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Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) 
data has provided new measures of mapping human brain in vivo. Of all methods to measure 
the functional connectivity between regions, Linear Correlation (LC) calculation of activity time 
series of the brain regions as a linear measure is considered the most ubiquitous one. The strength 
of the dependence obligatory for graph construction and analysis is consistently underestimated 
by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a 
number of studies, Mutual Information (MI) has been employed, as a similarity measure between 
each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal 
organization of the brain indicating self-similarity, more information on the brain can be revealed 
by fMRI Fractal Dimension (FD) analysis.

Methods: In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph 
theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. 
Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, 
the global topological graph properties of the brain networks inclusive of global efficiency, 
clustering coefficient and characteristic path length in addict subjects were investigated too.

Results: Compared to normal subjects by using statistical tests (P<0.05), topological graph 
properties were postulated to be disrupted significantly during the resting-state fMRI. 

Conclusion: Based on the results, analyzing the graph topological properties (representing the 
brain networks) based on BCFD is a more reliable method than LC and MI.
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1. Introduction

mong the most intricate networks in na-
ture is the human brain, which transports 
signals between specific brain regions and 
responds to external stimuli. The study of 
brain connectivity, therefore, depends to 

a great extent, on the comprehension of brain functions 
and pathology (Sporns & Zwi, 2004).

Functional Magnetic Resonance Imaging (fMRI) is an 
imaging technique applied to study human brain function 
and neurological diseases (Smith, Matthews, & Jezzard, 
2001). Blood Oxygenation Level Dependent (BOLD) 
contrast, on the basis of varied magnetic properties of 
oxygenated (diamagnetic) and deoxygenated (para-
magnetic) blood, is applied by well-liked techniques in 
fMRI (Fransson, 2005). fMRI benefits over the other 
functional imaging modalities, namely Electro Encepha-
lography (EEG), Magneto Encephalography (MEG) and 
Positron Emission Tomography (PET) comprise its non-
invasiveness, better spatial resolution compared to other 
modalities and short-time image attainment (Culham & 
Kanwisher, 2001).

In literature, the term “network” has various definitions. 
In graph theory and complex networks, ‘‘network’’ blunt-
ly implies a set of nodes and pair-wise edges, by which 
the nodes are connected. This sense is referred to as Graph 
theoretical analysis of brain networks. ‘‘Network’’, in neu-
roimaging, may designate a group of voxels or Regions of 
Interest (ROIs), that at resting state or in specific cognitive 
tasks, act identically (Sun, Tong, & Yang, 2012).

From the standpoint of complex networks, there has 
been a growing interest, over the recent years, in study-
ing the wide-ranging brain activity interaction structure 
with the use of graph theory and centered on fMRI in 
the areas of addiction (Sutherland, McHugh, Pariyadath, 
& Stein, 2012), schizophrenia (Cabral, Kringelbach, & 
Deco, 2012), brain injury (Nakamura, Hillary, & Biswal, 
2009), neuralgia (Zhang et al., 2014), epilepsy (Pon-
ten, Bartolomei, & Stam, 2007), Alzheimer (Supekar, 
Menon, Rubin, Musen, & Greicius, 2008) and the like 
(Bullmore & Sporns, 2009).

A brain network, in graph theoretical analyses of fMRI 
data, is taken into account as an undirected graph, G=(V, 
E), where a node/vertex (V) in the graph delineates a 
brain region (i.e. ROI) and an edge/link (E) between two 
nodes is indicative of brain regions being functionally 
connected (Deuker et al., 2009).

 To create a graph, the concept and also the definition 
of the edge is a challenging stage. The edge definition 
methods and the importance of each is well evaluated 
and tested in Smith study (Smith et al., 2011).

However, to assess the interaction strength between two 
brain regions for the edge definition, the LC (Pearson) 
coefficient of corresponding time series is most com-
monly utilized in functional connectivity studies, sub-
stantially in addiction research studies (Xia & He, 2011). 
The drawback of such a choice may be that the linear 
correlation does not take into account the nonlinear de-
pendences possibly occurring in the data. While linear 
measures, including the Pearson correlation coefficient 
or coherence are frequently applied, increased attention 
is being paid to potential benefits of nonlinear measures 
(Donges, Zou, Marwan, & Kurths, 2009; Kreuz et al., 
2007). Mutual Information (MI) can establish a nonlin-
ear relationship between fMRI time series and provides 
an effective pure nonlinear noise-robust correlation mea-
sure (Bassett & Bullmore, 2009). 

Research studies contemplating nonlinearity as an in-
herent feature of the brain dynamics are getting continu-
ously more interested in nonlinear approaches toward 
the analysis of the brain signals, especially those mea-
sures in accord with the analysis of chaotic non-linear 
dynamical systems to analyze the resting state fMRI 
data, signifying that the presupposition of linearity might 
be oversimplifying (Hlinka, Paluš, Vejmelka, Mantini, & 
Corbetta, 2011). On the other hand, the brain, with frac-
tal structure complexity, is best modeled as a complex 
system (Papo, Zanin, & Buldú, 2014). For the complex-
ity of the brain signal, we can also assess the resting 
BOLD fMRI time series (Warsi, 2012). The fMRI time 
series within any given voxel, rather than correlating the 
brain areas connectivity with the use of measures of lin-
earity and nonlinearity, can reveal the resting state brain 
functional network complexity. By complexity we mean 
the spatial distribution of fMRI signals phase that should 
not be confused with brain complexity. 

The most frequently applied method for analyzing the 
physiological signals complexity is fractal analysis (Ah-
madi, Ahmadlou, Rezazade, Azad-Marzabadi, & Sajedi, 
2013). Fractal Dimension (FD) analysis is likely to in-
clude new information on the functional connectivity of 
the brain (Sporns, 2006). This information is not attained 
by applying any traditional linear, as well as nonlinear 
measures. However, it should be noted that selection of 
the appropriate method to determine the graph edges in 
functional connectivity studies and the impact of each 
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edge-determination method on the network topological 
features is not fully determined yet (Papo et al., 2014).

In this study, the main hypothesis is that the features ex-
tracted from the graph theory-based brain network in meth-
amphetamine abusers, compared to healthy individuals, are 
subjected to modifications. Another hypothesis investigated 
in this study was that among the edge-definition criteria 
(LC, MI and BCFD) which will have a better performance, 
regardless of the connectivity threshold, to differentiate the 

topological features extracted from the brain networks of 
the addicts and the control group.

2. Methods 

The flowchart of the proposed method, including data 
acquisition, data preprocessing, functional graph con-
struction, topological graph properties and statistics is 
depicted in Figure 1. As shown in it, in the first phase, 
fMRI data are acquired and processed and time series 
are extracted. Then, using LC, MI and BCFD, the edges 

Figure 1. The flowchart of the proposed methods.

Table 1. Demographic characteristic of MDIs.

Descriptive Statistics

17/17Gender (men)

30.52±4.57Age, y

12±2.91Education, y

13.31±4.64Duration of methamphetamine abstinence, d 

3.50±1.74Duration of addiction, y 

11/17Number of subjects with history of opium abuse

8/17Number of subjects with history of heroin abuse

9/17Number of subjects with history of crystalline heroin abuse

12/17Number of subjects with history of alcohol abuse

12/17Number of subjects with history of hashish abuse

4/17Number of subjects with history of cocaine abuse

12/17Number of subjects with history of cigarette smoking
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are defined and the brain network is constructed. Finally, 
statistical analysis is performed. Each phase is distinctly 
stipulated in the following sections. 

2.1. Subjects

A total of 18 normal controls (NCs: 18, aged 23–46 
years, mean±SD=31.67±7.98 years, right-handed) were 
enlisted from the local community. Additionally, we 
enrolled 17 age-matched methamphetamine-depen-
dent individuals (MDIs: 17 Males, aged 22–39 years, 
mean±SD=30.52±4.57 years, right-handed). Demo-
graphic and clinical information regarding MDIs is dem-
onstrated in Table 1. Mann-Whitney U test (Bergfeldt, 
Jonsson, Bergfeldt, & Julin, 2015) showed no significant 
difference between MDIs and NCs (P=0.85).

All subjects were capable to realize and follow the 
protocol of the study during imaging. Neither MDIs nor 
NCs had any history of pain, neurologic or psychiatric 
disorders, head injuries, schizophrenia or an affective 
disorder, in line with their medical history. The present 
paper was performed in agreement with the Helsinki 
Declaration also, confirmed by the Research Ethics Re-
view Board of Tehran University of Medical Sciences in 
Tehran, Iran. Prior to the MRI scanning, informed writ-
ten consent was obtained from each subject.

2.2. Data acquisition

On a 3 Tesla Siemens Tim Trio scanner, MRI data were 
acquired in Medical Imaging Department at Imam Khomei-
ni Hospital, Tehran, Iran. To acquire data for Resting-State 
Magnetic Resonance Imaging (RS-fMRI), a T2*-weighted 
gradient-echo Echo-Planar Imaging (EPI) sequence was 
used with the following parameters: Time of Repetition 
(TR)=3000 ms, Time of Echo (TE)=30 ms, flip angle=90°, 
matrix=64×64, field of view (FOV)=192 mm2, thickness/
gap=4.5 mm, 22 axial slices covering the whole brain and 
240 volumes attained in almost 8 minutes. Besides, via a 
T1-weighted 3D turbo-gradient-echo sequence (TR=1800 
ms, TE=30 ms, flip angle=90°, matrix=256×256, 
FOV=230×230 mm2, thickness=1.0 mm, and 160 sagit-
tal slices), brain structural images with 3D high resolution 
were obtained. The participants were supposed to have their 
eyes closed, keep calm, not to systematically think about 
anything, and not to fall asleep. None of the lights in the 
scanner room were on during the RS-fMRI scanning.

2.3. Data preprocessing

All the fMRI data were preprocessed using MATLAB 
software and DPARSF_V2.0 Toolbox (Chao-Gan & Yu-

Feng, 2010). For each individual, in the first place, the 
first 10 volume images were excluded from the RS-fMRI 
data to make the subjects adapt to the environment and 
to stabilize the scanner, letting 260 volumes remain for 
supplementary analysis. Then, to correct the acquisition 
time delay between slices within the similar TR, slice 
timing was administered. After that, for the correction of 
the inter-TR head motions, realignment to the first vol-
ume was done. Next, we spatially normalized the fMRI 
data to a standard Montreal Neurological Institute (MNI) 
(Tzourio-Mazoyer et al., 2002) template and implement-
ed resampling to a voxel size of 36×63 mm3. Accord-
ing to the studies conducted so far, no spatial smoothing 
was applied (Achard & Bullmore, 2007; Braun et al., 
2012; Wang et al., 2009). Eventually, to reduce the low-
frequency drift and high-frequency physiological noise, 
band-pass filtering was performed for each voxel at the 
frequency of 0.01–0.08 Hz. The RS-fMRI data for each 
subject were checked for head motion. In accord with 
the criteria that the translation and rotation of head mo-
tion in any direction were not more than 1.5 mm or 1.5, 
none of the subjects were disqualified.

2.4. Graph construction

Topological properties of the brain were investigated 
through the method of binary graph G=(V, E), where 
a brain region (i.e. ROI) and an edge (E) between two 
nodes in the graph are indicated by a node/vertex (V). All 
the regarded graphs in this work are undirected. To ana-
lyze complex network, we applied a simple generaliza-
tion of the graph called weighted graph (Bollobás, 1998).

