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Recent studies in affective computing are focused on sensing human cognitive context using 
biosignals. In this study, electrooculography (EOG) was utilized to investigate memory recall 
accessibility via eye movement patterns. 12 subjects were participated in our experiment 
wherein pictures from four categories were presented. Each category contained nine pictures 
of which three were presented twice and the rest were presented once only. Each picture 
presentation took five seconds with an adjoining three seconds interval. Similarly,  this task 
was performed with new pictures together with related sounds. The task was free viewing and 
participants were not informed about the task’s purpose. Using pattern recognition techniques, 
participants’ EOG signals in response to repeated and non-repeated pictures were classified 
for with and without sound stages. The method was validated with eight different participants. 
Recognition rate in “with sound” stage was significantly reduced as compared with “without 
sound” stage. The result demonstrated that the familiarity of visual-auditory stimuli can be 
detected from EOG signals and the auditory input potentially improves the visual recall 
process.
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1. Introduction

onsiderable advances in sensing, infer-
ring, and using context information were 
achieved by investigating different dimen-
sions of context, such as physical activity 
(Davies et al., 2008), location (Want et al., 

1992), or the psychophysiological and affective state of 
studied subjects (Healey et al., 2010). Cognitive context 
of a person lies beyond these common contextual dimen-
sions not necessarily providing a complete background 
context of a person. Based on the insights from the ex-
perimental psychology, the cognitive context comprises 
almost all aspects of mental processing, such as percep-
tion, memory, knowledge, and learning (Bulling & Rog-
gen, 2011).

C
	Recent context-aware systems have a long way to cog-

nitive context assessment in an unobtrusive manner. This 
is due to the fact that the cognitive context is encoded in 
complex neural dynamics inside the brain and few ob-
vious cues are accessible by non-invasive measurement 
techniques (Bulling & Roggen, 2011). Cognitive neuro-
science uses techniques such as functional magnetic res-
onance imaging (fMRI), (Chadwick et al., 2010) that are 
not suited for real-world applications. More potentially 
useful techniques investigating the cognitive context, 
such as electroencephalography EEG, (Bigdely-Shamlo 
et al., 2008), are not unobtrusive and robust enough for 
daily life setting applications.

	A large body of research in experimental psychology 
has shown that, in addition to physical activity, visual 
behavior is tightly linked with cognitive processes, such 
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as attention (Liversedge & Findlay, 2000), memory 
(Hannula & Ranganath, 2009), learning (Heisz & Shore, 
2008), or saliency determination (Henderson, 2003). 
Moreover, a firm relationship between eye movements 
and cognition makes eye movements a particularly prom-
ising source of information on the cognitive context of a 
person,  beyond the mere physical or visual activities.

	A scenario to gain a good perspective on eye-based 
cognition-awareness was given by Bulling & Roggen, 
2011,  where attendees of a business reception wear eye 
trackers that are unobtrusively embedded into their gog-
gles. By analyzing their eye movement patterns during 
conversations, cognition-aware memory assistants run-
ning on their mobile phones assess whether the involved 
speakers have met before and still remember each other. 
Using this information, the systems then automatically 
provided real-time memory assistance about people fall-
en into oblivion to prevent the embarrassing situations.

	Eye movement research is of great interest in neurosci-
ence and psychiatry studies, as well as ergonomics, ad-
vertising and design as a window into observers’ visual 
and cognitive processes. For instance, researchers have 
utilized eye tracking to study behavior in such domains 
as image scanning e.g. (Noton & Stark, 1971), driving 
(Land & Lee, 1994), arithmetic (Suppes, 1990), anal-
ogy (Salvucci & Anderson, 2001), and reading (Rayner, 
1998). In these  domains as well as others, researchers 
typically analyze eye movements in terms of fixations 
(pauses over informative regions of interest) and sac-
cades (rapid movements between fixations).

	Many researchers have started to study eye movements 
in natural environments in order to better understand the 
role  which the visual system plays in the execution of 
everyday tasks (Hayhoe & Ballard, 2005). Human vision 
research has shown that unconscious eye movements are 
strongly related to the underlying cognitive and percep-
tive processes. For example, it has been shown that vi-
sual behavior is a good measure of visual engagement 
(Skotte et al., 2007), drowsiness (Schleicher et al. 2008), 
and cognitive load (Stuyven et al., 2000). Heisz et al. 
investigated changes in eye movement behavior across 
several exposures to face images (Heisz & Shore, 2008). 
They found that once a face becames more familiar, ob-
servers look longer and more often at the eyes and less 
often at the nose, mouth or forehead.

	Furthermore, it has been demonstrated that differences 
in eye movement patterns are linked to a number of men-
tal disorders. Given this, eye tracking has been used to 
diagnose autism spectrum disorders (Boraston & Blake-

more, 2007). For instance, Klin et al. showed that people 
with autism tend to show fewer fixations to the eyes but 
more to the mouth (Klin et al., 2002). Similar links were 
found for schizophrenia (Ettinger et al., 2006) as well 
as Parkinson’s (Mosimann et al. 2005) and Alzheimer’s 
disease (Crawford et al., 2005).

	All these studies suggest a close relationship between 
the visual behavior and cognition. These findings under-
line the potential of eye movement analysis for cognitive 
context assessment. However no attempts were done to 
detect familiarity from the eye movements whether for 
example a particular face, was previously seen and re-
membered. Along these lines, the emerging novel tech-
nologies which enable research on human behavior dur-
ing complex cognitive processes like memory recall is 
drawing much more attentions nowadays.

2. Methods

	An experimental paradigm was used to the study deci-
sion making process. the experiment conducted during  
this study comprised visual stimuli presentation to par-
ticipants while recording their EOG signals. As it shown 
in Fig.1, the experiment was conducted in a dim-lit, quiet 
room. For distinct and near to real world eye movements, 
visual stimuli were presented on a 116×66 cm screen by 
a video projector. The resolution of presented pictures 
as visual stimuli was 640×480 pixels. The stimuli were 
designed and implemented using Adobe Flash software. 
Participants were instructed on how to do the tasks us-
ing the interactive multimedia instructions running on a 
computer before the experiment. Moreover, instructions 
were also shown to the participants in text format before 
the task onset. Participants were requested to sit on an 
armchair and adjust their position such that their eyes 
were facing the center of the screen. Participant’s dis-
tance to the screen was between 160 and 170 cm. The 
experiment was conducted in Brain-Computer Interface 
laboratory of Iran Neural Technology Research Centre. 

Eight picture sets were created, two sets for each of the 
following picture categories: abstract, landscapes, faces, 
and buildings images. Face pictures were selected from 
the IMM Face Database (Stegmann et al., 2003). Pictures 
with frontal view and neutral expression with dark back-
ground were chosen for face category;  while pictures 
of the other categories were randomly selected from the 
Internet. However, it was ensured that these pictures had 
similar visual features. For example, landscape photo-
graphs that showed a lake as their main feature were 
selected and the building photographs always showed 
skyscrapers centered in the picture. Four sound sets were 
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chosen and presented in association with the four picture 
categories. The sounds were chosen so that to help the 
memory recall process. Sounds of car passing, seashore, 
crowd talking and radio messages of spacemen were se-
lected for building, landscape, face and abstract pictures, 
respectively.

2.1. Experiment

	The experiment was performed in two sections. In the 
first section participants were presented  four categories 
of pictures including faces, landscapes, abstract images 
and buildings without sound (Fig.2). Each category con-

tained nine pictures. Six pictures of each category  were 
presented once and the remaining three pictures  were 
presented twice. The pictures were presented randomly. 
As shown in Fig.2, each presentation took five seconds 
after which a black screen with a dot-shaped down-
counter at the center was presented for three seconds. 
The second section of the experiment immediately fol-
lowed the first part. The second part was similar to the 
first one while the pictures were different and sound-
matched. Participant’s task in this experiment was free 
viewing. They were not informed about the aim of the 
experiment.

Figure 1. A participant during experiment

Figure 2. Sample pictures of the four categories (abstract, landscape, face, and building) 
and their sequence of display used in the experiment. Each picture was shown for five 
seconds; black screen pictures were shown in between for three seconds as intervals.
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2.2. Participants

	Fourteen participants (6 females and 8 males) volunteered 
for this experiment. Two male participants were excluded 
due to low quality EOG signal that prevented robust detec-
tion of eye movements. The remaining participants were 
22 to 29 years old (M=25.8, SD=±3.6). All participants had 
normal or corrected-to-normal vision. Most of the partici-
pants were either undergraduate or graduate students from 
Iran University of Science and Technology.

2.3. Apparatus

	Neurophysiologic signals were recorded and filtered 
using a Simulink application. For the present study, 
a g.USBAmp amplifier (g.tec Medical Engineering 
GmbH, Austria) was used. This device represents a mul-
timodal amplifier for electrophysiological signals such 
as EEG, EOG, EMG and ECG. EOG signals were cap-
tured by 5 electrodes placed as in Fig. 3 and were re-
corded using a bipolar configuration. For the horizontal 
EOG (HEOG) the electrodes were placed at the outer 
canthus of each eye and for the vertical EOG (VEOG) 
infra-orbital and supra-orbital electrodes were placed 
in line with the pupil of one eye. Ground electrode was 
placed on the earlobe. Sampling rate was adjusted to 256 
Hz. High-purity gold (Au) electrodes with resistance of 
lower than 5 kΩ were used in this research.

Figure 3. Configuration of electrodes on a subject’s face for 
EOG signal acquisition.

 2.4. Validation Study

	The validation study used the same picture sets and ex-
perimental procedure as the main study. In contrast to 
the main study, no eye movements were recorded from 
the participants. Instead, participants were asked for real-
time feedback on whether or not each picture had been 
shown before by pressing two buttons on a keyboard. We 

collected feedback from eight participants other than those 
participating in the main study - four male and four female 
- aged between 21 and 28 years (M = 24.3, SD = ±3.8).

2.5. Eye Movement Analysis

	Eye movements can be analyzed using EOG signals. 
Before signal processing a preprocessing is critical to 
suppress extra information from EOG signals. Signal 
processing techniques helps removing unnecessary in-
formation such as noise and baseline drift.

2.6. Noise and Baseline Drift Removal

	Like other biological signals, EOG signals are often af-
fected by noise and baseline drift. Noise in EOG signals 
may has several sources such as the residential power 
line, the measurement circuitry, electrodes, and wires, or 
other interfering physiological sources such as electro-
myographic (EMG) signals. To cope with these artifacts, 
first of all EOG signals were low-pass filtered with cut-
off frequency at 30 Hz integrated in the device. 

	Moreover an additional 50 Hz notch filter was applied 
to suppress the power line noise. The notch filter was ap-
plied using G.tec’s Application Programming Interface 
(API) for MATLAB. This API contains commands which 
give full access to the amplifier. There are commands for 
reading the data, setting the band pass and notch filters, 
changing the sampling frequency of the amplifier, defin-
ing bipolar derivations and calibrating the system.

	Baseline drift is a slow signal change superposing the 
EOG signal but mostly unrelated to eye movements. 
It has many possible sources such as interfering back-
ground signals or electrode polarization. For baseline 
drift removal, firstly an approximated multilevel 1D 
wavelet decomposition at level twelve was performed 
using Daubechies wavelets on each EOG signal com-
ponent. The reconstructed decomposition coefficients 
gave baseline drift estimation. Subtracting this estima-
tion from each original signal component yielded the 
corrected signals with reduced drift offset.

2.7. Saccade Detection

	In an earlier work, Bulling et al. introduced the Continu-
ous Wavelet Transform - Saccade Detection (CWT-SD) 
algorithm (Bulling et al., 2011). Briefly, CWT-SD detects 
saccades by thresholding on the continuous 1-D wavelet 
coefficient vector computed from the de-noised and base-
line drift removed HEOG and VEOG. CWT-SD takes 
physiological saccade characteristics into account to in-
crease the robustness of detection (Duchowski, 2007).
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Table 1. Feature descriptions

Feature No. Feature Description Feature No. Feature Description

1 Gaze Dispersion 42 Mean of saccade velocities in VEOG

2 Mean of fixation duration 43 Median of saccade velocities in VEOG

3 Gaze numbers 44 Variance of saccade velocities in VEOG

4 Saccade numbers in HEOG 45 Maximum of saccade amplitudes in VEOG

5 Mean of saccade amplitude in HEOG 46 Maximum of saccade durations in VEOG

6 Median of saccade amplitudes in HEOG 47 Saccade numbers only in vertical direction

7 Standard deviation of saccade amplitudes in HEOG 48 Entropy of HEOG signal

8 Variance of saccade amplitudes in HEOG 49 Entropy of VEOG signal

9 Mean of saccade durations in HEOG 50 Energy of HEOG signal

10 Variance of saccade durations in HEOG 51 Energy of VEOG signal

11 Mean of saccade velocities in HEOG 52 Energy of HEOG and VEOG multiplication

12 Median of saccade velocities in HEOG 53 Autocorrelation of HEOG

13 Variance of saccade velocities in HEOG 54 Autocorrelation of VEOG

14 Maximum of saccade amplitudes in HEOG 55 Cross correlation between HEOG and VEOG

15 Maximum of saccade durations in HEOG 56 Mutual information of HEOG with itself

16 Saccade numbers only in horizontal direction 57 Mutual information of VEOG with itself

17 Rightward saccade numbers 58 Mutual information of HEOG and VEOG

18 Mean of rightward saccade amplitudes 59 Blink numbers

19 Variance of  rightward saccade amplitudes 60 Mean of blink amplitudes

20 Mean of rightward saccade durations 61 Median of blink amplitudes

21 Variance of  rightward saccade durations 62 Mean of blink velocities

22 Mean of rightward saccade velocities 63 Median of blink velocities

23 Variance of  rightward saccade velocities 64 Variance of blink velocities

24 Leftward saccade numbers 65 Variance of blink amplitudes

25 Mean of leftward saccade amplitudes 66 Mean of blink durations

26 Variance of  leftward saccade amplitudes 67 Variance of blink durations

27 Mean of leftward saccade durations 68 Upward saccade numbers

28 Variance of leftward saccade durations 69 Mean of upward saccade amplitudes

29 Mean of leftward saccade velocities 70 Variance of  upward saccade amplitudes

30 Variance of leftward saccade velocities 71 Mean of upward saccade durations

31 Saccade numbers in VEOG 72 Variance of  upward saccade durations

32 Mean of saccade amplitudes in VEOG 73 Mean of upward saccade velocities

33 Median of saccade amplitudes in VEOG 74 Variance of  upward saccade velocities

34 Standard deviation of saccade amplitudes in VEOG 75 Downward saccade numbers

35 Variance of saccade amplitudes in VEOG 76 Mean of downward saccade amplitudes

36 Mean of saccade durations in VEOG 77 Variance of  downward saccade amplitudes

37 Variance of saccade durations in VEOG 78 Mean of downward saccade durations

38 Up-Right saccade numbers 79 Variance of downward saccade durations

39 Up-left saccade numbers 80 Mean of downward saccade velocities

40 Down-Right saccade numbers 81 Variance of downward saccade velocities

41 Down-Left saccade numbers
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2.8. Fixation Detection

	Bulling et al. algorithm for fixation detection exploits 
the fact that fixation points tend to cluster together close-
ly in time. Thus, by thresholding on the dispersion of 
these points, fixations can be detected (Widdel, 1984). 
Based on the output of the CWT-SD algorithm, disper-
sion and duration values are calculated for each non-
saccadic segment. If the dispersion is below a maximum 
threshold, and the duration above a minimum threshold, 
a fixation is detected.

2.9. Blink Detection

	Blinks appear in vertical EOG signal component in the 
form of overshoots in signal amplitude. The Continu-
ous Wavelet Transform - Blink Detection (CWT-BD) 
algorithm was used to detect blinks in VEOG. Similar to 
the algorithm for saccade detection, this algorithm uses 
thresholding of wavelet coefficients. In contrast to sac-
cades, a blink is characterized by a short sequence of two 
large peaks in the coefficient vector,  one positive and the 
other negative. The time between these peaks is much 
smaller than for saccades. Thus, blinks are distinguished 
from saccades by applying a maximum threshold on this 
time difference.

2.10. Feature Extraction and Selection

	The two-class recognition problem of discriminating 
between pictures that were only seen once (class “non-
repeated”) and pictures that were seen twice (class “re-
peated”) by the participants were considered. After the 
removal of all eye movement data which belonged to the 
intervals, all picture instances (picture and correspond-
ing eye movement data) of all single exposures to the 
“non-repeated” class, and picture instances of two times 
exposures were assigned to the “repeated” class.

	Feature extraction was run on all picture instances. 81 
features were extracted of which most having statistical 
features of saccades, blinks and fixations (see Table 1). 
The features were calculated on both HEOG and VEOG.

	For feature selection a filter scheme over the commonly 
used wrapper approaches was used because of the lower 
computational costs and thus shorter runtime. Minimum 
redundancy maximum relevance algorithm (Peng et al., 
2005) for feature selection was used in this work. The 
mRMR algorithm selects a feature subset of arbitrary 
size S best characterizing the statistical properties of the 
given target classes based on the ground truth.

2.11. Classification and Performance Evaluation

	A support vector machine (SVM) with a linear kernel 
was used for classification. All parameters of the sac-
cade, fixation, and blink detection algorithms were fixed 
to values common to all participants. For evaluation, a 
leave-one-person-out scheme was followed, by which 
the datasets of all but one participant were combined 
and used for training (the “training set”). The dataset of 
the remaining participant was used for testing (the “test 
set”). This was repeated for each participant. Feature se-
lection was performed solely on the training set.

3. Results

3.1. Results for Each Picture Category

	On average, participants from the validation study were 
able to correctly identify pictures that had previously 
been shown with an accuracy of 76.3% for the first part 
of the experiment. This accuracy was 91.1% for sound-
matched pictures during the second part of the experi-
ment. Given the above high accuracy, in the following 
analysis it could be assumed that participants in the main 
study perfectly remembered most of the pictures which 
were already presented. 

	Based on the data recorded in the main study, Figure 
4 summarizes the overall recognition performance us-
ing person-independent parameters and training for each 
picture category and each part of the experiment includ-
ing picture presentation with and without sounds. The 
bars contrast true positive rate (TPR) to false positive 
rate (FPR). Figure 4 demonstrates a considerable im-

Figure 4. Overall recognition performance for each picture 
category and each part of the experiment (including with 
and without sound) for all subjects.
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provement in recognition performance for the second 
part of the experiment where pictures presented with 
their related sounds compared with the first part of the 
experiment wherein pictures were presented without 
sound. This improvement is re-demonstrated through 
ROC space in figure 5. Recognition performance reduc-
es if the points in ROC spaces of figure 5 get closer to the 
up-left side.

Figure 6 and 7 show the range of differences in rec-
ognition performance for each individual participant 
respectively from the first to the second part of the ex-
periment. A comparison between figure 6 and 7 shows 
considerable reductions and decrease respectively in 
TPR and FPR for most of the participants in the four pic-
ture categories. These improvements are due to the audi-
tory effect addition in the second part of the experiment. 

Figure 5. Recognition performance improvement in partici-
pants from the first part of the experiment that pictures were 
presented without sound (blue crosses) to the second part 
wherein pictures were presented with their related sound 
(red circles).

Figure 6. Classification performance of repeated and non-repeated pictures without sound in the four catego-
ries for all of the subjects



62

Winter  2014, Volume 5, Number 1

Figure 7. Classification performance of repeated and non-repeated pictures with sound in the four categories for all 
of the subjects

3.2. Further Analysis of the Faces Picture Category

	Based on the cognition-aware memory assistant con-
cept outlined in the introduction and the insights from 
the experiments done by Bulling and Roggen in 2011,  
the results for the faces picture category was analyzed in 
more detail.

	3.3. Top discriminative EOG Features

	Feature rankings using mRMR was analyzed on each 
of the twelve leave-one-person-out training sets for the 
faces category. The rank of a feature is the position at 
which mRMR selected it within a set. The position cor-
responds to the importance through which mRMR as-
sesses a feature’s ability to discriminate between classes 
in combination with the features  already selected. Fig-
ures 8 and 9 show the top 16 features according to the 
median rank over all sets (see table 1 for features’ de-
scription). For each feature, the vertical bar represents 
the spread of mRMR ranks for the twelve training sets. 
The most useful features are those found with the high-
est rank (close to one) for most training sets as indicated 
by shorter bars. As illustrated in figures 8 and 9, the top 

discriminative features are mostly common for the two 
parts of the experiment.

4. Conclusion

	Our findings indicated that adding auditory informa-
tion improves discrimination between familiar and un-
familiar pictures in participants.  Moreover, this auditory 
effect leaves an impact on EOG signal patterns so that to 
make reduction in recognition performance.

5. Discussion

	Recognizing human cognitive-context from biosignals 
would be so promising in pervasive computing. The 
findings of this study were in line with those by Bulling 
& Roggen, 2011 on memory assistant realization. How-
ever, utilizing a near-real world set up to achieve a robust 
and reliable memory assistant system is required to ad-
dress remaining challenges.

	An important challenge for a real-world implementa-
tion is the co-influence of the task, situation, and cogni-
tive processes on a subject’s eye movements. In labora-
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tory settings, these influences can be minimized by using 
a constrained experimental setup and well-defined visual 
stimuli. Meanwhile, the everyday settings can typically 
not be controlled in a similar fashion. It is therefore cru-
cial to identify and separate these different sources of 
influence for robust recognition of visual memory recall 
and other cognitive processes. This problem could be 
addressed by using a multi-modal approach for context 

recognition and annotation that incorporates additional 
modalities to eye tracking, such as proximity sensors, 
GPS for localization, inertial measurement units for head 
movements, or eye contact sensors (Dickie et al., 2004).

	This leads to a second challenge. Personal encounters 
in daily life differ considerably from the situation inves-
tigated here. In these settings, facial expressions of con-

Figure 8. Top 16 eye movement features selected by mRMR for all twelve training sets for the 
faces picture category. X-axis shows feature numbers and groups; the key on the right shows 
the corresponding feature names as described in Table 1; Y-axis shows the rank.

Figure 9. The top 16 eye movement features selected by mRMR for all twelve training sets 
for the faces picture category. X-axis shows feature numbers and groups; the key on the right 
shows the corresponding feature names as described in Table 1; Y-axis shows the rank.



64

Winter  2014, Volume 5, Number 1

versational partners change continuously, the viewpoint 
is dynamic, and other visual stimuli may attract attention 
and lead to “random” saccades to other entities in the 
surrounding environment. In addition, personal encoun-
ters may range from longer face-to-face discussions be-
tween two people, over glances to faces of others while 
in transit, to looking at several faces of a group of people 
in succession. This will require advanced methods for 
robust detection of when and how people look at each 
other’s face. One possible solution to this problem is to 
augment the analysis of eye movement dynamics – as 
presented here - with a computer vision system for face 
detection and a wearable gaze tracker to identify the 
points while a subjects lookes at a face (Bulling & Rog-
gen, 2011).

	In the current experiment, participants were asked to to 
look at a large screen during which distinct eye move-
ments were provoked and could easily be measured us-
ing EOG. It remains to be investigated whether current 
wearable eye trackers - whether EOG- or video-based 
- are accurate enough to capture eye movement charac-
teristics which reflect visual memory recall processes on 
smaller screens (e.g. on a mobile phone) or with the per-
son being in transit (Bulling & Roggen, 2011).

	It has been reported that someparticipants may feel 
bored or tired during such experiments (Bulling & Rog-
gen, 2011). To address this problem we reduced the du-
ration of picture presentation and the number of present-
ed pictures in comparison to an earlier published report 
(Bulling & Roggen, 2011) thus, none of the participants 
reported that they get bored during the experiment. An-
other possible advantage of such modification was get-
ting closer to real world situation.

	Such findings  may also open up new approaches to 
design lie detection systems. EOG signals in combina-
tion with other biosignals would make reliable evidences 
for these systems. Due to the unobtrusive nature of wired 
biosignal acquisition systems, the application of cogni-
tion-aware system using biosignals may be seen quite 
feasible in this field.
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