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The Cholinergic and GABAergic fibers of the medial septal/diagonal band of Broca (MS/
DB) area project to the hippocampus and constitute the septo-hippocampal pathway, which 
has been proven to play a role in learning and memory. In addition, the hippocampus has 
bidirectional connections with the septum so that to self-regulate of cholinergic input. 

The activity of septal and hippocampal neurons is modulated by several neurotransmitter 
systems including glutamatergic neurons from the entorhinal cortex, serotonergic fibers from 
the raphe nucleus, dopaminergic neurons from the ventral tegmental area (VTA), histaminergic 
cells from the tuberomammillary nucleus and adrenergic fibers from the locus coeruleus (LC). 
Thus, changes in the glutamatergic, serotonergic and other systems- mediated transmission in 
the MS/DB may influence cholinergic or GABAergic transmission in the hippocampus.
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1. Introduction

he basal forebrain region includes a 
group of cholinergic neuclei (Roland, 
et al. 2009; Robinson, et al., 2011), (the 
nucleus basalis magnocellullaris (NBM), 
the medial septum (MS) and the vertical 
and horizontal limb of the diagonal band 

of Broca (VDB and HDB, respectively)) which project 
to the hippocampus, amygdala and cortex (Frielings-
dorf, et al. 2006; Van der Zee, et al. 2011; Acquas, et 
al. 2000; Darnaudery, et al. 2002; Farr, et al. 2000). 
The medial septum/diagonal band of Broca complex 
(MS/DB)  project to the hippocampal formation (Lu, et 
al. 2011; Papp, et al. 1999; Morris, et al. 2004; Gold-
bach, et al. 1998; Abreu-Villaca, et al. 2010; Deiana, 
et al. 2010). Septo-hippocampal pathway is composed 
of two separate components: the cholinergic and the 
GABAergic fibers (Goldbach, et al. 1998; Pascual, et 
al. 2004; Farr, et al. 1999). While cholinergic neurons 

T
terminate on many hippocampal cell types, GABAer-
gic septo-hippocampal fibers selectively project to the 
cell bodies of hippocampal interneurons (Pascual, et al. 
2004). More recently, glutamatergic neurons have been 
proposed as a third component of the neurochemical ba-
sis of the septo-hippocampal pathway (Farr, et al. 1999; 
Cervera-Ferri, et al. 2012). 

Anatomical studies have shown that the hippocam-
pus and the septum have reciprocal pathways (Okada 
and Okaichi 2010; Rokers, et al. 2000; Pedemonte, et 
al. 1998; Luttgen, et al. 2005). The hippocampus re-
ceives both cholinergic and GABAergic cells located in 
the MS/DB complex through the fimbria-fornix (Thin-
schmidt, et al. 2005). On the other hand, the hippocam-
pus terminate on the GABAergic fibers of the medial 
(Degroot and Treit 2002; Degroot and Treit 2003) and 
the glutamatergic neurons of the lateral septum (Trent 
and Menard 2010; Giovannini, et al. 1998) (fig.1). 
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Septum and hippocampus both are limbic system re-
gions (Ginsberg and Martin 1998; Cheeta, et al. 2000). 
Anatomically and functionally, the septum is closely 
connected to the hippocampus, the main septal efferent 
fibers being the septo-hippocampal cholinergic and GA-
BAergic neurons, which are known to be implicated in 
the cognitive processes (Rutz, et al. 2007). 

The current review provides a summary of the  experi-
ments which have assessed  the connections between 
septum and the hippocampus via septo-hippocampal 
pathway and the modulatory role of various neurotrans-
mitters within this pathway. First, an overview will be 
given of the studies in which the pivotal role of choliner-
gic, GABAergic and glutamatergic septo-hippocampal 
pathway in learning and memory have been examined. 
Next, a summary  of the studies which have investigat-
ed the role hippocampo-septal pathway in learning and 
memory will be provided. Further, we will discuss stud-
ies outlining the regulatory effects of neurotransmitters 
on the function of septum. Finally, an attempt will be 
made to converse the role of different neurotransmitters 
in modulation of hippocampal function. We will show 
that changes in the various neurotransmitters-mediated 
transmission in the MS/ DB may affect the cholinergic 
or GABAergic transmission in the hippocampus.

2. Memory Functions of the Septo-Hippo-
campal Pathway

The septo-hippocampal pathway which is mostly 
composed of cholinergic and GABAergic projections 
between the MS/DB and the hippocampus contain both 
muscarinic and GABAA receptors, therefore medial 
septal injections of cholinergic and GABAergic ago-
nists/antagonists are shown to render an effect on both 
receptor systems (Roland and Savage 2009).

Several evidence suggest that impaired choliner-
gic transmission in the septo-hippocampal pathway 
may be related to memory loss and dementia (Mayes 
1995) which pave the path towards Alzheimer’s disease 
(Chen, et al. 2008; Doralp and            Leung 2008; 
Micheau and Van Marrewijk 1999; Ayala-Grosso, et al. 
2004; Elvander, et al. 2004). 

The MS/DB cholinergic and GABAergic fibers play 
an important role in learning (Roland and Savage 2009; 
Elvander, et al. 2004), working memory (Pepeu and 
Blandina 1998; Lamprea, et al. 2010; Li, et al. 1997), 
spatial reference memory, acquisition and use of spa-
tial reference memories (Okada and Okaichi 2010), 
memory consolidation (Power, et al. 2003; Shahidi, et 

al. 2008), short-term memory (Klinkenberg and Blok-
land 2010; Klinkenberg, et al. 2010), long-term memory 
(Van der Zee and Luiten 1999), generation and modula-
tion of hippocampal theta (Bland and Oddie 1998; Gar-
rido-Sanabria, et al. 2007; Puma, et al. 1998), arousal, 
sensory processing (Ransome and Hannan 2012), atten-
tion (Gutierrez-Guzman, et al. 2011; Liu, et al. 1998), 
anxiety (Cheeta, et al. 2000; Zarrindast, et al. 2000), 
fear, stress (Elvander-Tottie, et al. 2006; Ogren, et al. 
2008), aggression, pain and some other cognitive func-
tions (Elvander-Tottie, et al. 2006). 

The afferent network modulating the septo-hippocam-
pal neurons consists of divergent intrinsic and extrin-
sic neuronal inputs including several neurotransmitters 
(Ach (Semba 2000; Zarrindast, et al. 2012), GABA 
(Semba 2000; Frey, et al. 2003), glutamate (Semba 
2000; Zarrindast, et al. 2012), histamine (Frey, et al. 
2003), serotonine, dopamine, noradrenaline (Frey, et al. 
2003; Moor, et al. 1998; Bacciottini, et al. 2001)) and 
neuropeptides (somatostatin (Elvander, et al. 2004), 
opioids such as dynorphin, metenkephalin, substance P, 
galanin (Elvander, et al. 2004; Bacciottini, et al. 2001) 
and angiotensin II (Bacciottini, et al. 2001)). Bellow, we 
will discuss the potential effects of these agents on the 
septo-hippocampal function.

2.1. Septo-Hippocampal Cholinergic Pathway

The septo-hippocampal cholinergic pathway is the 
main and most renowned efferent projection of the MS/
DB complex (Manns, et al. 2001; Disko, et al. 1998; 
Lopes Aguiar, et al. 2008; Gonzalo-Ruiz and Morte 
2000; Khanna and Zheng 1999) which play a key role 
in learning and memory (Roland and Savage 2009; Liu, 
et al. 1998; Zarrindast, et al. 2006; Stancampiano, et al. 
1999; Giovannini, et al. 2001). In rats, about 60% of 
the septo-hippocampal neurons are cholinergic (Woolf 
1998). The septo-hippocampal cholinergic component 
represents the slow-firing and slow-conducting type 
(Gartner, et al. 2001). Activation of the medial septum 
enhances the synchronized firing of pyramidal cells in 
the hippocampus (Ovsepian 2006). Some evidence have 
indicated that the medial septo-hippocampal cholinergic 
projections may modulate hippocampal memory pro-
cesses. Insights from the pharmacological interventions 
on the medial septum, often with the associated effects 
on hippocampal markers of acetylcholine function, sug-
gest that increased and decreased cholinergic function 
in the hippocampus enhance and impair learning and 
memory, respectively (Gold 2003). Cholinergic neu-
rons arising from the MS/DB complex, project through 
the fimbria-fornix (Robinson, et al. 2011; Riedel, et al. 
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2003; Niewiadomska, et al. 2009; Gulyas, et al. 1999; 
Dougherty, et al. 1998), and terminate throughout the 
hippocampus (Pascual, et al. 2004; Ginsberg and Mar-
tin 1998; Zarrindast, et al. 2012; Henderson and Jones 
2005). The cholinergic innervations of the MS/DB com-
plex terminate on all major cell types of the hippocam-
pus, that is, the pyramidal, granule and interneurons. 
Cholinergic terminals were found to establish synapses 
with dendritic shafts, spines and cell bodies of hippo-
campal neurons (van der Zee and Luiten 1999). These 
fibers are found in all areas of the hippocampus (den-
tate gyrus, CA3 and CA1) (Elvander-Tottie, et al. 2006; 
Khakpai, et al. 2012), however are particularly dense in 
the dentate gyrus (Kaplan, et al. 2004; Carre and Har-
ley 2000). The projection from the medial septum to 
the dentate gyrus of the hippocampus is not chemically 
homogeneous of which almost 42% of neurons are cho-
linergic and predominantly innervate the supragranular 
layer and the portion of the hilus which is the nearest 
to granule cell layer. At least 30% of the medial septal 
neurons projecting to the dentate gyrus are GABAergic 
neurons, forming multiple basket-like contacts around 
cell bodies and proximal dendrites, predominantly in the 
hilus and the granule cell layer (Carre and Harley 2000). 
In the hippocampal formation, septal afferent cells are 
topographically arranged, with most cells terminating 
in the hilus of the dentate gyrus and strata oriens and 
radiatum of the CA3 region of the hippocampus and su-
biculum. Few septal afferents terminate within the mo-
lecular layer of the dentate gyrus, presubiculum, para-
subiculum and entorhinal cortex (Milner, et al. 1999).

2.2. Septo-Hippocampal GABAergic Pathway

ɤ-Amino-butyric acid (GABA) is abundant in the bas-
al forebrain, septum, hippocampus, and cerebral cortex 
(Pepeu and Blandina 1998; Hajos, et al. 2004), where 
it appears to play a principal role in the modulation of 
cholinergic neurons (Farr, et al. 1999; Pepeu and Blan-
dina 1998; Moor, et al. 1998). The septo-hippocampal 
GABAergic component originates from fast-firing and 
fast-conducting neurons (Gartner, et al. 2001). The sep-
tum GABAergic neurons innervate hippocampal GAB-
Aergic neurons (Pascual, et al. 2004; Zarrindast, et al. 
2012; Henderson and Jones 2005; Van der Borght, et al. 
2005; De Paula, et al. 2012), some of which then project 
back to the MS/DB, producing the septo-hippocampo–
septal loop (Elvander-Tottie, et al. 2006). Stimulation 
of septo-hippocampal GABAergic afferents directly in-
hibits the hippocampal interneurons (Thinschmidt, et al. 
2005; Manns, et al. 2001; Moor, et al. 1998; Flood, et al. 
1998). Several studies have indicated that GABA acts 
on acetylcholine release by inhibiting the firing of basal 

forebrain cholinergic neurons which  project to the hip-
pocampus and cortex. The septal cholinergic neurons 
express subunits of the GABA receptors and receive 
GABAergic inputs likely from the local GABAergic 
and hippocampo-septal neurons (Moor, et al. 1998). 
Intra-septal injection of muscimol, a GABAA receptor 
agonist has reduced  the release and turnover of hippo-
campal acetylcholine (Pepeu and Blandina 1998; Moor, 
et al. 1998; Flood, et al. 1998) and the high-affinity cho-
line uptake [Moor, et al. 1998; Moor, et al. 1998; Flood, 
et al. 1998). In contrast, intraseptal infusion of bicucul-
line, a GABAA receptor antagonist, has increased the 
rate of hippocampal high-affinity choline uptake. Thus, 
GABA exerts a tonic inhibition of the cholinergic activ-
ity (Pepeu and Blandina 1998). The GABAergic septo-
hippocampal projections play a crucial part in the gen-
eration of hippocampal theta rhythm activity (Loreth, et 
al. 2012), which are critical for information encoding in 
the hippocampus (Stanley, et al. 2012).

2.3. Septo-hippocampal Glutamatergic Pathway

A glutamatergic septo-hippocampal connection has 
also been proposed to regulate the activity of septal neu-
rons projecting to the hippocampus (Cervera-Ferri, et al. 
2012; Roland and Savage 2009; Ransome and Hannan 
2012; Ogren, et al. 2008; Manns, et al. 2001; Khakpai, 
et al. 2012; Lawrence 2008). The N-methyl-D-aspartate 
(NMDA) receptor subtype of glutamate receptor are 
found in high density in the hippocampus and septum 
(Khakpai, et al. 2012). NMDA receptors of the medial 
septum and the hippocampal formation are implicated 
in cognitive performance, specifically in learning and 
memory (Elvander-Tottie, et al. 2006; Khakpai, et al. 
2012). Ogren et al. (2008) have shown that medial sep-
tal glutamatergic NMDA receptors contribute to the 
hippocampus-dependent learning in rat (Ogren, et al. 
2008). Glutamate as ligand has been shown to activate 
ionotropic (AMPA and NMDA receptors) and metabo-
tropic (type I) glutamate receptors (Elvander-Tottie, et 
al. 2006; Banerjee, et al. 2010), probably located on 
both cholinergic and GABAergic neurons. Glutamate 
potentially regulates the activity of septal neurons pro-
jecting to the hippocampus, since the MS/DB choliner-
gic and GABAergic neurons are synaptically innervated 
by vesicular glutamate transporter 2-immunoreactive 
glutamatergic boutons (Elvander-Tottie, et al. 2006). 

 3. Hippocampo-Septal Pathway 

The hippocampus has anatomical connections with 
various subcortical regions, such as the medial septum 
(Okada and Okaichi 2010; Rokers, et al. 2000;  Pede-
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monte, et al. 1998; Ginsberg and Martin 1998; Izqui-
erdo, et al. 2006) and the lateral septum (Pedemonte, 
et al. 1998; Luttgen, et al. 2005 ; Ginsberg and Mar-
tin 1998; Calfa, et al. 2007). Hippocampus utilizes this 
pathway to self-regulate the  cholinergic inputs. In par-
ticular, high level input pattern should cause activity in 
the hippocampal-septal pathway, which should in turn 
activate the cholinergic septo-hippocampal pathway 
and drive storage in the hippocampus (Rokers, et al. 
2000). The medial septum projects to the hippocampus 
almost entirely ipsilaterally via the fimbria-fornix. In 
return, the hippocampus projects to the medial septum 
directly via the fimbria-fornix and indirectly via the lat-
eral septum. The main hippocampus sub-regions, CA1, 
CA3 and the dentate gyrus have different anatomical 
relationships with the medial septum. While each of 
these sub-regions receives ipsilateral projection from 
the medial septum, only CA1 and CA3 project to the 
cholinergic and non-cholinergic neurons in the medial 
septum. Reciprocal connections with the medial septum 
suggest that CA1 and CA3 might be important com-
ponents of the septo–hippocampal system (Okada and 
Okaichi 2010). Specially, the CA3 and CA1 pyramidal 
cells innervate topographically distinct regions of the 
lateral septum. The CA3 pyramidal cells have confined 
extra-hippocampal projections, predominantly inner-
vating caudo-dorsal lateral septum. In contrast, the CA1 

gives rise to major projections to subiculum, the retro-
hippocampal area, the medial/limbic striatum including 
the nucleus accumbens, and the rostroventral septum 
(Gall, et al. 1998).

The hippocampus sends a GABAergic projection to 
the medial septum (Degroot and Treit 2002; Degroot 
and Treit 2003; Jinno and Kosaka 2002) and a glutama-
tergic projection to the lateral septum (Farr, et al. 1999; 
Degroot and Treit 2002; Degroot and Treit 2003; Trent 
and Menard 2010; Giovannini, et al. 1998). The GA-
BAergic pathway projects from non-pyramidal cells in 
the stratum oriens of the CA1–CA3 region and inner-
vates cholinergic and non-cholinergic neurons (Degroot 
and Treit 2002; Degroot and Treit 2003; Ujfalussy, et al. 
2007). The glutamatergic projection originates from py-
ramidal cells and terminates on the GABAergic neurons 
of the lateral septum (Degroot and Treit 2002; Degroot 
and Treit 2003). Exciting cholinergic receptors in the 
hippocampus could stimulate both  GABAergic and the 
glutamatergic projections. Stimulating the GABAergic 
projection would probably result in a reduction of sep-
tal activity. Similarly, exciting the glutamatergic path-
way would stimulate the GABAergic cells of the lateral 
septum and also results in a decrease of septal activity 
(Degroot and Treit 2002). Thus, the hippocampus could 
prevent the medial septum through either a direct or an 

Figure 1. Schematic illustration of the septo-hippocampal and hippocampo-septal pathways.  In these pathways, different 
neurotransmitters play important roles in memory processes. For details see text in Section 2. MS: medial septum; LS: lateral 
septum; DG: dentate gyrus.

Septo-hippocampal 
pathway

Type of 
Connection

Location of 
Neurotransmitter Projection Area Effect on Memory 

Process

Cholin ergic Medical septum (MS) hippocampus excitatory

GABA ergic Medical septum (MS) hippocampus inhibitory

Glutamat ergic Medical septum (MS) hippocampus excitatory

hippocampo- septal 
pathway

GABA ergic CA 1 and CA3 Medical septum (MS) inhibitory

Glutamat ergic CA 1 and CA3 Medical septum (MS) excitatory
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indirect pathway. The direct pathway is the GABAergic 
projection from the hippocampus to the medial septum 
and the indirect pathway is the excitatory glutamatergic 
projection from the hippocampus to the lateral septum, 
which in turn stimulates an inhibitory GABAergic pro-
jection to the medial septum. So, exciting the hippo-
campal cholinergic receptors could stimulate the direct 
hippocampal GABAergic projection, or the indirect glu-
tamatergic projection (Degroot and Treit 2003).

4. Septum

The septal nucleus is a telencephalic, subcortical struc-
ture and belongs to the limbic system (Rutz, et al. 2007) 
(fig. 2). The septal area is composed of two major re-
gions: lateral (lateral septal nuclei) and medial (medial 
septum/diagonal band of Broca nuclei (MS/DB)), each 
having different neuronal populations (Lecourtier, et al. 
2010; Castaneda, et al. 2005; Adams and Moghaddam 
2000). These sub-regions have been shown to differ 
in their afferent and efferent innervations, their intrin-
sic connectivity and their functional roles (Rutz, et al. 
2007). The medial division of the septum sends major 
cholinergic and GABAergic inputs to the hippocampus, 
while the lateral subdivision receives a strong glutama-
tergic input from the hippocampus and a GABAergic 
input from the MS/DB (Liu and Alreja 1998). In the 
septal region, GABA and acetylcholine are two main 
neurotransmitters (Castaneda, et al. 2005; Follesa, et al. 
1999) which play a role in the generation of hippocam-
pal rhythms and functions. Cholinergic neurons are lim-
ited to the medial septal subdivisions and are sensitive 
to age-related processes, especially to Alzheimer’s dis-
ease while GABAergic neurons are dispensed in both 
medial and lateral septum and appear to be age-resis-
tant (Castaneda, et al. 2005). The main septal efferent 
neurons being the septo-hippocampal cholinergic and 
GABAergic fibers, project to the hippocampus (Rutz, et 
al. 2007; Lecourtier, et al. 2010). The septal nuclei are 
considered relay locations of the sensory information 
which connect midbrain and brainstem structures such 
as the ventral tegmental area and hypothalamus, to fore-
brain limbic structures including the hippocampus and 
prefrontal cortex. The functional importance of these 
nuclei is evident from the complicated topographical or-
ganization of cholinergic, monoaminergic, peptidergic, 
and amino acid afferent and efferent systems to both 
medial and lateral septum (Adams and Moghaddam 
2000). The septum is recognized as important in pro-
cessing of sensory information (Adams and Moghad-
dam 2000), learning (Lamprea, et al. 2010; Flood, et 
al. 1998), memory  (Flood, et al. 1998; McNay, et al. 
2006), consolidation and retrieval of passive avoidance 

response (PAR) (Rashidy-Pour , et al. 1995), long-term 
potentiation (LTP) (Rashidy-Pour , et al. 1996), refer-
ence and working memory  (Rashidy-Pour , et al. 1996), 
theta rhythm generation (Pedemonte, et al. 1998; Mar-
tin, et al. 2007), fear (Degroot and Treit 2003), anxiety 
(Degroot and Treit 2003; De Paula, et al. 2012; Degroot 
and Treit 2003; Herman, et al. 2003 ; Ashabi, et al. 
2011) , stress, emotions, aggression (Rutz, et al. 2007), 
arousal, motivation, and vegetative functions (Lamprea, 
et al. 2010). 

4.1. Septum and Acetylcholine

The medial septal nucleus is rich in cholinergic re-
ceptors and is a putative target for the development of 
cholinomimetic cognitive-enhancing drugs. Septal neu-
rons, primarily cholinergic and GABAergic, innervate 
the entire hippocampal formation and regulate hippo-
campal formation physiology and function (Bunce, 
et al. 2003). Acetylcholine plays  an important role in 
learning, memory and attention processes (khakpai, et 
al. 2012). In the medial septum, cholinergic cells vary 
in size and shape, ranging from 10±30 µm in diameter 
and being elongated with a bipolar appearance to round 
with a multipolar appearance. The maximum cell densi-
ty is found in the midline area and the lateral parts of the 
medial septum, while the number of cholinergic cells 
decreases from anterior to posterior (Van der Zee and 
Luiten 1999). 

4.2. Septum and GABA

A large number of cells in the septal area contain 
GABA receptors (Rutz, et al. 2007). Anatomical studies 
suggest a critical role for GABAergic inhibitory syn-
aptic transmission in the septum (Carette, et al. 2001). 
Septal GABAergic neurons constitute a heterogeneous 
population of neurons, consisting of interneurons, pro-
jection cells and subpopulations of neurons which  dis-
play highly diverse firing repertoires (Gartner, et al. 
2001; Castaneda, et al. 2005). Subpopulations of septal 
GABAergic cells exhibit phasic or tonic, low or high fre-
quency firing repertoires (Castaneda, et al. 2005). Septal 
GABA receptor activation is known to impair memory 
formation, albeit the underlying mechanisms for this 
impairment remain unknown. For example, intra-septal 
injection of the GABA agonist muscimol impairs learn-
ing and memory in a variety of tasks, including visual 
discrimination, spontaneous and rewarded alternation, 
inhibitory avoidance, performance in the radial arm and 
water maze tasks. However, the process by which el-
evated septal GABA receptor activity disrupts memory 
is yet unclear (Degroot and Parent 2001).
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4.3. Septum and Glutamate

Glutamatergic neurons have been well described in 
the septal region (Cervera-Ferri, et al. 2012; Petrie, et 
al. (2000). The N-methyl-d-aspartate (NMDA) recep-
tor subtype of glutamate receptor retains an important 
function in neural physiology, synaptic plasticity and 
behavioral learning and memory process (Puma and 
Bizot 1998; khakpai, et al. 2012). NMDA receptors 
(NMDARs) are composed of NR1 and NR2 subunits 
(Berberich, et al. 2007). The NR2 subunit mRNA is ex-
pressed in the forebrain. Highest levels of expression 
are observed in the cerebral cortex, the hippocampal 
formation, the septum, the caudate-putamen, the olfac-
tory bulb, and the thalamus (Mori and Mishina 1995).

4.4. Septum and Dopamine

The septal region receives midbrain dopamine inner-
vations originated from the ventral tegmental area (Rutz, 
et al. 2007; Zarrindast, et al. 2012). These innervations 
make direct synaptic contacts with perikarya and den-
drites of septal neurons and have clearly been indicated 
to produce both excitatory and inhibitory postsynaptic 
responses (Adams and Moghaddam 2000).

4.5. Septum and Histamine

Histaminergic cell bodies are exclusively localized 
in the tuberomammillary nucleus of the hypothala-
mus where they project efferent fibers, predominantly 
ipsilaterally and with multifold arborizations, into the 
whole central nervous system, including the nucleus ba-
salis magnocellularis, MS/DB complex, amygdala, hip-
pocampus and cerebral cortex (Bacciottini, et al. 2001). 
Histamine ameliorates cholinergic cells activity in the 
nucleus basalis magnocellularis, MS/DB complex  and 
enhances acetylcholine release in the cortex and hippo-
campus upon in-vivo experiments. Some evidence have 
indicated that increased histamine H2-receptor activity 
in septum facilitates memory retention, and the reduced 
histamine receptor activity results in impaired memory 
process as evaluated by T-maze behavior (Yu, et al. 
2006). It has been reported that high densities of H1 re-
ceptors are present in the limbic system, including many 
nuclei of the hypothalamus, most septal areas, medial 
amygdala and several hippocampal areas. In contrast 
to H1 receptors, H2 receptors are present in low densi-
ties in septal regions, hypothalamic and thalamic nuclei 
(Brown, et al. 2001).

4.6. Septum and Serotonine

The forebrain serotonin system comprises two nuclei, 
the dorsal and median raphe nuclei. The dorsal raphe 
makes connections to those regions innervated by the 
dopamine system (such as the amygdala and the stria-
tum), and the median raphe does the same to the hip-
pocampus and septal nuclei, which are not major dopa-
minergic targets (Daw, et al. 2002). Projections from the 
median raphe neurons distribute to the septum terminate 
selectively within the MS/DB and lateral aspects of the 
lateral septum, while those to the hippocampal forma-
tion predominantly distribute to stratum lacunosum-
molecular of Ammon’s horn as well as  the granule cell 
layer and the adjacent inner molecular layer of the den-
tate gyrus (McKenna and Vertes 2001). Serotonin is rel-
atively high in the septum (Farr, et al. 1999) and inner-
vates the GABA interneurons of the medial and lateral 
septum (Farr, et al. 1999; McKenna and Vertes 2001). It 
appears that the release of 5-HT in the septal region is 
under the inhibitory influence of endogenously released 
opioid peptides (Rutz, et al. 2007). Several studies have 
confirmed that various 5-HT receptors such as 5-HT1A, 
the 5-HT2A and the 5-HT2B  are found in the lateral 
septal (Rutz, et al. 2007; De Paula, et al. 2012; Viana 
Mde, et al. 2008).

4.7. Septum and Adrenaline

Ascending adrenergic axons which originate from the 
locus coeruleus richly innervate numerous regions im-
plicated in stress integration, including hippocampus, 
bed nucleus of the stria terminalis, prefrontal cortex, 
hypothalamus, amygdala and the septum (Herman, et 
al. 2003). The highest densities of adrenergic receptor 
(α2-AR) in adult mouse CNS were found in septum and 
amygdala while these receptors were least abundant 
throughout the cortex and hippocampus (Sanders, et al. 
2006). 

4.8. Septum and Opioid

The medial septum and the lateral septum nuclei have 
a high density of opioid receptors, with afferents coming 
largely from the arcuate nucleus (McNay, et al. 2006; Le 
Merrer, et al. 2006). This hypothesis is supported by an-
atomical evidence showing that µ, δ and κ opioid recep-
tors are expressed throughout the septal area (Rutz, et 
al. 2007; Le Merrer, et al. 2006;  Le Merrer, et al. 2007; 
Drolet, et al. 2001). Furthermore, µ and δ-opioid recep-
tors are shown to modulate the release of acetylcholine 
in MS/DB complex (Gazyakan, et al. 2000).
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5. Hippocampus

Hippocampus as a part of limbic structure (Farahman-
dfar, et al. 2011), is a model system for the physiological 
analysis of neural systems (fig.3). Its structure is rela-
tively uncomplicated, because the principal neurons, 
the pyramidal and granule cells are each arranged in 
separate, compact layers, with dendrites emanating in 
a parallel manner (Carre and Harley 2000). The hippo-
campus proper is divided into division CA1, CA2, CA3 
and CA4 and is characterized by a narrow band of py-

ramidal cells (Woolf 1998). The hippocampal formation 
(HCF; hippocampus, subiculum and entorhinal cortex) 
is a critical neural substrate for memory in mammals. 
Widely divergent projections (cholinergic, GABAergic, 
peptidergic and glutamatergic) from MS/DB complex 
innervate the entire hippocampal formation. This input 
regulates hippocampal formation physiology and the 
associated memory function (Bunce, et al. 2003). The 
CA1 area of the dorsal hippocampus mediates neural 
plasticity processes involved in the acquisition, stor-
age and retrieval of memory within the hippocampus 

4.9. Septum and Cannabinoid

The different limbic structures, including septum nu-
clei, nucleus accumbens and amygdala contain mod-
erate levels of cannabinoid CB1 receptors (Denovan-
Wright and Robertson 2000; Gonzalez, et al. 2005).

4.10. Septum and Galanin 

 	 The neuropeptide galanin, a 29 amino acid 
peptide, which is co-localized with acetylcholine in the 
MS/DB neurons, is a possible modulator of septal cho-
linergic neurons (Elvander, et al. 2004).

Figure 2. Schematic diagram of the main afferent pathways in the septum nuclei. Septal cholinergic and GABAergic fibers 
main afferents to the hippocampus. For details see text in Section 4. The following abbreviations were used; MS: medial sep-
tum; LS: lateral septum; R: raphe nucleus; LC: locus coeruleus; VTA: ventral tegmental area; En. cortex: entorhinal cortex; Tub: 
tuberomammillary nucleus; Arc: arcuate nucleus. 
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(Khakpai, et al. 2012). The CA3 is more critical in orga-
nizing information in sequential order (Lee, et al. 2005). 
The hippocampus processes information not only from 
several cortical regions, but also from a number of sub-
cortical structures such as the medial septum, hypothal-
amus and the brain stem (Ogren, et al. 2008; Khakpai, 
et al. 2012). These structures modulate input to hippo-
campal formation and provide information about the 
“behavioral state” of the animal (Ogren, et al. 2008). 

Two main pathways projecting to the hippocam-
pus originate from the medial septum (Giovannini, et 
al. 1998; Elvander, et al. 2004), and the median raphe 
(Papp, et al. 1999). The septo-hippocampal pathway 
contains a cholinergic component and a GABAergic 
component, whereas the raphe–hippocampal projection 
consists of both serotonergic and non-serotonergic fibers 
(Papp, et al. 1999; Jackisch, et al. 2008). The hippocam-
pal neuropil is enriched by cholinergic, glutamatergic, 
GABAergic, noradrenergic and serotonergic axon ter-
minals, and the release of these neurotransmitters plays 
a modulatory role (File, et al. 2000). The hippocampus 
is known as a critical region for learning and memo-
ry [Farr, et al. 2000; Lu, et al. 2011; Morgado-Bernal 
2011; Nazari-Serenjeh, et al. 2011; Ohno and Watanabe 
1996), associative learning and memory (Bacciottini, et 
al. 2001), spatial learning (Watson and Stanton 2009), 
spatial memory (Okada and Okaichi 2010; Zoladz, et 
al. 2006; Izquierdo, et al. 1992), declarative memories 
(Lopes Aguiar, et al. 2008; Axmacher, et al. 2006), 
working memory (Izquierdo, et al. 1992; Khan and 
Muly 2011), episodic memory (Lee, et al. 2005), forma-
tion of memory (Kirby and  Rawlins 2003; Ridley, et 
al. 1995), encoding, short-term and long-term memory 
(Riedel and Micheau 2001), acquisition (Okada and 
Okaichi 2010), consolidation and retrieval cognition-
related processes such as arousal, attention (Gessa, et al. 
1998), anxiety (File, et al. 2000; Balazsa, et al. 2008), 
and emotional processing (Drago, et al. 2011), synaptic 
plasticity (Farahmandfar, et al. 2011), long-term poten-
tiation (LTP) (Ohno and Watanabe 1996; Sanabria, et al. 
2002; Michaelis 1998), integration of information arriv-
ing from different sensory and associative cortical areas 
(Gulyas, et al. 1999) and plays a time-limited role in 
the permanent storage of memory (Li, et al. 2005). The 
notion that the dorsal hippocampus plays an important 
role in the learning and memory of spatial tasks while 
the ventral Hippocampus is principally involved in the 
modulation of fear and anxiety has received strong evi-
dence (Calfa, et al. 2007). 

5.1. Hippocampus and Acetylcholine

The entire hippocampal formation is innervated by 
cholinergic neurons derived from neurons located in the 
MS/DB fibers, which is a part of the septo-hippocampal 
pathway (Jafari-Sabet 2011). Hippocampal acetylcholine 
has been associated with arousal, attention (Giovannini, 
et al. 2001), learning (Thiel, et al. 1998), memory (Li, et 
al. 1997; Adams and Moghaddam 2000; Blokland 1995; 
Mikami, et al. 2007), LTP (Power, et al. 2003; Thiel, et 
al. 1998), and other cognitive functions (Elvander, et al. 
2004). It has been suggested that hippocampal learning 
related to its the cholinergic input (Rokers, et al. 2000; 
Micheau and Van Marrewijk 1999).  Neuropharmaco-
logical studies have shown that memory enhancement 
increases the hippocampal acetylcholine, while memory 
impairment causes the opposite. Thus hippocampal ace-
tylcholine seems essential to the normal memory func-
tion (Khajehpour, et al. 2008). In particular, acetylcholine 
plays a critical role in hippocampal mode shifting be-
tween encoding and retrieval. As such, high levels of ace-
tylcholine would allow acquisition of new information, 
while low level of acetylcholine would enable recall of 
previously stored memories (Klinkenberg and Blokland 
2010; Blake, et al. 2011). Both nicotinic acetylcholine re-
ceptors (nAChR) and muscarinic acetylcholine receptors 
(mAChR) are expressed in the hippocampus (Parfitt, et 
al. 2012). Extensive studies suggest that the hippocampal 
nAChR and mAChR play central roles in learning and 
memory processes (Khajehpour, et al. 2008). In the hip-
pocampus, M1 and M3 receptors are mainly expressed 
in principal cells, M2 and M4 on interneurons, and M5 
receptors are very low levels (Drever, et al. 2010). The 
cholinergic system regulates hippocampus dynamics on 
a continuum between two states: a state in which new 
information is stored (high level of extrinsic activity) and 
a state in which this information is reactivated for recall/
retrieval (high level of intrinsic activity). The choliner-
gic system is tightly connected with the GABAergic and 
glutamatergic transmitter systems. In the hippocampus, 
neocortex and amygdala (and numerous other CNS ar-
eas), cholinergic innervation frequently terminates upon 
GABAergic fibers indicating an extensive neuronal con-
nectivity of the cholinergic and inhibitory GABAergic 
system. It has been suggested that GABA uptake by ace-
tylcholine terminals enhances the release of acetylcholine 
in the hippocampus. Moreover, acetylcholine-mediated 
facilitation of hippocampal activity via mAChRs  has 
been shown to heighten the responsiveness of NMDA 
receptors, most likely via enhancement of the intracel-
lular Ca2+ levels, which could be realized by mAChR-
induced PI-turnover (Van der Zee and Luiten 1999).
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5.2. Hippocampus and GABA

GABA is found in the hippocampus in local and pro-
jecting systems (Giovannini, et al. 1998). Hippocampus 
has numerous GABAergic neurons (Farahmandfar, et 
al. 2011) and these neurons originate from the septum 
(Drake and Milner 1999). GABA exerts a controlling 
effect on the balance between excitability and inhibi-
tory states in the cortex and hippocampus. Furthermore, 
GABAergic neurons in the hippocampus may partici-
pate in the process of learning and memory (Rezayof, 
et al. 2007). 