In this paper, based on the previously conducted stud-
ies, two common methods (i.e. LC (Hlinka et al., 2011)
and MI (Hartman, Hlinka, Paluš, Mantini, & Corbetta, 
2011)), as well as the proposed method (i.e. BCFD) were 
applied for edge definition. For graph construction, node 
and edge need to be defined, each of which is explained 
in detail as follows:

2.4.1. Node definition

In order to have the brain parcellated into 90 Regions 
Of Interest (ROIs) (45 in each hemisphere), an Automat-
ed Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer 
et al., 2002) was utilized to construct the brain functional 
networks for each participant.

2.4.2. Edge definition

At this stage, the connectivity, dependence and interac-
tions between the brain regions, i.e. the graph nodes, have 
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to be quantified. Edge definition phase to create graph 
functional connectivity is challenging to some extent, for 
which various methods, including linear and nonlinear 
are presented so far (Ahmadlou & Adeli, 2011; Ahmad-
lou, Ahmadi, Rezazade, & Azad-Marzabadi, 2013). It 
should be noted that the method considered as the best 
method for edge definition and as the edge definition gold 
standard is still a questionable issue (Papo et al., 2014). 
According to the previous studies, we used LC and MI 
methods as the representatives of the linear and non-
linear methods, respectively, together with the proposed 
method “BCFD” for quantifying the interactions be-
tween 90 regions selected as nodes based on AAL Atlas. 
Then, BCFD method was evaluated in comparison with 
LC and MI. To quantify the nodes connectivity, each of 
these three methods considers a different criterion. 

LC method quantifies the interactions between the time 
series of each node with linearity supposition, while MI 
lacks the assumption of the linearity between the brain 
regions and proposes an index for the evaluation of the 
shared information between the two time series. But this 
method is sensitive to the length of time series being ana-
lyzed. Since, in functional connectivity studies, the length 
of time series is usually short, MI use can be somewhat 
challenging. BCFD was applied in the current study, as it 
is based on the concept of self-similarity and complexity, 
i.e. distribution of the points in the phase space, calculat-
ing the connectivity and interactions of the brain regions. 
In addition, it does not assume interactions linearity or 
sensitive to the length of the time series. The concepts of 
“self-similarity” and “complexity” have not been evalu-
ated using the graph theory in the functional connectiv-
ity studies. We computed the time series for each ROI, 
by averaging the signals of all voxels within that region. 
By calculating the Pearson correlation coefficient, MI and 
BCFD in the residual time courses between all ROI-pairs, 
a 90×90 adjacency matrix was attained for each subject.

2.4.2.1. Pearson correlation coefficient

A value for the linear association between the time 
series to be quantified is Pearson correlation, by which 
the dependence structure Gaussianity presupposition is 
given. Regarding {X}={x1,x2,xND} and {Y}={y1,y2,yND} 
as the voxel’s time series, the number of components in 
each set would be. You will get the Pearson correlation 
coefficient r as the following equation (Gómez, Vaquero, 
López-Mendoza, González-Rosa, & Vázquez-Marrufo, 
2004) in which is the mean of X and is the mean of Y.

(1)

 

𝑟𝑟 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−�̅�𝑦)𝑁𝑁𝐷𝐷
𝑖𝑖=1

{∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑁𝑁𝐷𝐷
𝑖𝑖=1 }

1
2{∑ (𝑦𝑦𝑖𝑖−�̅�𝑦)2𝑁𝑁𝐷𝐷

𝑖𝑖=1 }
1
2
                        (1) 

 

𝐼𝐼(𝑋𝑋, 𝑌𝑌) = ∑ ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙2
𝑁𝑁𝑌𝑌
𝑖𝑖=1

𝑁𝑁𝑋𝑋
𝑖𝑖=1 { 𝑃𝑃(𝑖𝑖,𝑗𝑗)𝑋𝑋𝑌𝑌

𝑃𝑃(𝑖𝑖)𝑋𝑋𝑃𝑃(𝑗𝑗)𝑌𝑌
}         (2) 

D = lim
r→0

log (Nr)
log (1 r⁄ )                                      (3) 

Nr = ∑ n(i, j)r                                   
i,j

 

2.4.2.2. Mutual Information (MI) 

An effectual noise-robust correlation value and a non-
random association between time series can be devel-
oped and constructed by mutual information (Khan et 
al., 2007). To predict MI, we can predict the average 
number of bits of one of the two time series by express-
ing the value of the other. Therefore, quantifying the 
variable X, the average number of the variable Y (i.e. 
mutual information of the variables X and Y, represented 
by I(X, Y)) can be predicted by measuring variable X. As 
a result, we will have MI as (Bonita et al., 2014; Ward & 
Mazaheri, 2008):

(2)

 

𝑟𝑟 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−�̅�𝑦)𝑁𝑁𝐷𝐷
𝑖𝑖=1

{∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑁𝑁𝐷𝐷
𝑖𝑖=1 }

1
2{∑ (𝑦𝑦𝑖𝑖−�̅�𝑦)2𝑁𝑁𝐷𝐷

𝑖𝑖=1 }
1
2
                        (1) 

 

𝐼𝐼(𝑋𝑋, 𝑌𝑌) = ∑ ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙2
𝑁𝑁𝑌𝑌
𝑖𝑖=1

𝑁𝑁𝑋𝑋
𝑖𝑖=1 { 𝑃𝑃(𝑖𝑖,𝑗𝑗)𝑋𝑋𝑌𝑌

𝑃𝑃(𝑖𝑖)𝑋𝑋𝑃𝑃(𝑗𝑗)𝑌𝑌
}         (2) 

D = lim
r→0

log (Nr)
log (1 r⁄ )                                      (3) 

Nr = ∑ n(i, j)r                                   
i,j

 

, and correspondingly designate the number of bins in 
the variable X’s histogram and the number of compo-
nents in the variable Y’s histogram, in which does not 
vitally equal , in general. Besides, the probability that 
a component in the ith bin of the X axis segregation and 
the jth bin of the Y axis segregation would respectively 
constitute an (x, y) pair is the joint probability distribu-
tion, i.e. PXY (i,j).

2.4.2.3. Box-Counting Fractal Dimension (BCFD) 

In order to predict fractal dimension, we employ self-
similarity being conceptualized as the fundamental 
principle. The equation below is given for the FD of a 
bounded set A:

(3)

 

𝑟𝑟 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−�̅�𝑦)𝑁𝑁𝐷𝐷
𝑖𝑖=1

{∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑁𝑁𝐷𝐷
𝑖𝑖=1 }

1
2{∑ (𝑦𝑦𝑖𝑖−�̅�𝑦)2𝑁𝑁𝐷𝐷

𝑖𝑖=1 }
1
2
                        (1) 

 

𝐼𝐼(𝑋𝑋, 𝑌𝑌) = ∑ ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙2
𝑁𝑁𝑌𝑌
𝑖𝑖=1

𝑁𝑁𝑋𝑋
𝑖𝑖=1 { 𝑃𝑃(𝑖𝑖,𝑗𝑗)𝑋𝑋𝑌𝑌

𝑃𝑃(𝑖𝑖)𝑋𝑋𝑃𝑃(𝑗𝑗)𝑌𝑌
}         (2) 

D = lim
r→0

log (Nr)
log (1 r⁄ )                                      (3) 

Nr = ∑ n(i, j)r                                   
i,j

 
In this regard, the minimum number of A’s discrete cop-

ies in the scale r is designated as Nr. We can compute FD 
just for fractals that are deterministic. Via a box-counting 
method, a D estimate (i.e. the box-counting DB) can be 
computed. In the following, we explain the DBC method 
(Li, Du, & Sun, 2009) . In this case, by plotting each time 
series of fMRI voxel’s against the other, we are able to 
create an image of the size M×M (M equals the length of 
fMRI time series). This image is regarded as a 3D spatial 
surface, in which the position of pixel on the plane of the 
image and the gray level of pixel are denoted by (x,y) 
and (z), the third coordinate. The plane, in this method, 
is partitioned by the s×s blocks. In each block’s scale (i.e. 
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r=s), s represents an integer and 1<s≤M/2. In Figure 2, 
a column of s×s×ś boxes can be observed. Regarding G 
as the whole number of gray levels, G over equal to M 
over s. In addition, each box’s height is displayed by ś. 
As depicted in Figure 2, numbers 1, 2, 3, 4 … can be 
devoted to the boxes. The formula for the calculation of 
the number of boxes (kth and lth), by which the (i,j)th block 
is covered, would be as follows:

(4)

(i, j)=l−k+1                      

Additionally, having taken all blocks’ contribution into 
consideration, is given for the varied measures by:

(5)

 

𝑟𝑟 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−�̅�𝑦)𝑁𝑁𝐷𝐷
𝑖𝑖=1

{∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑁𝑁𝐷𝐷
𝑖𝑖=1 }

1
2{∑ (𝑦𝑦𝑖𝑖−�̅�𝑦)2𝑁𝑁𝐷𝐷

𝑖𝑖=1 }
1
2
                        (1) 

 

𝐼𝐼(𝑋𝑋, 𝑌𝑌) = ∑ ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙2
𝑁𝑁𝑌𝑌
𝑖𝑖=1

𝑁𝑁𝑋𝑋
𝑖𝑖=1 { 𝑃𝑃(𝑖𝑖,𝑗𝑗)𝑋𝑋𝑌𝑌

𝑃𝑃(𝑖𝑖)𝑋𝑋𝑃𝑃(𝑗𝑗)𝑌𝑌
}         (2) 

D = lim
r→0

log (Nr)
log (1 r⁄ )                                      (3) 

Nr = ∑ n(i, j)r                                   
i,j

 

Ultimately, the minimum squares linear fit of log (Nr) 
versus log (l/r) would result in FD being prognosticated.

2.5. Surrogate data

By generating the surrogate data, we aim at evaluating 
the performance of each method in several pairs of time 
series, before their applying in the real data. That is be-
cause these methods are used as the similarity measure 
of two time series from two fMRI voxels. We applied the 
outlined ideas, comparing the total MI, LC and BCFD 
between the signals in surrogate datasets. These surro-
gates are generated using the logistic equation (Arora & 
Santhanam, 2014) and randomization process.

This approach provides us with the opportunity to both 
test and quantify the deviation from linearity, providing 

a principled guide in judging the appropriateness of LC, 
MI and BCFD as measures of FC.

(6)

x(n+1)=A.x(n).(1-x(n))

We exploited logistic equation and increased the A 
value randomly between 3<A<4. With an increase in the 
value of A within 3<A<4, we will be able to create time 
series with artificially increasing complexity and evalu-
ate graph edge definition methods as a criterion for the 
connectivity between the brain regions in the presence 
of complexity. In the present study, complexity means 
the extent of the phase space i.e. the two series that have 
less phase space extent have more similarity and connec-
tivity and vice versa. Therefore, increased complexity is 
interpreted as the similarity and connectivity decrease in 
the two time series. Hence, in logistic equation, values 
close to 3 mean more similarity and less complexity of 
the time series and vice versa.

In order to better assess the similarity measures applied 
in the detection of brain functional connectivity using 
the graph theory, other surrogate data were generated us-
ing the randomization process. In these data, at first two 
time series were randomly generated. Then, the similar-
ity of these two time series to each other was gradually 
reduced to a specific amount. In the last phase, similar-
ity measure value on each of these signal pairs by three 
proposed methods, including linear correlation, mutual 
information and fractal dimension was calculated. Be-
cause in the surrogate data, the similarity of each signal 
pair has a downward trend, similarity measures, also, 
have to follow this trend.

2.6. Thresholding method

Presently, for studies on complex brain network, there 
is no consensus over selection of a specified threshold 
(Achard & Bullmore, 2007). Pursuant to studies already 
carried out, each element’s absolute value (positive and 
negative values were only contained in Pearson’s ma-
trix) was applied as the inter-regional functional connec-
tivity (Bassett et al., 2008; Braun et al., 2012; Wang et 
al., 2011; Zhang et al., 2011). Ultimately, we thresholded 
these matrices of adjacency into a binary matrix. 

