذیرش: 1395/12/7 | انتشار: 1396/10/11

فهرست منابع
1. Aalto, S. (2005). Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: A positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. Journal of Neuroscience, 25(10), 2471–7. doi: 10.1523/jneurosci.2097-04.2005 [DOI:10.1523/JNEUROSCI.2097-04.2005]
2. Abd-El-Fattah, M. A., Abdelakader, N. F., & Zaki, H. F. (2014). Pyrrolidine dithiocarbamate protects against scopolamine-induced cognitive impairment in rats. European Journal of Pharmacology, 723, 330–8. doi: 10.1016/j.ejphar.2013.11.008 [DOI:10.1016/j.ejphar.2013.11.008]
3. Ahmad, A., Ramasamy, K., Jaafar, S. M., Majeed, A. B. A., & Mani, V. (2014). Total isoflavones from soybean and tempeh reversed scopolamine-induced amnesia, improved cholinergic activities and reduced neuroinflammation in brain. Food and Chemical Toxicology, 65, 120–8. doi: 10.1016/j.fct.2013.12.025 [DOI:10.1016/j.fct.2013.12.025]
4. Akiyama, H., Arai, T., Kondo, H., Tanno, E., Haga, C., & Ikeda, K. (2000). Cell mediators of inflammation in the alzheimer disease brain. Alzheimer Disease and Associated Disorders, 14(Supplement), S47–S53. doi: 10.1097/00002093-200000001-00008 [DOI:10.1097/00002093-200000001-00008]
5. Azami, N. S., Piri, M., Oryan, S., Jahanshahi, M., Babapour, V., & Zarrindast, M. R. (2010). Involvement of dorsal hippocampal α-adrenergic receptors in the effect of scopolamine on memory retrieval in inhibitory avoidance task. Neurobiology of Learning and Memory, 93(4), 455–62. doi: 10.1016/j.nlm.2010.01.003 [DOI:10.1016/j.nlm.2010.01.003]
6. Barnes, N. M., & Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology, 38(8), 1083–152. doi: 10.1016/s0028-3908(99)00010-6 [DOI:10.1016/S0028-3908(99)00010-6]
7. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–54. doi: 10.1006/abio.1976.9999 [DOI:10.1006/abio.1976.9999]
8. Burešová, O., & Bureš, J. (1982). Radial maze as a tool for assessing the effect of drugs on the working memory of rats. Psychopharmacology, 77(3), 268–71. doi: 10.1007/bf00464578 [DOI:10.1007/BF00464578]
9. Chaudhaery, S. S., Roy, K. K., Shakya, N., Saxena, G., Sammi, S. R., Nazir, A., et al. (2010). Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: Pharmacophore-based virtual screening, synthesis, and pharmacology†. Journal of Medicinal Chemistry, 53(17), 6490–505. doi: 10.1021/jm100573q [DOI:10.1021/jm100573q]
10. Chen, Z., & Kamei, C. (2000). Facilitating effects of histamine on spatial memory deficit induced by scopolamine in rats. Acta pharmacologica Sinica, 21(9), 814-8. PMID: 11501163 [PMID]
11. Cozzolino, R., Guaraldi, D., Giuliani, A., Ghirardi, O., Ramacci, M. T., & Angelucci, L. (1994). Effects of concomitant nicotinic and muscarinic blockade on spatial memory disturbance in rats are purely additive: Evidence from the morris water task. Physiology & Behavior, 56(1), 111–4. doi: 10.1016/0031-9384(94)90267-4 [DOI:10.1016/0031-9384(94)90267-4]
12. Da Silva Costa-Aze, V., Quiedeville, A., Boulouard, M., & Dauphin, F. (2012). 5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice. Psychopharmacology, 222(1), 99–115. doi: 10.1007/s00213-011-2627-3 [DOI:10.1007/s00213-011-2627-3]
13. Dash, P. K., Moore, A. N., Kobori, N., & Runyan, J. D. (2007). Molecular activity underlying working memory. Learning & Memory, 14(8), 554–63. doi: 10.1101/lm.558707 [DOI:10.1101/lm.558707]
14. Ebert, & Kirch. (1998). Scopolamine model of dementia: Electroencephalogram findings and cognitive performance. European Journal of Clinical Investigation, 28(11), 944–9. doi: 10.1046/j.1365-2362.1998.00393.x [DOI:10.1046/j.1365-2362.1998.00393.x]
15. Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. doi: 10.1016/0006-2952(61)90145-9 [DOI:10.1016/0006-2952(61)90145-9]
16. Falsafi, S. K., Deli, A., Höger, H., Pollak, A., & Lubec, G. (2012). Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems. PLoS ONE, 7(2), e32082. doi: 10.1371/journal.pone.0032082 [DOI:10.1371/journal.pone.0032082]
17. Fan, Y., Hu, J., Li, J., Yang, Z., Xin, X., Wang, J., et al. (2005). Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neuroscience Letters, 374(3), 222–6. doi: 10.1016/j.neulet.2004.10.063 [DOI:10.1016/j.neulet.2004.10.063]
18. Fillit, H., Ding, W., Buee, L., Kalman, J., Altstiel, L., Lawlor, B., & Wolf-Klein, G. (1991). Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neuroscience Letters, 129(2), 318-20. doi: 10.1016/0304-3940(91)90490-k [DOI:10.1016/0304-3940(91)90490-K]
