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TMS is based on the principle of electromagnetic in-

duction, as discovered by Michael Faraday in 1838. The 

development of TMS (Barker et al., 1985) has enabled 

safe and painless investigation of the motor cortex and 

the integrity of the central motor pathways. Interest in 

tDCS in clinical practice has been growing, however, 

the knowledge about its efficacy and mechanisms of ac-

tion remains limited. Although, forms of DC stimula-

tion have been used since the inception of modern elec-

trophysiology (Aldini, 1804). tDCS gained popularity 

when it was applied by Priori et al (1998) to human sub-

jects and was shown to influence cortical excitability.

                    1. Introduction

odern brain imaging methods like mag-

netic resonance image MRI and Func-

tional MRI (fMRI) are indispensible 

tools in neuropsychological research be-

cause they are completely non-invasive, 

yet offer high-resolution views of the brain’s neural 

networks and allow us to assess the brain’s underlying 

physiology. Transcranial magnetic stimulation (TMS) 

and transcranial direct current stimulation (tDCS) are 

non-invasive brain stimulation (NIBS) technology that 

ad crucial functional dimension to studying the human 

brain in real time.
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The applications of neurophysiological therapy techniques range far and few 

in the realm of modern day medicine. However, the concept of electromagnetic 

stimulation, the basis for many noninvasive brain stimulation (NIBS) techniques 

today, has been of interest to the scientific community since the late nineteenth 

century. Recently, transcranial direct current stimulation (tDCS) and transcranial 

magnetic stimulation (TMS), two noninvasive neurostimulation techniques, 

have begun to gain popularity and acceptance in the clinical neurophysiology, 

neurorehabilitaion, neurology, neuroscience, and psychiatry has spread widely, 

mostly in research applications, but increasingly with clinical aims in mind. 

These two neurophysiological techniques have proven to be valuable assets in 

not only the diagnosis, but also the treatment of many neurological disorders 

(post-stroke motor deficits, tinnitus, fibromyalgia, depression, epilepsy, autism, 

ageing and parkinson’s disease). Its effects can be modulated by combination 

with pharmacological treatment that has undergone resurgence in recent years. 

In this review we discuss how these integrated technology like NIBS for 

evaluation in the clinical evidence to date and what mechanism it work for 

stroke rehabilitation particularly. Then, we will review the current situation of 

stroke rehabilitation in Iran and new hopes that NIBS could bring for clinicians 

and patients in this nationally prioritized field.

A  B  S  T  R  A  C  TArticle info:
Received: 1 May 2010

First Revision: 2 June 2010 

Accepted:5 June 2010 

Key Words:

Stroke,

Transcranial Direct Current 
Stimulation (tDCS), 

Transcranial Magnetic 

Stimulation (TMS), 



6

Reminiscent of the effects of repetitive TMS or tDCS 

can up- or down-regulate neural activity in the stimu-

lated regions (Fregni and Pascual 2007, Pascal et al., 

1994 and Maeda et al., 2000)

These techniques represent powerful methods for 

priming cortical excitability for a subsequent motor 

task, demand, or stimulation can optimize the plastic 

changes, leading to more remarkable and outlasting 

clinical gains in rehabilitation.

2. Basic Methodology of NIBS:

There have been a number of comprehensive reviews 

on the methodology and mechanism of NIBS in neu-

roscience (Bolognini et al., 2009, Fregni and Pascual 

2007, Talelli et al. 2006 and Pascual et al., 2002).

The electric current in the coil in turn creates a mag-

netic field variation of 1.5 to 2 tesla (T) that penetrates 

the skull to about 1.5 to 2.0 cm and reaches the brain. 

The magnetic field then produces currents changing at 

rates up to 170 A/µs and induces electric fields in the 

cortex of up to about 150 V/m. That is, via electro-mag-

netic induction, TMS induces ions to flow in the brain 

without exposing the skull to an electric current.  

There are different types of TMS coils. The round coil 

can be powerful, but it is not very focal, in the figure-

of-eight coil, the magnetic fields at the intersection of 

the circles sum to make the stimulus more focal. Other 

types of coil were made to try to stimulate deeper re-

gions of the brain, like the H-coil and another with the 

windings of the coil around an iron core rather than air. 

TMS with a focal figure-of-eight coil can be used to 

demonstrate the gross somatotopy of the motor homun-

culus. Stimuli are applied at various scalp sites using 

a latitude/longitude based coordinate system referenced 

to the vertex, and the amplitude of MEPs evoked in con-

tralateral muscles is measured.

There are some improvements in methodology of TMS 

and help to understand mechanism better. A recent pilot 

study from a research hospital in Berlin showed that the 

induced current activates nearby nerve cells in much 

the same way as currents applied directly to the corti-

cal surface (Picht et al., 2008). Importantly, the mag-

netic field also does not affect the whole brain. The field 

reaches about 2-3 centimeters into the brain, and only 

directly beneath the treatment coil. With stereotactic 

MRI-based control, the precision of targeted TMS can 

be approximated to a few millimeters (Hannula et al., 

2005). Recent development of navigated brain stimula-

tion (NBS) is based on infra-red trackers, which allow 

the location of the coil to be continuously visualized on 

a 3D rendering of an individual MR image. It allows 

the coil location, rotation and tilting to be kept stable 

by using visual feedback and can monitor individual 

physical parameters on a sweep-to-sweep basis with 

sub-millimeter precision (Julkunen et al., 2009, Gugino 

et al. 2001; and Schmidt et al., 2009). This new technol-

ogy is still expensive (more than hundred thousand dol-

lars) and its applications in clinical settings need more 

scientific evidences.

  Another method of NIBS is (tDCS) which delivers 

weak polarizing direct currents to the cortex via two 

electrodes placed on the scalp: an active electrode is 

placed on the site overlying the cortical target, and a ref-placed on the site overlying the cortical target, and a refplaced on the site overlying the cortical target, and a ref

erence electrode is usually placed over the contralateral 

supraorbital area or in a non-cephalic region. tDCS acts 

by inducing sustained changes in neural cell membrane 

potential: cathodal tDCS leads to brain hyperpolariza-

tion (inhibition), whereas anodal results in brain depo-

larization (excitation).

   Differences between tDCS and TMS include presumed 

mechanisms of action, with TMS acting as neuro-stimu-

lator and tDCS as neuro-modulator. Moreover, TMS has 

better spatial and temporal resolution, TMS protocols 

are better established, but tDCS has the advantage to be 

easier to use in double-blind or sham-controlled studies 

and easier to apply concurrently with behavioural tasks 

(for discussion of these methods, similarities and differ-

ences, see the review by Bolognini et al., 2009). 

Though TMS and tDCS are noninvasive by nature, 

both stimulation techniques are associated with poten-

tial risks that require certain precautions. If, however, 

the experienced investigator follows the appropriate 

guidelines and recommendations [e.g., TMS (Rossi et 

al., 2009) and DCS (Nitsche et al., 2007 and Gandiga 

et al., 2006) both techniques can be applied safely with 

minimal adverse effects.

3. TMS Measurements:

There are series of objective measurements that could 

be obtained by TMS. These measurements have diag-

nostic values in evaluating cortical excitability and con-

duction time between different central nervous system 

areas. These measurements could also act as markers of 

changes in some certain neurotransmitters activity in-

side brain such as GABA, Glutamate or Dopamine.

3.1. Motor Threshold

Motor threshold refers to the lowest TMS intensity nec-

essary to evoke MEPs in the target muscle when single-

pulse stimuli are applied to the motor cortex. In most 

recent TMS studies, motor threshold is defined as the 

lowest intensity required to elicit MEPs of more than 50 

µV peak-to-peak amplitude in at least 50% of successive 
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trials, in resting or activated (slightly contracted) target 

muscles (Rossini et al. 1994). TMS activates a mixed 

population of inhibitory and excitatory cortical interneu-

rons, which can affect local and remote pyramidal tract 

neurons. The frequency, intensity, and coil orientation at 

which TMS pulses are delivered to the cortex significant-

ly affect its consequences and its uses. 

3.2. Motor Evoked Potentials (MEP)

When TMS is applied at intensities above motor 

threshold, the activation of excitatory interneurons can 

result in volleys of upper motor neuron activity, which 

subsequently activate the motor neurons of the spinal 

cord. The summed activity, an MEP, is measured via 

electromyography (EMG) from surface or needle elec-

trodes over or in the muscles of interest or as descending 

volleys of direct (D) or indirect (I) waves recorded from 

epidural electrodes over the spinal cord, close to the py-

ramidal tract (Berardelli et al. 1999).  The amplitude, 

area under the curve, and latency of MEPs are all used 

in various ways to measure motor cortical excitability.