In this study, for the networks properties to be investi-
gated, we employed a range of threshold values, from 
0.1 to 0.5, with an increment of 0.1. In this method to 
derive adjacency matrices, we thresholded them in a 
proportional manner (i.e. normalization by “wiring cost” Figure. 2. Sketch of determination of the number of boxes by 

the DBC method (Li et al., 2009).
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– e.g. 0.1 represents 10% of the strongest connections 
being maintained as links). For each individual, a con-
nectivity matrix of 90×90 was obtained and the topo-
logical organization of functional networks of the whole 
brain analyzed in compliance with graph theory, taking 
each ROI into account as a node and the functional con-
nectivity as an edge.

2.7. Topological properties of brain networks

Of all the multiple matrices of network we needed to 
measure for the assessment of the small-world properties 
(Sporns & Zwi, 2004), the Clustering Coefficient (CC) 
and the mean minimum Path Length (PL) are regarded 
to be the major components of the small-world network. 
The clustering coefficient ratio, 0˂CCi˂1, describes the 
range or amount of potential connections that the closest 
neighbors of a node actually has (Liu et al., 2009):

(7)

𝐶𝐶𝐶𝐶 = 1
𝑁𝑁 ∑ #𝐸𝐸𝑗𝑗

#
𝑉𝑉𝑗𝑗(#𝑉𝑉𝑗𝑗−1)

2

𝑁𝑁
𝑗𝑗=1                                         (7) 

𝐿𝐿 = 2
𝑁𝑁(𝑁𝑁−1) ∑ ∑ 𝑚𝑚𝑚𝑚𝑚𝑚{𝐿𝐿𝑖𝑖,𝑗𝑗}𝑁𝑁

𝑘𝑘=𝑠𝑠+1
𝑁𝑁−1
𝑠𝑠=1                     (8) 

𝐸𝐸 = 1
𝑁𝑁(𝑁𝑁−1) ∑ 1

𝐿𝐿𝑖𝑖,𝑗𝑗
𝑖𝑖≠𝑗𝑗∈𝐺𝐺                                              (9) 

The total number of nodes of a network, the number 
of edges by which node j’s neighbors are connected to 
one another and the number of node j’s neighbors are il-
lustrated by N, #Ej and #Vj in this equation, correspond-
ingly. Moreover, we will have L (i.e. the minimum path 
length), dividing the shortest path lengths in average by 
each potential vertices pair:

(8)
𝐶𝐶𝐶𝐶 = 1

𝑁𝑁 ∑ #𝐸𝐸𝑗𝑗

#
𝑉𝑉𝑗𝑗(#𝑉𝑉𝑗𝑗−1)

2

𝑁𝑁
𝑗𝑗=1                                         (7) 

𝐿𝐿 = 2
𝑁𝑁(𝑁𝑁−1) ∑ ∑ 𝑚𝑚𝑚𝑚𝑚𝑚{𝐿𝐿𝑖𝑖,𝑗𝑗}𝑁𝑁

𝑘𝑘=𝑠𝑠+1
𝑁𝑁−1
𝑠𝑠=1                     (8) 

𝐸𝐸 = 1
𝑁𝑁(𝑁𝑁−1) ∑ 1

𝐿𝐿𝑖𝑖,𝑗𝑗
𝑖𝑖≠𝑗𝑗∈𝐺𝐺                                              (9) In the above formula, the path length is determined by 

the number of edges the path encompasses. Also delin-
eates the shortest length (i.e. the ith or the jth). The aver-
age minimum number of connections linking any two 
nodes of the network is referred to as the Characteristic 
Path Length (CPL). Furthermore, we computed, for a 
CC and CPL graph containing as many nodes as edges, 
the corresponding parameters, according to what and 
determine. These random networks were established to 
obliterate any structure of local adjacency, when the pri-
mary level of distribution is kept. This was carried out 
by each edge being reattached in the original network, 
1000 times in average, randomly (Hayasaka & Laurienti, 
2010; Newman, Strogatz, & Watts, 2001). Random net-
works require a shortest path length in average which is 
small, having limited local interconnections resulting in 

a small Crand and Lrand. The graph, on the ground that it 
has a small shortest length in average and its average clus-
tering coefficient is strikingly greater than a constructed 
random graph on the same number of nodes, would be 
regarded as small-world. It has been demonstrated that, 
supporting effective parallel transmission of information 
at a comparatively low cost, economical small-world 
properties with high global efficiency (Eglobal) are owned 
by the brain functional networks. The harmonic mean 
inverse of the least absolute path length between each 
nodes pair, is delineated as (Liu et al., 2008).

(9)

𝐶𝐶𝐶𝐶 = 1
𝑁𝑁 ∑ #𝐸𝐸𝑗𝑗

#
𝑉𝑉𝑗𝑗(#𝑉𝑉𝑗𝑗−1)

2

𝑁𝑁
𝑗𝑗=1                                         (7) 

𝐿𝐿 = 2
𝑁𝑁(𝑁𝑁−1) ∑ ∑ 𝑚𝑚𝑚𝑚𝑚𝑚{𝐿𝐿𝑖𝑖,𝑗𝑗}𝑁𝑁

𝑘𝑘=𝑠𝑠+1
𝑁𝑁−1
𝑠𝑠=1                     (8) 

𝐸𝐸 = 1
𝑁𝑁(𝑁𝑁−1) ∑ 1

𝐿𝐿𝑖𝑖,𝑗𝑗
𝑖𝑖≠𝑗𝑗∈𝐺𝐺                                              (9) 

For two groups of addicts and normal individuals, 
clustering coefficient, characteristic path length and ef-
ficiency were computed for edge definition using the 
three methods of LC, MI and BCFD, respectively. It 
should be noted that the nature of the graphs obtained 
by these three methods is different to some extent, where 
LC method quantifies the linear interactions between the 
nodes, MI calculates the shared information and BCFD 
computes the self-similarity. Thus, the values of cluster-
ing coefficient, path length and efficiency in the graphs 
obtained by LC and MI and BCFD methods will be dif-
ferent. But, regardless of the nature of these three graphs 
and the varied values of the features, the interpretation of 
clustering coefficient, path length and efficiency will be 
the same in all three graphs. 