19. Gutierres, J. M., Carvalho, F. B., Schetinger, M. R. C., Agostinho, P., Marisco, P. C., Vieira, J. M., et al. (2014). Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. International Journal of Developmental Neuroscience, 33, 88–97. doi: 10.1016/j.ijdevneu.2013.12.006 [DOI:10.1016/j.ijdevneu.2013.12.006]
20. Harrison, F. E., Hosseini, A. H., Dawes, S. M., Weaver, S., & May, J. M. (2009). Ascorbic acid attenuates scopolamine-induced spatial learning deficits in the water maze. Behavioural Brain Research, 205(2), 550–8. doi: 10.1016/j.bbr.2009.08.017 [DOI:10.1016/j.bbr.2009.08.017]
21. Härtl, R., Gleinich, A., & Zimmermann, M. (2011). Dramatic increase in readthrough acetylcholinesterase in a cellular model of oxidative stress. Journal of Neurochemistry, 116(6), 1088–96. doi: 10.1111/j.1471-4159.2010.07164.x [DOI:10.1111/j.1471-4159.2010.07164.x]
22. Hauss Wegrzyniak, B., Lynch, M. A., Vraniak, P. D., & Wenk, G. L. (2002). Chronic brain inflammation results in cell lss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Experimental Neurology, 176(2), 336–41. doi: 10.1006/exnr.2002.7966 [DOI:10.1006/exnr.2002.7966]
23. Hritcu, L., Stefan, M., Brandsch, R., & Mihasan, M. (2015). Enhanced behavioral response by decreasing brain oxidative stress to 6-hydroxy-l-nicotine in Alzheimer's disease rat model. Neuroscience Letters, 591, 41–7. doi: 10.1016/j.neulet.2015.02.014 [DOI:10.1016/j.neulet.2015.02.014]
24. Jahanshahi, M., Nickmahzar, E. G., & Babakordi, F. (2013). The effect of Ginkgo biloba extract on scopolamine-induced apoptosis in the hippocampus of rats. Anatomical Science International, 88(4), 217–22. doi: 10.1007/s12565-013-0188-8 [DOI:10.1007/s12565-013-0188-8]
25. Jang, Y. J., Kim, J., Shim, J., Kim, C. Y., Jang, J. H., Lee, K. W., & Lee, H. J. (2013). Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behavioural Brain Research, 245, 113–9. doi: 10.1016/j.bbr.2013.02.003 [DOI:10.1016/j.bbr.2013.02.003]
26. Klinkenberg, I., & Blokland, A. (2010). The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neuroscience & Biobehavioral Reviews, 34(8), 1307–50. doi: 10.1016/j.neubiorev.2010.04.001 [DOI:10.1016/j.neubiorev.2010.04.001]
27. Mahmoodi, G., Ahmadi, S., pourmotabbed, A., Oryan, S., & Zarrindast, M. R. (2010). Inhibitory avoidance memory deficit induced by scopolamine: Interaction of cholinergic and glutamatergic systems in the ventral tegmental area. Neurobiology of Learning and Memory, 94(1), 83–90. doi: 10.1016/j.nlm.2010.04.004 [DOI:10.1016/j.nlm.2010.04.004]
28. Marino, M. J., Rouse, S. T., Levey, A. I., Potter, L. T., & Conn, P. J. (1998). Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proceedings of the National Academy of Sciences, 95(19), 11465–70. doi: 10.1073/pnas.95.19.11465 [DOI:10.1073/pnas.95.19.11465]
29. Mhatre, M., Floyd, R. A., & Hensley, K. (2004). Oxidative stress and neuroinflammation in Alzheimer's disease and amyotrophic lateral sclerosis: Common links and potential therapeutic targets. Journal of Alzheimer's Disease, 6(2), 147-57. doi: 10.3233/jad-2004-6206 [DOI:10.3233/JAD-2004-6206]
30. Perry, E. K. (1986). The cholinergic hypothesis—ten years on. British Medical Bulletin, 42(1), 63–9. doi: 10.1093/oxfordjournals.bmb.a072100 [DOI:10.1093/oxfordjournals.bmb.a072100]
31. Sambeth, A., Riedel, W. J., Smits, L. T., & Blokland, A. (2007). Cholinergic drugs affect novel object recognition in rats: Relation with hippocampal EEG. European Journal of Pharmacology, 572(2-3), 151–9. doi: 10.1016/j.ejphar.2007.06.018 [DOI:10.1016/j.ejphar.2007.06.018]
32. Soodi, M., Naghdi, N., Hajimehdipoor, H., Choopani, S., & Sahraei, E. (2014). Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats. Research in Pharmaceutical Sciences, 9(2), 107-14. PMCID: PMC4311288 [PMID] [PMCID]
33. Soodi, M., Saeidnia, S., Sharifzadeh, M., Hajimehdipoor, H., Dashti, A., Sepand, M. R., & Moradi, S. (2015). Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease. Metabolic Brain Disease, 31(2), 395–404. doi: 10.1007/s11011-015-9773-y [DOI:10.1007/s11011-015-9773-y]
34. Uma, G., & Maheswari, S. U. (2014). Neuroprotective effects of polyherbal formulation (Indian) on noni scopolamineinduced memory impairment in mice. Internation al Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 354-7.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Basic and Clinical Neuroscience می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb