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Abstract 

 

Mild Cognitive Impairment (MCI) is the stage that happens before Alzheimer's Disease (AD) and there is 

a high risk of progression to AD. However, this progression is not guaranteed and there is a chance of 

staying at this stage. In this study, we aim to diagnose possible AD progression among MCI subjects from 

a combination of resting-state functional Magnetic Resonance Imaging (fMRI), clinical assessment, and 

demographic information for starting treatments in case of progression or reducing medical expenses in 

case of future stability. For this work, we have used Deep Learning methods called three-dimensional 

Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM). The models were 

developed using 266 samples from 81 MCI subjects over an average of five years between baseline and 

the last timepoint. Results showed, the best validation scores belonged to the CNN-LSTM model after 

integrating with clinical attributes based on accuracy of 92.47%. Consequently, our proposed algorithm 

demonstrated high performance in predicting MCI to AD progression, indicating the potential of deep 

learning approaches in processing fMRI data and the efficiency of integrating data types. 

 

 

 

Index Terms: Alzheimer’s Disease, Deep Learning, Convolutional Neural Network, Long-Short Term 

Memory, Mild Cognitive Impairment, Magnetic Resonance Imaging. 
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I. Introduction 

Alzheimer's disease (AD) is the most customary cause of dementia in old age, which causes irreversible 

damage to the brain. However, if implemented in the early stages of the disease, proven treatments could 

be practical and weaken the process by stopping or slowing down the destruction of brain tissue [1], [2]. 

Accurate diagnosis of various stages of Alzheimer's is based on cerebrospinal fluid (CSF) pathology, an 

expensive and invasive procedure [3], [4]. Donepezil, memantine, galantamine, rivastigmine, and 

aducanumab are FDA-approved drugs and are prescribed for AD treatment in the early stages of the 

disease [5]-[8]. Mild Cognitive Impairment (MCI) is a pre-Alzheimer's stage in which some of the 

symptoms of Alzheimer's are poorly experienced; therefore, there is a high risk of developing 

Alzheimer's. However, this progression is not guaranteed, and the individual will likely return to normal 

or stay at this stage [9], [10]. Given that Alzheimer's effects on the brain start years prior to clinical 

symptoms, it is critical and attainable to predict the conversion of MCI to AD from brain information [11-

12]. In this case, people can prepare for the disease from different aspects and start treatment methods as 

early as possible to attain the best results.  

Researchers and clinicians frequently exploit brain imaging methods like magnetic resonance imaging 

(MRI), positron emission tomography (PET), and functional MRI (fMRI) for this task. MRI shows the 

brain structure with high spatial resolution. PET uses ionizing radiation to deliver an insight into the 

brain's anatomy and functionality with lower spatial resolution than MRI. FMRI provides knowledge 

about the anatomy and metabolic mechanism of the brain with higher temporal and spatial resolution than 

PET while being harmless at the same time [13]-[15]. Other techniques, such as magnetoencephalography 

(MEG), and others, have their advantages and disadvantages [15]. Finally, invasive data such as genetic 

information and CSF and the cheapest, most accessible, and safest data types like clinical cognitive tests, 

have been used to predict AD among MCI subjects.  

 

In recent years, many studies have predicted the conversion of MCI to AD by Machine Learning (ML) 

methods from neuroimaging methods and clinical information with relatively good results. These 

researchers have been attempting to solve this problem using new ML techniques such as Deep Learning 

(DL) methods since these methods can discover and learn hidden patterns and give a more accurate 

answer [16], [17]. There are many ML research in neuroimaging-related studies, including MRI, PET, 

and fMRI [18]-[32], and researchers often exploit machine learning techniques to analyze manually 

extracted features. Among the mentioned studies, some of them are as follows: In 2017 [18], Hojjati et al. 

used the connection matrix and extracted graph properties from resting-state fMRI data. Then a number of 

these features were selected for evaluation with a Support Vector Machine (SVM). In 2018 [19], he also 

combined the characteristics of the same fMRI data and MRI of the subjects. In recent years, deep 

learning strategies have been attempting to solve this problem. In 2019 [20], Abrol extracted time-varying 

features from fMRI, then deployed a three-dimensional convolutional neural network (3D-CNN) to 

extract attributes from MRI data and, at last, trained an SVM on the combination of all features. In 2020 

[32], Gao Fei et al. developed a 3D-CNN (containing six layers of convolution and three layers of max-

pooling) based on MRI images. In 2020 [28], Loris Nanni planned to compare the performance of transfer 

learning models with a 3D-CNN in processing MRI images. To do this, she designed a simple one-layer 

convolutional model and fine-tuned several pre-trained models. Finally, an average ensemble model was 

designed on five retrained models. In 2021 [31], Xiaoxi Pan developed a novel integrated CNN-based 

model called Multi-view Separable Pyramid Network (MiSePyNet). In this model, slice-wise and spatial-
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wise CNNs were performed on three views (axial, coronal, and sagittal) of PET images, and then all 

outcomes were put together for classification. Fusun Er [29] used a CNN model whose filters were 

calculated using an auto-encoder to extract prognostic features from each patient's volume. Then these 

features were delivered to an SVM model for classification. Also, some of these machine learning studies 

have deployed invasive data such as genetic information and CSF to predict MCI to AD [21]-[23], [30]. 

In 2020 [30], Lane et al. Developed an SVM model by combining information extracted from PET, MRI, 

CSF, genetic data, and clinical cognitive tests. Finally, in some machine learning studies, clinical 

cognitive tests and brain signals have been used to predict Alzheimer's [33]-[35]. In these studies, large 

samples were needed to obtain reliable results. In 2018 [33], Grassi et al. used clinical and demographical 

features. After applying the feature selection process, several machine learning algorithms were designed, 

from which the best model was an SVM with a kernel-based radial base function. Also, in 2019 [34], 

Grassi used only demographic data and cognitive clinical tests. At first, all the features were used, then 

three more feature sets were created by three feature selection methods, and then 13 machine learning 

algorithms were developed according to these foure sets resulting in 52 final models. Furthermore, a 

weighted averaging model was designed by which the results of 52 models were averaged and presented 

on the test data. Finally, Mengjia Xu [36] used a general form of Graph2Gauss architecture, a DL-based 

method called multiple graph Gaussian embedding model (MG2G), to classify graph-based features 

derived from MEG regional time series.  

Nevertheless, none of these studies contain enough information alone to decisively predict the prognosis 

from MCI to AD. Also, some studies have used invasive predictors such as CSF and genetics [21]-[23], 

[30]. For all we know, the current study is the first to attempt to use deep learning methods called three-

dimensional CNN and Long-Short Term Memory (LSTM) in processing information from fMRI data to 

solve the described problem. These methods automatically extract and classify features, which is their 

primary upside compared to the conventional machine learning techniques. We also aim to introduce a 

new approach that combines the features extracted from clinical cognitive tests and neuroimaging data in 

a neuronal way and then examine its effectiveness in improving the results. 

II. Materials and Methods 

A. Dataset 

In this study, clinical and fMRI data from the patients who had been in the MCI stage were gathered 

from the Alzheimer's Disease Neuroimaging Initiative (ADNI; available at adni.loni.usc.edu) for 

predicting MCI conversion to Alzheimer's. ADNI is a multicenter study designed to develop clinical, 

imaging, genetic, and biochemical markers for the early diagnosis of Alzheimer's disease. Since its 

inception, which was more than a decade ago, public-private partnerships have played a significant role in 

Alzheimer's research, enabling data to be shared among researchers worldwide. In ADNI, when a person 

is admitted according to inclusion and exclusion criteria, an initial diagnosis is made based on 

cerebrospinal fluid pathology. The clinical cognitive tests are approximately taken every six months, and 

the rest of the biomarkers are collected at time intervals of one to two years. This process continues as 

long as the person remains in the study and specialists constantly update the patient's diagnostic status. In 

this study, we intended to predict the conversion of MCI to Alzheimer's by combining clinical and fMRI 

data. Thus, related information from the patients who had primarily been in the MCI stage was gathered. 

Some of these individuals remained moderately in the MCI phase over the years or eventually returned to 

normal (sMCI group); however, the rest progressed to Alzheimer's after a while (pMCI group). In this 

paper, we did not include subjects who had been in the study for less than a year. Furthermore, because 

file:///C:/Users/sima/Desktop/ArticlesMCI2AD/CNN-LSTMarticle/adni.loni.usc.edu
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we wanted to utilize a combination of imaging and clinical data, given the difference between recording 

dates, we first examined the imaging dates for each person. Then we considered the test results that were 

registered around the same time (maximum of one month). Therefore, the corresponding clinical data 

were collected for each series of imaging data on one date. If each data was not available on a date, the 

other data was not used. Finally, we had 81 subjects, 28 had progressed from MCI to AD, and 53 either 

remained in MCI or returned to normal. 266 samples from these individuals were available, of which 78 

belonged to the pMCI class, and the remaining 188 samples were sMCI. Details of the data are reported in 

Table I in the two groups. Tesla Phillips 3 Magnetic Resonance Imaging Scanner was used with EPI to 

record functional and structural images while people were resting. The size of the functional image matrix 

was 64 by 64, and each 3D image of the brain volume was divided into 48 sections, each section being 

3.3 mm, as well as an 80-degree rotation angle, a repetition time of three seconds, and a reflection time of 

30 milliseconds. Ultimately, 140 functional images were available for each person. Moreover, we have 

chosen 17 clinical features from the ADNI organization, including common demographic characteristics 

and cognitive neurophysiological test results. The ADNIMERGE file, which the ADNI organization 

officially prepares, contains the essential variables of the types of data collected. Demographic 

information is age, gender, years of education, and marital status. Clinical cognitive tests are Sum of 

Boxes score of Clinical Dementia Rate (CDR-SB), Functional Activity Questionnaire (FAQ), Mini-

Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale (total of 11 activity scores 

[ADAS11], Alzheimer's Disease Assessment Scale (total of 13 activity scores [ADAS13], Score of task 4 

of Alzheimer's Disease Assessment Scale [ADASQ4]), Rey Auditory Verbal Learning Test (RAVLT) 

scores (immediate [RAVLT-I], Learning [RAVLT-L], forgetting [RAVLT-F], and percent-forgetting 

[RAVLT-PF]), Trail Making Test version B (TRABSCOR) and the total delayed recall score of the Logic 

Memory subtest of the Wechsler Memory Scale-Revised (LDELTOTAL) [37]-[43]. We also examined 

the type of MCI in primary diagnosis (early or late). Dataset Details, reported in Table II, shows the 

names and abbreviations of the 17 clinical features and their statistics in the two groups. 

 

 

TABLE I : Details of the dataset. 266 samples from 81 subjects were available, from which 28 subjects were progressive 

MCI (pMCI) and the rest were stable MCI (sMCI). 78 samples belonged to the pMCI group and the rest of 188 samples 

belonged to the sMCI group.   

 SMCI PMCI TOTAL 

SUBJECTS 53 (65.43 %) 28 (34.56 %) 81 

SAMPLES 188 (70.67 %) 78 (29.32 %) 266 
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TABLE II : 14 continuous and 3 categorical features were selected from ADNIMERGE dataset. Their 

abbreviation, description and percentage of missing values; mean and standard deviation (std) for continuous 

features, and percentage for categorical features are reported in each group. 

 

Continuous 

variables 
Description 

pMCI sMCI Missing 

values 

(%) 
Mean ± std Mean ± std 

AGE Age in years 73.39 ± 6.47 70.51 ± 7.56 0.0 

PTEDUCAT Years of education 15.54 ± 2.5 15.99 ± 2.77 0.0 

CDRSB 
Sum of Boxes score of the Clinical Dementia 

Ratio 
2.47 ± 1.04 1.03 ± 0.68 1.88 

FAQ Functional Assessment Questionnaire 6.58 ± 5.19 1.62 ± 2.6 2.25 

MMSE Mini-Mental State Examination 26.65 ± 1.69 28.12 ± 1.9 1.5 

ADAS11 
Sum of scores of 11 tasks of the Alzheimer’s 

Disease Assessment Scale 
13.51 ± 4.05 7.68 ± 3.86 1.5 

ADAS13 
Sum of scores of 13 tasks of the Alzheimer’s 

Disease Assessment Scale 
21.29 ± 5.6 11.91 ± 5.84 1.88 

ADASQ4 
Score of task 4 of Alzheimer’s Disease 

Assessment Scale 
6.88 ± 2.13 3.72 ± 2.2 1.5 

RAVLT-I 
Immediate score of the Rey Auditory Verbal 

Learning Test 
30.26 ± 8.59 37.32 ± 10.77 2.25 

RAVLT-L 
Learning score of the Rey Auditory Verbal 

Learning Test 
2.95 ± 1.98 5.06 ± 2.67 2.25 

RAVLT-F 
Forgetting score of the Rey Auditory Verbal 

Learning Test 
5.9 ± 2.11 4.49 ± 2.26 2.25 

RAVLT-PF 
Percent Forgetting score of the Rey Auditory 

Verbal Learning Test 
83.44 ± 23.1 52.77 ± 30.17 2.25 

TRABSCOR Trial making test, version B 122.28 ± 64.46 97.88 ± 58.19 4.13 

LDELTOTAL 

Total delayed recall score of the Logic 

Memory subtest of the Wechsler Memory 

Scale-Revised 

4.17 ± 3.12 9 ± 3.88 25.9 

Categorical 

variables 
Description 

pMCI sMCI Missing 

values 

(%) 
% % 

PTGENDER Sex, (male and Female)   0.0 

Male  51.28 52.12  

Female  48.71 47.78  

PTMARRY Marital status   0.0 

Married  78.2 68.61  

Never married  2.56 3.72  

Widowed  19.23 12.76  

Divorced  0.0 14.89  

DX_bl 
Subtypes of MCI: Early MCI (EMCI) 

and Late MCI (LMCI) 
  0.0 

EMCI  44.87 69.14  

LMCI  55.12 30.85  

 

B. Preprocessing 

     We first discarded the feature with losing data of more than 5%. Therefore, the LDELTOTAL feature 

was discarded, while other clinical features were preserved. Then the missing values were replaced for the 

rest of the features; we substituted the mean for numerical properties and the mode for categorical 

features (gender, marital status). We then normalized the numerical data and encoded categorical features 
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to convert them to numbers using the one-hot method. Furthermore, we discarded the first ten 

measurements among the functional images recorded for each individual. Then, the following steps were 

performed to preprocess the images: slice-timing correction to the last slice, realignment using a six-

parameter rigid-body spatial transformation, EPI normalization, resampling to 3-mm isotropic voxels, 

detrending, smoothing using a Gaussian filter with FWHM (= 4 mm), band-pass filtering (0.01– 0.08 Hz) 

and elimination of destructive signals such as global mean signal, six head motion parameters, the 

cerebrospinal fluid (CSF), and the white matter signals. Consequently, in the fMRI dataset, the original 

data dimensions were (64, 64, 48) with a time dimension of 140. After preprocessing step, the data 

dimensions were (61, 61, 73) with a time dimension of 130. We used the Python programming language 

version 3.8 to preprocess clinical features, SPM12 software (http://www.fil.ion.ucl.ac.uk/spm), and the 

DPARSF toolbox (http://rfmri.org/DPARSF) to perform imaging data preprocessing. Also, the clinical 

and imaging data values were normalized to be between zero and one. 

 

C. Convolutional Neural Network 

     A CNN is a DL model for processing data with a grid pattern, such as images. These networks are 

designed to learn spatial information and have three primary layers: convolutional, pooling, and fully 

connected. The convolutional and pooling layers conduct the feature extraction operation, and the fully 

connected or dense layer is the classification layer. This network can convert and reduce input data into a 

form that is easy to identify and examine without losing much information. In the convolutional layer, a 

small matrix of numbers called kernel is applied throughout input by point multiplication to extract 

feature maps which are then given to a nonlinear activation function. Next, the pooling layer, which has 

no learnable parameters, down-sizes the results; for instance, the max-pooling layer, the most common 

type, holds the maximum of patches of each feature map and discards the remaining values. Finally, the 

last layers' output is converted to a one-dimensional vector by flatten layer and given to a (or more) fully 

connected layer. Each layer input is connected to the output by a learnable weight. Finally, in the output, 

we have a probability of belonging to each class for each case [44], [45]. 

 

D. Long-Short Term Memory 

     Long-Short Term Memory (LSTM) network, a type of recurrent neural network, detects temporal 

dependencies in input data. In an LSTM network, at any time, the node receives its input at its time, 

output, and hidden state from the last time. Then delivers the output and hidden state in its time. The 

hidden mode can be considered the node memory, which helps the LSTM remember input from a 

previous time. Because the node structure is more complex than normal neuronal nodes, we call it a cell. 

This cell has four input, forget, output, and input modulation gates. Each gate has a weight to control how 

much information can pass through the gate, and the activation function determines its weight. Fig. 1 

exhibits the structure of an LSTM block and how it calculates its output [45, 46]. 

 

http://www.fil.ion.ucl.ac.uk/spm
http://rfmri.org/DPARSF
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Fig. 1. Architecture of a LSTM block [46]. 

 

E. Proposed Model 

     Functional MRI is a set of three-dimensional images recorded for a limited time. Therefore, CNN and 

LSTM models could be exploited to process the fMRI spatial and temporal aspects. From what we know, 

the current study is the first to use DL methods for fMRI processing and combining clinical information 

to predict the MCI to AD conversion according to the proposed method. First, we wanted to evaluate 

whether the temporal aspect alone consists of enough discriminative information or not. Therefore, we 

used the automated anatomical atlas (AAL) to define and divide the brain into 116 regions; thus, the input 

of the LSTM network was a 130 by 116 matrix (130-time points and 116 features). We designed two 

LSTM models with 32 and 128 cells to investigate the effect of the number of LSTM layer cells on the 

diagnostic performance of the model. Since the output size of all models must have been the same and 

equal to 32, a fully connected layer with 32 neurons was added in continuation of the 128-cell layer. Then 

the output of both models was entered into a dense layer with two neurons and a softmax activation 

function for classification. Fig. 2 shows the LSTM models. 

 

 
Fig. 2. The LSTM models 

 

Second, if CNN and LSTM models are put together, the concluded model is called CNN-LSTM, 

composed of a CNN part to extract spatial features, followed by an LSTM layer to extract temporal 

information. Fig. 3 illustrates the structure of the CNN part of the CNN-LSTM models. The 

convolutional part of our proposed model was three-dimensional to prevent initial information loss due to 

data transformation. It consisted of six convolutional layers, with a filter size of 3x3 and stride of one, and 

four max-pooling layers with a filter size of 2x2 and stride of two. The input of this network was single 

functional images (regardless of time dimension). The output of the last layer was 128 extracted features. 

Since 130 images were available for each sample, we utilized 130 3D-CNN models, each analyzing 

images of a specific time point, and concatenated their outputs to deliver to an LSTM layer (Fig. 4). We 

designed two CNN-LSTM models since we previously designed two LSTM models. 
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     Moreover, to investigate the effect of combining clinical data on the results, in all of these final 

models, the output of the imaging section, which was 32 in length, was concatenated to the output of a 

shallow neural network layer whose input was clinical data. The dense layer had five neurons; thus, the 

effect of the features extracted from the images was about six times greater than the clinical features. 

Consequently, a 37-size vector was inserted into the classification layer. Finally, eight networks were 

developed (two LSTM and two CNN-LSTM models with and without combining with the clinical 

information). Fig. 4 shows the CNN-LSTM model with 128 cells in its LSTM layer, combined with the 

clinical information. 

 

 

Fig. 4. The 128-cell CNN-LSTM model after combining with clinical features 

The models were designed in Google Colaboratory (12 GB RAM) using the Keras framework with 

Tensorflow as the backend. The optimizer used to train the CNN-LSTM models was Adam, with a 

learning rate of 0.0001. For controlling the error of overfitting, dropout was used, its value for the outputs 

of the inner layers (except the first layer) and the LSTM layer (32 cells) was 20%, for the last pooling 

layer 30%, and it was 40% for the 128-cell LSTM layer. Also, L2 regulation was used for the dense layers 

(32 and 5- neurons) with a coefficient of 0.001. Due to hardware limitations, the data were delivered to 

the model in batches, and a maximum of three was possible for the CNN-LSTM models. 

F. Training and Evaluation 

     We desired to train and test our models using 5-fold stratified cross-validation. In this method [47], the 

dataset is divided into five folds, from which four folds are the training data, and the left-out fold is the 

Fig. 3. The structure of the CNN part of the CNN-LSTM models. 
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testing data. The folds could be stratified, meaning that the ratio of each class (sMCI, pMCI) is nearly 

equal in each fold and the whole dataset. We needed our train and test sets to be independent of each 

other. Therefore, we randomly divided all the data into five parts so that each part contained about 20% of 

the data and all parts were independent of each other based on the patients; in other words, samples 

belonging to one subject were assigned to the same set. In our dataset, several samples were available for 

each person. Also, we attempted to assure that 30 percent of the samples in each set belonged to class one. 

Consequently, we had 81 subjects, 28 pMCI class, and 53 sMCI class. 266 samples from these individuals 

were available, of which 78 belonged to the pMCI class, and the remaining 188 samples were sMCI. In 5-

fold cross validation, in testing, 16 subjects (5 pMCI and 11 sMCI) with 53 samples (15 pMCI and 38 

sMCI) are used in each fold, approximately. Eventually, five training and testing subsets were produced, 

and all models were designed according to each training set and evaluated based on its corresponding test 

set. Also, we considered 10% of each training set for evaluation to measure the appropriateness of the 

models' design during the training process. Thus, in the end, we had five sets of training, testing, and 

evaluation with ratios of 70, 20, and 10 percent. It is worth noting that the clinical data preprocessing for 

training and test sets were performed separately to preserve the independence of the two sets. Finally, in 

this study, to report and compare the performance of the models, the evaluation metrics of accuracy, 

sensitivity, specificity, AUC, and confusion matrix were calculated in the five sets of testing. 

III. Results 

The mean of accuracy and loss curves in the 5-fold cross-validation training procedure of the CNN-

LSTM models for the train and validation sets in four models (CNN-LSTM models with 32 and 128 cells 

and before and after combining with the clinical data) is shown in Fig. 5. The models were trained in 

about 80 iterations. We optimized the model architecture and the hyper-parameters by trial and error after 

examining the progress of learning based on validation and training metrics values to avoid over-fitting.  

 

Fig. 5. Mean of Accuracy and loss curves in the cross-validation process for the CNN-LSTM model with 32 and 128 

cells before and after combining with clinical data 
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Mean and standard deviation values of accuracy, sensitivity, specificity, and AUC metrics for the five test 

subsets are reported for eight models (LSTM models with 32 and 128 cells, CNN-LSTM networks with 

32 and 128 cells, before and after combining with clinical data) in Table III. 

     The evaluation values for the 32-cell LSTM network before combining with clinical features were 71.8 

(accuracy), 9.00 (sensitivity), 97.32 (specificity), and 61.51 (AUC) percent. In this model, we observed an 

increase in accuracy (78.94%), sensitivity (31.66%), specificity (98.4%), and AUC (68.42%) after 

combination with the clinical information. In the next step, by increasing the number of cells to 128 in the 

LSTM model before combining with clinical, the accuracy, sensitivity, specificity, and AUC increased to 

74.81, 14.16, 100, and 70.07%, respectively. Finally, the 128-cell LSTM model, in combination with the 

clinical data, had the best performance among the LSTM models based on AUC (75.99%), accuracy 

(79.60%), and sensitivity (38.5%). As for the CNN-LSTM networks, we also observed that increasing the 

number of recurrent layer cells improved the results effectively. Validation metrics for the 32-cell CNN-

LSTM model, before combination with clinical, were 86.84 (accuracy), 69.33 (sensitivity), 94.15 

(specificity), and 90.62 (AUC) percent. Then, by increasing the number of cells to 128, we saw an 

improvement in results based on the accuracy (89.84%), sensitivity (83.33%), specificity (92.54%), and 

AUC (92.4%). As with the results of CNN-LSTM models, we also observed an increase in the values of 

evaluation parameters after adding clinical features, and both models achieved higher sensitivity, 

accuracy, and AUC afterward. Finally, the 128-cell CNN-LSTM model demonstrated the best results after 

combining the clinical data. It reached an accuracy of 92.47 %, an AUC of 96.67 %, a sensitivity of 92.33 

%, and a specificity of 92.55%. 

     The ROC and AUC diagrams of the LSTM and CNN-LSTM models with 32 and 128 cells before and 

after combining with clinical data can be seen in Fig. 6. It is shown that the 128-cell CNN-LSTM model, 

combining fMRI and clinical data, demonstrated the best results. Also, it is shown and concluded that the 

combination with the clinical predictors made the models more sensitive to the pMCI class since the 

curves started from points with higher true-positive rates. Finally, confusion metrics of the most 

performing LSTM and CNN-LSTM models are reported in Fig. 7 (before adding clinical information) 

and Fig. 8 (after adding clinical information). It is illustrated, as well, that combining with clinical data 

increased the true-positive rates while decreasing false-negative rates, meaning that the models became 

more sensitive toward the pMCI cases after combining clinical attributes. Lastly, according to the 

confusion matrices, the 128-cell CNN-LSTM models were the only networks with more false-positive 

rates than false-negative ones. After combining with clinical data, this model misdiagnosed only three 

samples from about 50 test set cases. It is eventually worth noting that a false-positive rate being higher 

than a false-negative rate is desirable, especially in medical issues, since incorrectly diagnosing a patient 

as unwell is less medically expensive than the other way around.
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TABLE III : Mean (%) and standard deviation of cross-validated scores of the LSTM and CNN-LSTM 

models with 32 and 128 cells before and after combining with clinical data. 

Model Data AUC Accuracy Sensitivity Specificity 

LSTM(32) 
fMRI 61.51 (± 0.11) 71.50 (± 1.21) 09.00 (± 3.21) 97.32  (± 1.7) 

fMRI + clinical 68.42 (± 0.53) 78.94 (±1.33) 31.66 (± 4.04) 98.40 (± 1.3) 

LSTM(128) 
fMRI 70.07 (± 0.19) 74.81 (± 1.88) 14.16 (± 4.92) 100.0 (± 0.00) 

fMRI + clinical 75.99 (± 0.62) 79.69 (± 1.49) 38.50 (± 1.14) 96.27 (± 3.62) 

CNN-LSTM(32) 
fMRI 90.62 (± 051) 86.84 (± 1.20) 69.33 (± 3.98) 94.15 (± 1.03) 

fMRI + clinical 93.75 (± 0.88) 89.47 (± 1.90) 78.16 (± 3.34) 94.16 (± 1.94) 

CNN-LSTM(128) 
fMRI 92.40 (± 0.42) 89.84 (± 0.95) 83.33 (± 3.10) 92.54 (± 1.10) 

fMRI + clinical 96.67 (± 0.71) 92.47 (± 1.71) 92.33 (± 2.42) 92.55 (± 1.95) 

 
Fig. 6. ROC/AUC curves of the LSTM and CNN-LSTM models with 32 and 128 cells before and after combining 

with clinical data. 

 

 

Fig. 7. Confusion matrices of the best performing LSTM and CNN-LSTM models before combining with clinical in 

1 fold (54 samples). 
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Fig. 8. Confusion matrices of the best performing LSTM and CNN-LSTM models after combining with clinical in 1 

fold (54 samples). 

IV. discussion 

In this study, we evaluated and compared the performance of deep learning techniques in diagnosing the 

conversion of MCI to Alzheimer's over an average of five years. We have used rs-fMRI, 

neurophysiological test results, and common demographic characteristics as the noninvasive and 

clinically available predictors. Our primary focus was to extract appropriate and sufficient features from 

the imaging data and then improve the results by combining clinical information. Since fMRI data is a 

series of three-dimensional images recorded over a limited time, it would make sense to use 3D CNN to 

extract its spatial features, following an LSTM layer to learn its temporal information, which would result 

in a CNN-LSTM network. Also, to ascertain that it was required to study both spatial and temporal 

aspects of fMRI to reach good results, LSTM models were separately trained for the comparison. 

According to the results (Table III), considering both aspects of the information contained in fMRI 

undoubtedly enhanced the performance. We also observed that the number of cells in the LSTM layers 

affected the performance of the models. According to AUC and accuracy metrics, we saw an 

improvement by increasing the number of cells from 32 to 128. Finally, after combination with clinical 

information, the CNN-LSTM model with 128-cell outperformed other models based on an AUC of 

96.67%, an accuracy of 92.47%, a sensitivity of 92.33%, and a specificity of 92.55%.  

Among the results acquired from all models (Table III), the LSTM networks performed poorly compared 

to the CNN-LSTM models, meaning that the LSTM did not extract suitable features from fMRI, which 

could be due to several factors. First, the structure of LSTM might not have been adequate. We tried to 

have consistency in our work, so by deleting the CNN parts from the proposed CNN-LSTM models; we 

would have our LSTM models. As a result, probably, LSTM models with more layers, different numbers 

of units, and different structural architecture, in general, could bring about better performance. Second, it 

could be because of the atlas that we used; other atlases divide the brain into different regions and deliver 

us more and different time series. One last possible factor is the type of fMRI used here, which was 

resting-state and not task-related. Given that LSTM is mainly concentrated on temporal details rather than 

spatial, it could be pointed out that resting-state form contains less valuable temporal data than task-

related; thus, apparently, not much information was provided here. Therefore, we deduced that the spatial 

aspect of the fMRI data played a pivotal role in the diagnostic abilities of the models.  
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We have designed our models based on the characteristics extracted from a combination of imaging data 

and clinically available noninvasive information. In all of these final models, the output of the imaging 

section (32 in length) was connected to the output of a 5-neuron dense layer (clinical), delivering a vector 

containing 37 elements to the classification layer. All four models performed better than their basic form 

when combined with clinical information. It is because, in general, the models had more information to 

make decisions; therefore, the final results of the models improved. It was also observed that integrating 

clinical data with imaging increased the sensitivity of the models to class one (Table 3, Fig. 6, and Fig. 7). 

Finally, we observed that the proposed method for the combination affected two critical issues: first, the 

models reached the appropriate results faster (based on the performance of the models on the evaluation 

data) because, as mentioned, the model had more information to identify. Second, it could have caused an 

overfitting error if the number of neurons in the clinical layer had increased or the training process had 

lasted longer. 

 

Many studies have tried to work out the problem of predicting AD among MCI subjects. Even though 

some studies provided machine learning techniques with a good level of accuracy, the data used by their 

algorithms was a combination of invasive data, which makes the proposed methods less applicable in real 

life. Table IV summarizes the articles that predicted the conversion of MCI subjects to AD. As mentioned 

in this table and indicated in a review of studies that used neuroimaging biomarkers for AD prediction 

[48], MRI, fMRI, and PET modalities are more frequently used. Regarding the algorithms, CNN from 

deep learning methods and SVM from machine learning methods were the most common, with CNN-

based models achieving higher average performance than other techniques. All articles similar to the 

present article used cross-validation (CV) for training and evaluation, and the values of accuracy, AUC, 

sensitivity, and specificity are reported in the table. Also, in reviewing the articles, one should pay 

attention to the number of folds in the CV method, prediction interval (in years), and the number of pMCI 

samples. For example, in articles [18] and [19], data from 80 people were used, 18 of them belonged to 

the pMCI class, and in the CV method, the data were divided into nine parts. Finally, a two-stage AD 

progression detection framework is proposed. In first stage, a multiclass classification task is used to 

diagnose a patient in three classes (cognitively normal, MCI, or AD) by LSTM with accuracy of 93.87%. 

In the second stage, a regression task that predicts the exact conversion time of MCI patients is used. In 

the regression stage, the LSTM model achieved the best results with mean absolute error of 0.1375. 

Our proposed method has some advantages and limitations in comparison to the existing research works. 

Clinical cognitive tests used in the present study are the most attainable and noninvasive data types that 

are regularly registered for a basic diagnosis before any further assessments. However, the information 

provided from different exams has overlaps, and patients could get weary of taking 12 tests altogether. As 

for the fMRI technique, even though it has advantages over other imaging methods, it is time-consuming 

and motion-sensitive, which could be inconvenient. Another essential point is that this study's 

Alzheimer's prediction time interval was an average of five years. While in other studies, it was between 

three and four years, and we know that the prediction operation is more difficult with increasing 

prediction time. Also, due to the data imbalance and the fact that most samples belonged to the sMCI 

class, the models tended to this class by default. As a result, simple models were not responsive and 

reliable outputs were not delivered, making designing a suitable model challenging. Finally, as far as we 

can tell, DL methods in processing functional images and combining them with clinical data to predict 

AD have not been studied. The advantage of using deep neural networks in image analysis such as fMRI 
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is that the image structure will remain intact. Compared to conventional machine learning methods, deep 

neural networks are capable of automatic raw data analysis, feature extraction, and classification. Thus, 

no information is lost at first, and then depending on the architecture of the designed model, the relevant 

features are provided. In the current research, we tried to design a DL model that converted a volume into 

128 single attributes without losing the least amount of information. Therefore, one of the main reasons 

CNN-LSTM outperforms other machine learning techniques in processing fMRI is that we do not need to 

manipulate fMRI data to feed it to the model. Thus, the data structure is preserved, while it is not the case 

for machine learning methods. It should be borne in mind that deep neural networks are complex and 

computationally expensive and require robust hardware to be trained. Overall, DL methods require more 

potent hardware, time, experience, and careful precision to be designed and trained without over-fitting or 

under-fitting. Also, adjusting the rising number of hyper-parameters in deep learning models is 

challenging since they are affected by one another very closely. Nevertheless, we wanted to explore their 

utility and performance to our advantage due to their novelty and potential.  
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TABLE IV : Summary of related works that predicted the conversion of MCI subjects to AD 
  

Study / 

Year 
Modality 

Subjects 

(pMCI) 
PI Method (validation) 

Results (%) 

AUC Sen Spe Acc 

[49]/2022 fMRI +clinical 81 (28) 5 3D-CNN (5-CV) 91.72 75.58 92.57 87.59 

[50]/2022 
Neuroimaging+ 

clinical  

sMCI: 473 

pMCI: 140 
2.5 LSTM 

MAE: 

0.137

5 

NR NR NR 

[29]/2021 MRI 294 (125) 2.5 
Auto-encoder+ CNN/ 

SVM (10-CV) 
NR 92.4 80.4 87.2 

[30]/2020 Multivariate 251 (110) 3 
SVM  

(10-CV, 100 repeat) 
94.7 NR NR 87.1 

[32]/2020 MRI 297 (168) 3 3D-CNN (5-CV) 81 77 76 76 

[28]/2020 MRI 474 (240) 4 
Average 2D-CNN/ 

transfer learning (CV) 
70.6 NR NR NR 

[34]/2019 clinical 550 (197) 4 

Weighted average 

ensemble /52 ML 

models (5-CV) 

88 77.7 79.9 NR 

[20]/2019 fMRI +MRI 134 3 

Temporal + 

convolutional features/ 

SVM (3-CV, 10 repeat) 

78 NR NR NR 

[33]/2018 clinical 184 (48) 4 SVM (10-CV) 96.2 NR NR NR 

[19]/2018 fMRI +MRI 80 (18) 4 
Graph theory/ SVM 

 (9-CV) 
98 94.97 100 97 

[18]/2017 fMRI 80 (18) 3 
Graph theory/ SVM  

(9-CV, 1000 repeat) 
95 83.83 90.1 91.4 

Present fMRI +clinical 81 (28) 5 3D-CNN-LSTM (5-CV) 96.67 92.33 92.55 92.47 

NR: Not Reported;  PI: Prediction Interval (in years);  CV: Cross Validation; MAE: mean absolute error 

C. Future Works 

     Despite the promising results presented here, several other structures can be designed for the LSTM 

and the CNN-LSTM models in future works. The changes that can be considered include the number of 

LSTM layers, the number of cells, and the type of recurrent layer and changing it to gated recurrent units 

neural network. Furthermore, according to the data from the atlas, other independent structures can be 

designed for the recurrent model alone. It is also recommended that models be designed and evaluated on 

more different test and training samples. In addition, it is suggested that transfer learning methods be used 

in the design of the CNN model and especially the CNN-LSTM model to check the possibility of 

improving the results with these techniques. Lastly, it is perhaps feasible to use a subset of carefully 

chosen clinical features to either generate better results or provide more comfort to the patient by reducing 

the amount of time spent on taking clinical tests. 

V. Conclusion 

     In the present study, a 3D-CNN-LSTM algorithm was developed that was very sensitive to correctly 

identifying MCI patients who may develop Alzheimer's between six months and an average of 5 years. 
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We have shown that combining clinical data with fMRI based on the proposed approach leads to better 

results. We have also proved that processing both spatial and temporal aspects of the rs-fMRI data is 

crucial for reaching decent outcomes. Finally, our model outperformed other ML methods based on AUC 

(96.67%), accuracy (92.47%), sensitivity (92.33%), and specificity (92.55%) and can be used for initial 

clinical diagnosis. 
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