 2.8. Statistical analysis

To evaluate the brain network properties, statistical 
difference between addict participants and normal 
controls, a test of non-parametric permutation was ap-
plied (He, Chen, & Evans, 2008). In the first place, 
we calculated the network topological properties in-
clusive of Clustering Coefficients, Characteristic Path 
Length (CPL) and Global Efficiency (GE). Next, each 
individual’s regional cortical thickness measures were 
assigned to either group randomly. In addition, we re-
computed LC, MI and BCFD matrices for each of the 
2 groups randomized and, for the network property 
measure, obtained a new value. We repeated this pro-
cess of randomization 1000 times. Because less than 5 
percentile of intergroup difference in the distribution 
of permutation is more than the discrepancy in the ob-
served group, the significance would be reached. For 
each threshold, the procedure was repeated.
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3. Result

Investigated from a functional integration viewpoint 
and in line with LC, MI and BCFD methods, metham-
phetamine addiction problems were considered through 
graph topological properties. In order for the network to 
be built, for both methamphetamine users and normal 
controls, graph theory was applied, enabling us to ana-
lyze the topological properties of functional brain net-
works between these two groups. 

By generating the surrogate data, we aim at evaluating 
the performance of each method in several pairs of time 
series, before they are applied for the real data. That is 
because these methods are used as the similarity mea-
sure of two time series from two fMRI voxels. These 
similarity measures are compared and assessed using the 
time series with linear and non-linear behavior, about 
which we have prior knowledge. To evaluate LC, MI and 
BCFD methods, two surrogate data sets generated by the 
randomization process (as linear behavior) and by the 
logistic equation (as a non-linear behavior) were used.

Figure 3 shows the results of creating six time series 
using logistic equation. Upper signals correspond to less 
nonlinearity and more linearity and lower signals corre-
spond to more nonlinearity and less linearity. As can be 
seen, there are a few similarities in the signals. We aim at 
quantifying these similarities using BCFD and evaluat-
ing the results of BCFD versus LC and MI. 

As seen in Figure 3, with an increase in the value of A 
in logistic equation, complexity increases, interpreted 
based on an increase in the distribution of points in the 
phase space, while the similarity and connectivity of 
the two time series decrease in a non-linear manner. 
For these six typical time series (3 pairs), linear cor-
relation, mutual information and box counting were 
executed and the similarity measures were computed. 
Table 2 displays the results.

As seen in Table 2 and based on the visual comparison, 
by increasing nonlinearity, LC has no significant changes 
in the values of these three methods for nonlinear range 

and just has a good performance in linear range, MI has 
an increasing trend representing that mutual informa-
tion functions well just in nonlinear range. Among these 
three algorithms only BCFD has significant changes and 
shows the capability of its discrimination for similarity 
measure in both linear and nonlinear ranges.

Figure 4 shows the results of creating six time series 
using randomization method and corresponding phase 
spaces. Upper signals correspond to more similarity. By 
reducing the time series similarity, dispersion of points 
in phase space has been increased.

Based on our statistical analysis using BCFD and con-
sistent with several previously conducted studies on 
addiction, there was a significant difference between 
groups in global efficiency, clustering coefficient, as well 
as Characteristic Path Length (CPL) at different thresh-
olds (Ersche et al., 2006; Jiang et al., 2013).

Figure 3. Six samples of time series created by logistic equa-
tion, by increasing the A, complexity of each pair has been 
increased.

Table 2. The results of computing LC, MI and BCFD for six samples of time series using Logistic equation.

LC MI BCFD

Linear 0.8680 0.0818 1.1605

Relatively nonlinear 0.0797 0.3020 0.5974

Pure nonlinear -0.0607 0.4294 0.5563
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Figure 5 depicts CC, CPL and GE schemes of the 
whole-brain functional network changing with the 
thresholds in both addict participants and normal con-
trols and obtained with the application of LC, MI and 
BCFD methods. As can be seen in Figure 5a, Figure 5b 
and Figure 5c, for LC method, significant differences 
between groups in CC, CPL and GE were observed. As 
desired and compared to the random networks, relatively 
higher CC and GE, except CPL, were exhibited by the 
networks of addict and normal participants. Thus at the 
red circle thresholds, there were differences in CC, CPL 
and GE considered significant (red circles, P<0.05). 
Only CC and GE of normal subjects valued higher.

Graph topological properties of both addict subjects 
and normal controls using MI method is presented in 

Figure 6a, Figure 6b and Figure 6c. In this respect, simi-
lar to the analysis using LC, significant differences at a 
number of network thresholds for CC, CPL and GE (red 
circles, P<0.05) were revealed. Conforming to the re-
sults, as compared to those of addict subjects, relatively 
higher CC and GE were exhibited by the networks of 
normal controls. Furthermore, implying that MI is more 
robust than LC to extract to the differences in graph to-
pological features, the number of significant differences 
using MI is more than those through LC method.

Figure 7 illustrates the statistical analysis of the graph 
topological properties using BCFD. Once more, iden-
tical to the analysis utilizing LC and MI, as compared 
with normal controls, brain networks of addicted par-
ticipants display significant differences in CC, CPL and 

Figure 4. Six samples of time series created by randomization method, increase in the distribution of points in the phase space 
lead to less simialarity of two time series.

Clustering coefficient using LC Characteristic path length using LC Global efficiency using LC

Figure 5. The results of statistical analysis for intergroup differences using LC (red circles show significances at P<0.05).
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GE. In this method, the number of significant points is 
observed at a wide range. Thus, BFCD holds more ho-
mogenous significant variations insinuating that, com-
pared with normal controls, the differences in addicts’ 
brain networks in almost all network thresholds can be 
differentiated by BCFD method and, besides, represent 
greater validity and reliability of the brain network anal-
ysis using graph theory. According to the results, in all 
circumstances, all three topological features in healthy 
individuals are more than in addicts, with the exception 
of CPL, by whom the main hypothesis of this study is 
asserted to be vindicated.