One consequence of this is that the higher the intensity 

of the TMS stimulus, the larger the area of the MEP 

map. In addition, the higher the excitability of the cor-

tical neurons, the easier it will be to stimulate them 

at a distance from the coil. The apparent area of the 

MEP map will be larger than if excitability is low. The 

movement evoked will be related to the first recruited 

muscle at the point of stimulation. If several muscles 

acting on the same joint are recruited simultaneously, 

then the MEP will depend on the strength and mechani-

cal advantage of the muscles about the joint. Relatively 

discrete and reproducible movements can be evoked in 

distal hand muscles, but this is rarely possible for more 

proximal muscles because of their higher threshold. 

The reduced amplitude of MEPs is associated with a 

central motor conduction failure in many cases. Even in 

healthy people, however, the size and latency of MEPs 

show great inter- and intra-individual variability, lead-

ing to a broad range of normal values; therefore, results 

are qualitative rather than quantitative. 

3.3. Short-Interval Intracortical Inhibition (SICI) 
and Facilitation (SICF)

Exploiting TMS’s preferential activation of interneu-

rons and transsynaptic activation of pyramidal tract 

cells has allowed for a better characterization of inhibi-

tory and facilitatory mechanisms operating within M1. 

Paired pulse stimulation delivered through the same 

magnetic coil over M1, where a suprathreshold test 

stimulus (TS) is preceded by a subthreshold or suprath-

reshold conditioning stimulus (CS) can be used to gain 

insight into the relative contribution of local inhibitory 

and excitatory inputs to M1 pyramidal tract cells. The 

CS can cause an increase in MEP amplitude (facilita-

tion, SICF) or decrease in MEP amplitude (inhibition, 

SICI) compared with the MEP evoked by the TS alone. 

3.4. Silent Period

TMS-pulses delivered during active tonic muscle 

contraction of approximately 5 s with the instruction 

to maintain contraction at least 2 s after the stimulus. 

For instance, the duration of the cortical silent period or 

the TMS-induced delay in voluntary movement can be 

used to map inhibitory effects of TMS (Thickbroom et 

al. 1996). Measures of cortical inhibition MEP measures 

represent the net facilitatory effect of a TMS pulse. Two 

methods provide complementary information on the ex-

citability of cortical inhibitory circuits. The silent period 

is the period of suppressed EMG activity that follows an 

MEP evoked in actively contracting muscle. It is due to 

a combination of spinal and cortical effects. The extra 

period of inhibition is due to suppression of cortical ex-

citability, probably through the action of a long lasting 

GABA-B-ergic IPSP (Werhahn et al. 1999). Measure-

ments of the duration of the silent period are thought 

to give an estimate of the excitability of this system. 

The silent period is evoked by relatively high stimu-

lus intensities. However, a different inhibitory system 

can be activated at much lower intensities. Kujirai et 

al. (1993) demonstrated that the MEP evoked in resting 

muscle could be suppressed if it was preceded by a sub-

threshold stimulus given 1–5 ms earlier. 

4. Diagnostic Implications of TMS

One area in which TMS has contributed to the under-

standing of the neurobiological basis of motor disorders 

has been the evaluation and diagnosis of psychogenic 

paralysis. The patterns of findings in these studies can 

help to localize the level of a lesion within the nervous 

system, distinguish between a predominantly demyeli-

nating or axonal lesion in the motor tracts, or predict 

the functional motor outcome after an injury. The ab-

normalities revealed by TMS are not disease-specific 

and the results should be interpreted in the context of 

other clinical data. Some TMS findings can be quite 

useful for an early diagnosis (eg, multiple sclerosis, 

Bell’s palsy, psychogenic paresis, plexus neuropathy) 

and prognostic prediction (eg, multiple sclerosis, stroke, 

cervical spondylosis). Such a finding may result in more 

objective diagnostic criteria for this disorder. Theoreti-

cally, a thorough characterization of neurophysiological 

abnormalities in this disorder may lead to interventions 

targeting these abnormalities and, hence, better treat-

ment. However, what TMS can add to detailed, serial 

neurological exams has yet to be ascertained.
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4.1. Diagnosis 
One area in which TMS has contributed to the under-

standing of the neurobiological basis of motor disorders 

has been the evaluation and diagnosis of psychogenic 

paralysis. The patterns of findings in these studies can 

help to localize the level of a lesion within the nervous 

system, distinguish between a predominantly demyeli-

nating or axonal lesion in the motor tracts, or predict 

the functional motor outcome after an injury. The ab-

normalities revealed by TMS are not disease-specific 

and the results should be interpreted in the context of 

other clinical data. Some TMS findings can be quite 

useful for an early diagnosis (eg, multiple sclerosis, 

Bell’s palsy, psychogenic paresis, plexus neuropathy) 

and prognostic prediction (eg, multiple sclerosis, stroke, 

cervical spondylosis). Such a finding may result in more 

objective diagnostic criteria for this disorder. Theoreti-

cally, a thorough characterization of neurophysiological 

abnormalities in this disorder may lead to interventions 

targeting these abnormalities and, hence, better treat-

ment. However, what TMS can add to detailed, serial 

neurological exams has yet to be ascertained.

5. Mechanisms of NIBS Actions

Exactly which neural elements are activated by TMS 

and the mechanisms of neuronal stimulation remains 

unclear and might be variable across different brain ar-

eas and different subjects (Pascual et al., 2002).

The mechanisms underlying long-term effects of TMS 

are incompletely understood, but they could be analo-

gous to long-term potentiation (LTP) or depression 

(LTD) seen in the hippocampus after repeated activation 

of synaptic pathways (Hoffman  et al., 2002, Wang et 

al., 1999 and Huang et al., 2005). In addition, modula-

tion of neurotransmitter levels seems to be a contrib-

uting factor. The neurotransmitter systems involved in-

clude the inhibitory GABAergic system (Donoghue et 

al.,1996 and Hess et al., 1996) as well as the excitatory 

glutamatergic system with activation of NMDA recep-

tors (Hess et al., 1996). TMS may result in changes in 

endogenous neurotransmitters (GABA and glutamate) 

and neuromodulators (DA, NE, 5-HT, ACh) which play 

a pivotal role in the regulation of the neuronal activity in 

the cerebral cortex (for review, Hasselmo et al., 1997). 

A focal increase of dopamine in the striatum was indeed 

demonstrated in healthy human after sub-threshold 10 

Hz rTMS applied to the ipsilateral primary motor cortex 

(Strafella et al., 2001) or dorsolateral prefrontal cortex 

(Strafella et al., 2003).

Some studies have aimed to clarify the cellular mecha-

nisms of tDCS over the motor cortex (Nitsche et al., 

2003 and Liebetan et al, 2002). Furthermore, anodal 

stimulation had a significant positive effect on I-wave 

facilitation. I-waves are modulated by GABAergic 

drugs and ketamine, an NMDA-receptor antagonist, 

but not by ion channel blockers (Nitsche et al., 2000 

and Liebetan et al, 2002) thus implicating effects on 

inhibitory synaptic pathways in the mechanism of ac-

tion of anodal stimulation. In simple terms, tDCS does 

not cause resting neurons to fire; it rather modulated the 

spontaneous firing rate of neurons by acting at the level 

of the membrane potential. This quality distinguishes 

tDCS from other stimulation techniques, which excite 

neurons directly, such as TMS/rTMS, conventional 

TES or electroconvulsive therapy in research.

In summary, the mechanism of action of tDCS is not 

completely clear but appears to involve a combination 

of hyper- and de-polarising effects on neuronal axons as 

well as alterations in synaptic function.

6. Stroke in Iran

Stroke is the third leading cause of death and the first 

in serious adult disabling diseases in most countries. 

More than 750,000 Americans suffer strokes each year 

and the number of death reaches 150,000 annually. 

It would be terrifying to know that every 45 seconds 

someone suffers a stroke and every 3 minutes some-

body dies from the disease. That stroke is one of the 

most disabling and fatal diseases among the Iranian old 

and even middle age population and it continues to be a 

major public health problem.

Unfortunately, there is no reliable data about incidence 

and mortality-morbidity rate of stroke in Iran and it 

seems Iran’s health ministry has difficulties in gathering 

this information especially from the remote and smaller 

cities because of not having an integrated data system 

available. But, In a study on stroke patients admitted to 

the emergency department of a large university (Shariati) 

hospital in Tehran during a one year period (Sikaroodi, et 

al., 2008a); there were no significant differences between 

stroke characteristics in Iran and western countries.

In the United States, of the surviving patients (about 

75-80% of total stroke victims/year), 30% need help for 

usual activities of daily living, 20% need help for ambu-

lation, and 16% need institutional care; Only one third 

of patients return to an independent life. Although there 

is no precise estimation of financial burden of stroke in 

Iran, considering diagnostic and therapeutic costs, short 

and long term care expenses, lost productivity (as well 

as hidden costs), it should be at least 4 billion US $/year 

(author’s consensus opinion). 
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Regarding to significant negative impact of stroke on 

public health and social economy, it has become one of 

the major priorities in many countries to establish stroke 

related services with three main missions:

1- Primary and secondary prevention,

2- Reducing mortality rate, and,

3- Improving survivors’ independence in daily activities.

For these purposes development of specialized, well 

organized and coordinated medical facilities that pro-

vide comprehensive services in every phases of stroke is 

crucial for every heath care system. But, unfortunately, 

unlike the situation for heart diseases (with many good 

and well equipped centers), there are almost no special-

ized hospitals or services for stroke patients in Iran. 

Some hospitals do not even admit stroke patients and 

in some hospitals, patients do not receive a multidisci-

plinary therapy. The reason is, of course, unavailability 

of appropriate facilities, to do more or severe deficits 

in team working between different involved speciali-

ties. This lack of an integrated approach in which acute 

care should be linked with early rehabilitation as well as 

comprehensive assessment of medical problems, active 

physiological management, skilled nursing and early 

setting of rehabilitation plans, has led to a great waste of 

prevention and rehabilitation potentials in stroke fields.

Meanwhile, there are physicians, physiatrists, and 

neurologists with especial interest in stroke, and most 

of the laboratory and diagnostic imaging techniques, 

and nearly all of the therapeutic measures are available 

inside the country.

The main shortcomings are:

1. Lack of precise statistical data about stroke in Iran,

2. Lack of a national stroke guidelines for manage-

ment of stroke in acute and chronic phases,

3. Lack of specialized and coordinated centers (such as 

Stroke Centers) for the acute treatment of stroke, 

4. Insufficient number of stroke neurologists and lack 

of stroke nurses, 

5. Uncoordinated activity with neurosurgeons, psychi-

atrists, cardiologists, radiologists, physical therapists, 

and anesthesiologists, and 

6. Lack of sophisticated rehabilitation facilities and 

centers.

These defects in stroke treatment network in Iran have 

placed a great deal of economic burden on Survivor’s 

family and health care system. Among all these deficits, 

investment on stroke rehabilitation is one of the most cost 

effective prioritized and doable interventions. Bearing in 

mind, in a reasonable setting of stroke management, only 

one third of patients return to an independent life; the 

importance of Stroke rehabilitation will be highlighted. 

While one of high priorities, stroke rehabilitation is large-

ly neglected in our country. The reasons are:

1. Facilities are not available in many areas, 

2. Are relatively expensive; and 

3. Are not delivered in a service package and multidis-

ciplinary way. 

Also, rehabilitation is still not considered seriously by 

many physicians, partly due to not observing the evi-

dence of its effectiveness in their everyday practice.

A collaborative network between different disciplines in-

volved in stroke rehabilitation is of outmost importance. 

Providing active rehabilitation measures and use of mod-

ern rehabilitation techniques (such as NIBS), may consid-

erably lower the morbidity and economic burden of stroke 

for the victim, his/her family, socially, and nationally.

Since Stroke Centers are very costly and need a relative-

ly long time to be established, providing stroke rehabilita-

tion including NIBS departments (even a few in Tehran 

and big cities), may at least partially cover the present 

shortcomings in the management of stroke disabilities.

7. NIBS in Stroke Rehabilitation

TMS delivered to different levels of the motor system 

(neuraxis) can provide information about the excit-

ability of the motor cortex, the functional integrity of 

intracortical neuronal structures, the conduction along 

corticospinal, corticonuclear, and callosal fibres, as 

well as the function of nerve roots and peripheral mo-

tor pathway to the muscles. The neurological deficit ob-

served following acute stroke is largely due to the death 

of neuronal tissue in the affected region. Restoration 

of viable blood supply to this region, and resolution of 

perilesional edema and inflammation are factors possi-

bly contributing to rapid recovery of function following 

stroke (Rossini et al., 2003). Another important consid-

eration following stroke is the disruption of neuronal 

networks in undamaged brain regions that are remote 

from the original injury but are functionally connected, 

such as subcortical regions or the contralateral motor 

cortex. Originally, this concept was termed “diaschisis” 

and was proposed as a principle for recovery following 

brain lesions (von Monakow, 1914) but evidence of this 

has only recently been provided (Seitz et al., 1999).

Stroke alters the balance between excitation and in-

hibition between the hemispheres, which suggests that 

down-regulation of the unaffected M1 may facilitate mo-

tor recovery following stroke (Murase et al., 2004). The 
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ability of rTMS to modulate motor cortical excitability 

in a frequency-dependent manner has been exploited in 

studies investigating stimulation of either the affected or 

unaffected hemispheres of stroke patients. Depending on 

rTMS parameters, long lasting suppression or facilitation 

of cortical excitability can be induced: Low-frequency 

rTMS decreases cortical excitability (Pascal et al., 1994, 

1999 and Maeda et al., 2000) and has been applied to the 

unaffected motor cortex to decrease hyperexcitability in 

chronic stroke patients (Takeuchi et al., 2005). A single 

session of 1 Hz rTMS decreased cortical excitability and 

transcortical inhibition, and led to a short-lasting increase 

in pinch acceleration of the paretic hand, while no change 

was seen following sham stimulation. In contrast, a re-

cent study applied 3 Hz rTMS in conjunction with rou-

tine rehabilitation in acute stroke patients, and found that 

real, but not sham, stimulation decreased disability over a 

two-week period, although there was no increase in motor 

cortical excitability as predicted (Khedr et al., 2005). Fa-

vorable neurological effects have been reported after high-

frequency rTMS in patients with stroke (Khedr et al. 2005 

and Kim et al. 2006 and Yozbatiran et al. 2009).

In terms of safety, 20 Hz rTMS was well tolerated 

and in terms of behavioral effects, modest improve-

ments were seen, for example, in grip strength, range of 

motion, and pegboard performance, up to 1 week after 

rTMS (Yozbatiran et al. 2009).

rTMS was a useful adjunct to conventional therapy 

for dysphagia after stroke (Khedr et al. 2009). High 

frequency rTMS reduces cerebral cerebral vasomotor 

reactivity, possibly as a secondary effect on autonomic 

control of cerebral hemodynamics. The effect of rTMS 

on cerebral hemodynamics should be carefully consid-

ered before proceeding toward a therapeutic application 

in stroke patients (Vernieri et al. 2009).

Because standard rTMS protocols exhibit post-stim-

ulus effects of short duration, novel protocols such as 

theta burst stimulation (TBS), are promising approaches 

to enhance the effectiveness of rTMS. Although TBS 

protocols of the human prefrontal cortex seem to be safe 

in healthy subjects (Grossheinrich et al. 2009).

Hummel et al. (2005) studied stroke patients as they 

practiced an upper limb training task, the Jebsen-Taylor 

Hand Function Test or JTT. Performance time decreased 

significantly after stimulation, but not after sham stimu-

lation, with greater improvement in tests requiring fine 

motor control than tasks involving proximal arm control. 

Stimulation increased the amplitude of MEPs recorded 

using recruitment curves and SICI was significantly re-

duced, suggesting that GABA receptor-dependent in-

hibitory processes were involved (Hummel et al., 2005). 

The significant correlation between improvement in JTT 

time and increased recruitment curve slope suggests that 

tDCS can influence motor cortical excitability and can 

improve skilled motor functions of the paretic hand in 

chronic stroke patients. Recent developments have led 

two research groups to suggest that cortical stimulation 

combined with motor training can lead to greater func-

tional gains in stroke patients than rehabilitative training 

alone (Bütefisch et al., 2004; Hummel et al., 2005). Some 

activation in the uninjured brain could reflect adaptive 

cortical reorganization that promotes functional recov-

ery, but some changes may be maladaptive and generate 

the emergence of behaviors, suppression of which would 

promote neurorehabilitation. These studies suggest that 

decreasing inhibition in the affected M1, and perhaps 

other motor related areas such as the dorsal premotor cor-other motor related areas such as the dorsal premotor corother motor related areas such as the dorsal premotor cor

tex, can unmask pre-existing, functionally latent neural 

connections around the lesion and contribute to cortical 

reorganisation (Takeuchi et al., 2005).

Contralesional neglect after stroke is not due to the le-

sion itself but primarily due to the hyperactivity of the 

intact hemisphere, and 1 Hz rTMS of the unaffected 

parietal lobe to suppress excitability of the intact hemi-

sphere can improve contralesional visuospatial neglect 

after stroke (Oliveri et al. 2001). Naeser and co-work-

ers (Naeser et al., 2002) have shown that patients with 

Broca’s aphasia may improve their naming ability after 

1 Hz rTMS of the right Brodmann’s area 45 that is sup-

posed to be overactivated in patients with unrecovered, 

non-fluent aphasia. These observations are transient and 

it is premature to propose them as realistic therapeutic 

applications. Nevertheless, rTMS of the region of in-

terest detected in functional images could highlight the 

property of plastic changes of the cortical circuitry and 

hint at future novel clinical interventions.

Even though the duration of the off-line effects is fre-

quently thought to be relatively short-lived, lasting min-

utes to hours depending on the duration and stimulation 

pattern of the rTMS train, there are suggestions of longer-

lasting effects. A second train of rTMS applied even 24 

h after a first one to the motor cortex has been shown 

to have a more robust effect on corticospinal excitability 

(Maeda et al., 2002). However, to date, there has been no 

systematic study of such a prediction, or of other criti-

cal aspects of the application of NIBS to injured brains. 

For example, the effects that strokes can have on per-For example, the effects that strokes can have on perFor example, the effects that strokes can have on per

turbing the currents induced by TMS in the neural tis-

sue are insufficiently experimentally tested, despite the 

well-known fact that after a stroke, numerous physiolog-

ic changes occur in the brain tissue, which can alter its 

electrical response properties. A computer-based model 

concluded that the distribution of TMS-induced currents 

can be severely disrupted by tissue changes associated 

with a stroke lesion (Wagner et al., 2006).
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Since, tDCS has become quite well known for its sim-

plicity, cost-affordability, and safety. As in the 1960s, 

there are still many fundamental unresolved questions 

concerning how various differences in brain anatomy 

induced by neurological disorders, such as stroke, influ-

ence the stimulating currents . Thus, although behavioral 

(Nitsche et al., 2002) and imaging studies (Nitsche et al., 

2004b) suggest the ‘brain effects’ of tDCS, little has been 

done to quantify the current densities injected during 

stimulation, to compare them to published current den-

sity magnitudes necessary for neural stimulation, or to 

analyze how different stimulation parameters can influ-

ence the stimulating currents (Fregni and Pascual-Leone, 

2007). The effects of a single tDCS session persisted for 

more than 25 min after the stimulation but returned to 

baseline levels during repeat testing 10 days later. In an-

other study, patients with central pain from traumatic spi-

nal cord injury experienced significant improvement 16 

days after a course of tDCS treatment to the motor cortex 

(Nitsche et al. 2003). The improvement occurred follow-

ing 5 consecutive days of anodal (but not sham) tDCS of 

2 mA and it was proposed that this may have been due to 

a secondary modulation of thalamic nuclei activity.

Enhancement of excitability can be achieved with ei-

ther high frequency rTMS or anodal-tDCS. Suppression 

of excitability can be accomplished with either low-

frequency rTMS or cathodal-tDCS. A growing body 

of evidence from small clinical trials has demonstrated 

the efficacy of both approaches to induce considerable 

changes on cortical excitability, which often correlate 

with relevant clinical gains in motor functions.

An essential issue to take into account, when applying 

these NIBS protocols to a damaged human brain, is re-

lated to the concept of homeostasis (that is the human’s 

brain ability to regulate changes in synaptic plasticity 

as to avoid drastic changes in its function). Therefore 

homeostasis is likely to respond definitively and force-

fully to artificial and functionally non-specific changes 

in network activity such as those probably induced by 

NIBS. Homeostatic plasticity (i.e., the dependency of the 

amount and direction of the obtainable plasticity from 

the baseline of a neuronal network) is increasingly rec-

ognized as regulatory mechanism for keeping neuronal 

modifications within a reasonable physiological range. 

Here, NIBS could be influential for driving longer-term 

consolidation of new network patterns. The choice of the 

more suitable time window for NIBS intervention likely 

needs careful examination in order to exclude maladap-

tive cortical responses, which could interfere with or even 

suppress the effects of the behavioral therapy.

8. NIBS for Stroke Rehabilitation in Iran

Needless to say, when planning to solve any problem, 

there is need for precise statistics and measurements 

to evaluate the situation and assess effectiveness of in-

terventions. A new Iranian National Stroke Database and 

Registry (INSDR) Protocol has been introduced recently 

(presented at 6th world stroke congress in Vienna, Sika-

roodi, et al., 2008b), proposing a unified-user friendly and 

culturally validated method for data collection, as a four 

A4 pages work sheath in a HTML format for uploading in 

web-pages. Demographic data, and findings in general and 

Figure 1. Multidisciplinary stroke rehabilitations in Iran. Combination of brain stimulation technology to other conventional 

methods of rehabilitations in a team work is an essential element to reach to long lasting treatment outcomes.
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neurologic examinations, laboratory and imaging data, and 

pre- and post stroke Barthel and Modified Rankin Scale 

were included. Nearly all of the data is entered by checking 

boxes (only a few items need to be entered as text), and the 

average time for completing each form is 45 minutes. The 

database is both shareable and comparable, and we think 

it may help to perform multicenter/national/international 

studies on stroke, more easily.

Fortunately, from 10 active NIBS centers (all rTMS 

equipped) in Tehran (3 academic sites in medical uni-

versity hospitals) and 3 centers in other cities (Shiraz, 

Yazd and Isfahan), 2 centers are mainly devoted to mul-

tidisciplinary stroke rehabilitation and others usually 

accept referred stroke cases from stroke rehabilitation 

centers. All of these sites agree on the undeniable acute 

effects of rTMS on stroke patients (personal communi-

cation with center’s heads); but, most of them empha-

size on the serious need for multidisciplinary rehabilita-

tion work on the patients to obtain sustainable results.

Of course, in order to establish multi level centers dedi-

cated to stroke rehabilitation utilizing NIBS, health author-cated to stroke rehabilitation utilizing NIBS, health authorcated to stroke rehabilitation utilizing NIBS, health author

ities and decision makers should provide careful national 

guidelines and regulations, and provide facilities needed 

for many different training courses, and finally issue certi-

fications for the approved staff and centers who will do the 

great job. INSDR along with specialized neuropsychologi-

cal assessments and neuroimaging protocols could provide 

a monitoring system for further evaluation and follow up 

long term effects of different protocols of NIBS in Iran to 

upgrade and revise national protocols periodically.

9. Summary

The major limitation of tDCS is probably that it is not 

focal enough to map cortical functions precisely. Fur-focal enough to map cortical functions precisely. Furfocal enough to map cortical functions precisely. Fur

thermore, it cannot produce temporally focused effects 

like TMS. On the other hand however, the application is 

simple. Successful blinding of subjects and investigators 

is possible to conduct double-blind and sham-controlled 

trials. Despite these promising results, some limitations 

of TMS need to be noted. Critically, after stroke, there is 

a change in the local anatomy and the lesion evolves in 

time to formation of scar tissue and, particularly in the case 

of cortical damage, larger cerebrospinal fluid spaces. Be-

cause the conductance of cerebrospinal fluid (CSF) is 4 to 

10 times higher than that of brain tissue, scar formation and 

larger CSF spaces modify the geometry and magnitude of 

the electric field induced by rTMS, and stimulation of the 

lesioned hemisphere can become difficult to predict unless 

careful modeling is done (Lancaster et al., 2004).

The diagnostic and therapeutic potential of both tDCS 

and TMS is undeniable. Although both treatments have 

their detriments, with further research and recognition, 

useful techniques could be developed to promote the in-

tegration of these neurostimulation methods into clinical 

settings. Greater understanding of the mechanisms of ac-

tion of each approach is necessary in order to optimize 

their combined use in rehabilitation and realize the prom-

ise of a more effective means to promote functional re-

covery after brain injury. NIBS technologies are located 

in their first steps to act as a reliable effective treatment 

modality for neurological patients; and in this stage, de-

veloping countries such as Iran, based on their available 

experiences and understructures, could have a good role 

in scientific promotion of this field and therefore utilize 

NIBS benefits for their patients. In the long run, main-

taining the life-style of neurologically impaired individu-

als can be extremely costly and time-consuming. But, 

NIBS brings new hopes for cost effective interventions 

to improve patient’s quality of life in Iran and the world.
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