4. Discussion

A prominent approach to the analysis of fMRI data, in 
particular the resting state data is Functional Connectiv-
ity (FC). Two common methods of functional connec-
tivity analysis are graph theory and seed-based analysis 
which employ Linear Correlation (LC) measures. An 
implicit assumption of Gaussianity is applied to the de-
pendence structure by utilizing linear correlation mea-
sures (Chang & Glover, 2010). It is of a great importance 
to bear in mind that non-Gaussianity may result in the 
false detection of nonstationarity. It should also be kept 
in mind that, rather than with neuronal activations, we 
are dealing with the level of fMRI BOLD signal; the 
non-neural sources of variation are likely to influence, to 
some extent, the contributions of both the Gaussian and 
non-Gaussian. Due to generality, a specific position is 
held by Mutual Information (MI) among a great number 
of possible nonlinear FC measure candidates. Theoreti-
cally, adopting an arbitrary form of dependence associa-

tion among the variables, without any apriority model 
limitations on its form, would be general enough. MI 
features provide us with the opportunity not only to ex-
amine the appropriateness of linear correlation for fMRI 
time series, but also to quantify the information disre-
garded using linear correlation. Owing to greater sensi-
tivity of MI to higher order statistics considering only the 
second order (Smith et al., 2011), as compared to LC, an 
extra amount of information is resulted and the possible 
contribution of non-linear alternatives over the Pearson 
correlation coefficient is bounded.

Currently by employing the elements of chaos theory, 
modern neuroscientists have been able to recognize the 
fractal properties present in the brain functions (Expert et 
al., 2011; Papo et al., 2014; You & Stadler, 2012). How-
ever, until just the recent time, there was no analytical 
method for the objective explanation of the brain com-
plexity. However, the question of which interdependence 
or connectivity measures to be applied is not generally 
responded. The crucial trade-off factors would probably 
depend upon a specific dataset and the regarding scien-
tific problem (Hartman et al., 2011).

The surrogate data analysis conducted applying the lo-
gistic equation may give us the insight to fractal behavior 
impact on the brain complex networks. Figure 8 displays 
the performance of these 3 algorithms with increasing 
the complexity. As desired, correlation has a good per-
formance in only linear range because of its fluctuation. 
MI has a good performance in only nonlinear, but BCFD 
performs well in both linear and nonlinear ranges, ex-
pressing that BFCD is a better dependency measure for 

Clustering coefficient using MI Characteristic path length using MI Global efficiency using MI

Figure 6. The result of statistical analysis for intergroup differences using MI (red circles show significances at P<0.05).

Clustering coefficient using BCFD Characteristic path length using BCFD Global efficiency using BCFD

Figure 7. The result of statistical analysis for intergroup differences using BCFD (red circle show significances at P<0.05).
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comparing time series to define the edge of graph for 
graph-centered network analysis of the brain.

In order to better evaluate the similarity measures ap-
plied in the brain functional connectivity using the graph 
theory, other surrogate data were created using the ran-
domization process. In these data, as shown in Figure 
9, in the first step where the two signals are completely 
similar to one another, their values have to be the maxi-
mum value. Since in establishing the random signal 
pairs, the trend is a monotonic downward trend, the val-
ues of similarity measures have to lack fluctuations. The 
last important point is that, in the last stage, the similarity 
of the pair of signals would be a specific number; hence, 
in the last phase, similarity measures should have a value 
similar to that specific value. 

As seen in Figure 9, all the three similarity measures 
are started from the maximum value, which seems rea-
sonable, knowing that two signal pairs are completely 
similar. However, compared to the other methods, the 
Linear Correlation (LC) has more fluctuations, which is 
not desirable due to less similarity of each signal pair in 
proportion to the prior signal pair in the surrogate data. 

In spite of its lower fluctuations, Mutual Information 
(MI) method does not perform greatly for low similar-
ity values. That is because, in the last stages where the 
specific value of 30% in the surrogate data, for example, 
has been already given to the similarity, a much higher 
value is shown by the use of this measure. Among the 
similarity measures, Box-Counting Fractal Dimension 
(BCFD) seems to have been able to follow all the exis-
tent behavior, and thus, it can have a better performance 
for the graph edge determination in brain functional con-
nectivity analyses.

By reducing the similarity value, LC method has a great 
number of fluctuations and MI follows the variations in 
the similarity reduction with a very little slope, whereas 
FD follows the variations in the similarity reduction well. 
Being repeated 1000 times, the results from the statisti-
cal analysis showed no significant difference between 
LC, MI and FD methods in the data generated through 
randomization. Similar to the randomization method, we 
reduce the similarity of the time series to one another in a 
linear manner, such a conclusion seems reasonable. That 
is because, in fact, the data still have a linear relation-
ship with each other. However, in the data created by the 
logistic equation, a significant difference was observed 
between the three methods. Similarly, this result is not 
far-fetched, as with an increase in the value of A in the 
logistic equation, complexity (distribution of points in 
the phase space), i.e. the non-linear interaction between 
the time series will increase. Regarding the evidence 
cited in the surrogate data, it can be concluded that FD 
seems to be a more appropriate criterion for the graph 
edge determination in functional connectivity studies.

In addition, it is proven that the brain, as a complex 
structure, is fractal (Papo et al., 2014). To express the 
brain complexity and present an index for it, the com-
plexity of the time series of fMRI voxels can be investi-
gated between the test group and the control group. An 
expression of complexity introduced in this study was 
the point’s distribution of the time series in the phase 
space, a kind of deviation from the linearity and non-
linearity of the interactions between the brain regions of 
addicts, compared with normal controls, quantified and 
evaluated using BCFD method. The use of BCFD meth-
od for quantifying the complexity of the interactions of 
fMRI time series and thus, providing a criterion for the 
brain complexity is a benefit not achievable through the 
conventional methods of LC and MI. However, applying 
other concepts to interpret and assess the complexity of 
the brain requires further studies.

Figure 8. General trend of LC, MI and BCFD with increasing 
complexity.

Figure 9. The comparison of the methods used for obtaining 
similarity measure by a decrease in the value of similarity 
resulted from the randomization method.
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There is a number of well-established circuits char-
acterizing the cognitive impairments of addicted brain; 
namely decision-making, impulsivity, attention distur-
bances and assigning emotional valence circuits (Lee & 
Pau, 2002; Lee et al., 2005; Li & Sinha, 2008; Volkow, 
Fowler, & Wang, 2003). Studies have also suggested 
some irregularities in these circuits for methamphet-
amine dependents (Monterosso, Aron, Cordova, Xu, & 
London, 2005). To this end, studying these circuits in 
MDI through a graph theoretical perspective is benefi-
cial. In the current study, alterations were found in MDIs 
universal parameters of the brain functional networks, 
in comparison with those of NCs. Statistical analysis 
revealed a significant decrease in clustering coefficient, 
global efficiency and small-world indices and increase in 
characteristic path length of MDIs.

One of the indices characterizing the manner in which 
the brain networks are shifted to either a regular or a ran-
dom network is the clustering coefficient (He & Evans, 
2010). Studies have previously shown a decreased clus-
tering coefficient in ADHD individuals justifying their 
attention disorders (Wang, Li, Metzak, He, & Wood-
ward, 2010), this may also be the case for our MDIs as 
attention deficit is a commonly reported cognitive im-
pairment in meth addiction (Sim et al., 2001).

Universal processing and transfer of information from 
each brain region to all the other ones is taken into con-
sideration by global efficiency, which, to ensure effective 
interactions or rapid information transfer over the distant 
cortical regions involved in the basis of a great number of 
cognitive processes, predominantly relates the long-range 
connections (Latora & Marchiori, 2001). Low global ef-
ficiency is linked to lower IQ score (Li et al., 2009; Van 
den Heuvel, Stam, Kahn, & Pol, 2009), which may be due 
to a slower information process, a critical subscale in IQ 
score; consistently lower global efficiency can be indica-
tive of decreased information process speed in MDIs.

The mean minimum number of links connecting any 
two nodes within the network is considered as the char-
acteristic path length of a network. Giving an overview 
of information transfer effectiveness and measuring the 
functional integration of the whole brain, the capability 
for the brain network parallel information propagation is 
quantified by the characteristic path length of a network 
(Tschernegg et al., 2013). Obviously, a longer charac-
teristic path length will make for a more time consum-
ing and/or less efficient integration of modules. Increase 
in characteristic path length in our participants can be a 
reason for the observed psychomotor retardation of brain 

functions in abstinent psycho stimulant-dependent indi-
viduals (Pulvirenti & Koob, 1993).

The model of small-world network topology is con-
sidered by a high local clustering coefficient and short-
est path length (Rubinov & Sporns, 2010). Small-world 
properties lead to maintaining highly effective, special-
ized modular information process and fast global infor-
mation transfer in a network (Kaiser & Hilgetag, 2006). 
Similar to earlier studies on functional networks of the 
human brain (Liao et al., 2010; Liu et al., 2008; Supe-
kar et al., 2008; Tian, Wang, Yan, & He, 2011; Zhang 
et al., 2011), in this study, the small-world properties 
of MDIs’ and NCs’ resting networks were investigated 
over a range of threshold values. Statistical comparison 
of the two groups showed that small-world properties 
were conserved by both MDIs’ and NCs’ whole-brain 
functional network. The small-world scalar was smaller 
in MDIs than the NCs (Figure 10). Small-word prop-
erty increases through brain development, representing 
a shift of brain networks towards regularity (Park et al., 
2015); indicating improved decision making in adults. 
Inversely, low small-world scalar in our study may be 
a reason for common cognitive impairments in MDIs, 
especially disrupted decision making (Kohno, Morales, 
Ghahremani, Hellemann, & London, 2014) and impul-
sive behaviors, a hint of a shift towards randomness.

By comparing the edge definition methods and the fea-
tures derived from functional connectivity graph, it is 
concluded that there is a significant difference in the brain 
network topological features of the addicts, compared to 
those of the control group; in all three edge definition 
methods, the difference was obtained in terms of network 
topological features. The number of significant points, 
however, are more in BCFD method than in LC and even 
MI. As stated in Liu et al. study (Liu et al., 2009), the 
greater number of significant points, regardless of the 
connectivity threshold, can be a criterion for the com-
parison of these methods. These materials can certify the 
proof of the main and sub-hypotheses of this research.

Figure 10. Small-worldness of MDIs and NCs using BCFD.
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5. Conclusion

According to the gathered body of evidence, a more 
powerful manner to appreciate the brain networks to-
pological principles is put up by the graph theoretical 
analysis of neuroimaging data applying BCFD than 
through LC and MI methods. Using resting-state fMRI 
and a graph theory method, we aimed at investigating 
the functional network of the whole-brain in MDIs. As 
lower clustering coefficient, global efficiency and less-
ened small-worldness indicate, the whole-brain func-
tional networks in MDIs, compared to those in normal 
controls, were pointed out to be probably shifted toward 
random organization.

On the whole, the present study found disruptions in 
the whole-brain functional networks topological graph 
properties of MDIs. The findings are valuable to better 
understand the underlying mechanisms of addiction. 
Due to such efforts, recently developed research areas 
of interest to all basic scientists and clinical researchers 
are being opened up into organizational mechanisms 
of the brain. Considering the features of graph theory 
in establishment of network alterations, it seems to be 
a suitable biomarker for monitoring addiction treatment 
and detecting the treatment progress ahead of significant 
clinical symptoms.
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