5.3. Hippocampus and Glutamate 

The main glutamatergic input to the hippocampus is 
provided by pyramidal cells in layer II and III of the en-
torhinal cortex (Van der Zee and Luiten 1999). NMDA 
glutamate receptors are widely distributed in the brain. 
Although the highest concentrations of NMDA recep-
tors are present in the hippocampal CA1 area (Li, et al. 
1997; Riedel, et al. 2003; Watson and Stanton 2009; 
Jafari-Sabet 2011), these receptors are also present in 
many brain regions including thalamus, cortex, amygda-
la, caudate nucleus, septum, nucleus accumbens (Jafari-
Sabet, et al. 2005), basal ganglia, cerebellum and spinal 
cord (Riedel, et al. 2003). Intracerebroventricular infu-
sion of NMDA and a selective NMDA receptor  agonist 
causes an increase in acetylcholine level and injection 
of acetylcholine can potentiate NMDA-mediated syn-
aptic activity in the hippocampus which is considered 
a key factor responsible for the learning and memory. 
Along these lines, studies have implicated that NMDA 
antagonists amplify the acetylcholine release through 
modulation of the GABA receptors function (Li, et al. 
1997). NMDA receptors in the hippocampus are very 
important in the regulation of synaptic plasticity such as 
LTP (Berberich, et al. 2007; Ohno and Watanabe 1996; 
Potier, et al. 2000; Tsien, et al. 1996; Woodside, et al. 
2004), learning (Larkin, et al. 2008; Stephens, et al. 
2011; Huerta, et al. 2000), spatial and non-spatial learn-
ing (Elvander-Tottie, et al. 2006; Roesler, et al. 2003; 
Morris, et al. 1989; Moyano, et al. 2005), working 
memory (Levin, et al. 2003; Ohno and Watanabe 1998), 
formation of aversive memory (Roesler, et al.  2003), 
object recognition memory (De Lima, et al. 2005), 
short- and long-term memory (Jafari-Sabet 2011; Ja-
fari-Sabet, et al. 2005) and cognitive processes (Ogren, 
et al. 2008). As for NMDA receptors, AMPA receptors 
are widely but discretely dispensed in the rat brain with 
high densities found in the hippocampal formation (i.e. 
stratum radiatum of the CA1 subfield and molecular 
layer of the dentate gyrus) and superficial layers of the 
neocortex (Le Jeune, et al. 1996).

Furthermore, cumulative evidence suggest  that 
mGlu1 receptors are important for learning tasks as-
sociated with hippocampal function. based of some 
reports, mGluRs are closely correlated with the cholin-
ergic system for hippocampal neuronal activities but, 
little is known about the interaction between hippocam-
pal mGlu1 receptors and cholinergic systems in learning 
and memory (Mikami, et al. 2007).

5.4. Hippocampus and Dopamine

The hippocampus receives dopaminergic afferents 
from mesolimbic structures such as the ventral teg-
mental area (Nazari-Serenjeh, et al. 2011; Mahmoodi, 
et al. 2010), and substantia nigra pars compacta (Mah-
moodi, et al. 2010). Activation of the ventral tegmental 
area leads to dopamine release in the hippocampus and 
seems to have a critical role in the hippocampus plastic-
ity. In contrast, the hippocampus is indirectly connected 
to the ventral tegmental area through a polysynaptic 
pathway involving the subiculum, nucleus accumbens, 
and ventral pallidum (Nazari-Serenjeh, et al. 2011). The 
hippocampus and the ventral tegmental region form a 
dopaminergic loop which may regulate the flow of in-
formation into the long-term memory and affect hip-
pocampal-dependent learning (Nazari-Serenjeh, et al. 
2011; Mahmoodi, et al. 2010). Dopaminergic receptor 
activation is crucial for consolidating LTP in CA1 re-
gion of the hippocampus (Swanson-Park, et al. 1999). 

5.5. Hippocampus and Histamine

The tuberomammillary nucleus is the main source of 
neuronal histamine, which projects to numerous brain 
regions (Eidi, et al. 2003) including neostriatum, hip-
pocampus, tectum (Zarrindast, et al. 2002), septum 
(Brown, et al. 2001), nucleus accumbens, caudate puta-
men, olfactory tubercles, amygdale and thalamus (Pil-
lot, et al. 2002). The hippocampus receives only modest 
histaminergic innervations (Brown, et al. 2001; Zarrin-
dast, et al. 2010; Zarrindast, et l. 2006). Some evidence 
have shown that the hippocampal histaminergic system 
is involved in mediating anxiety (Zarrindast, et al. 2006; 
Zarrindast, et al. 2008), memory and learning mecha-
nisms in the rat (Yu, et al. 2006). 

5.6. Hippocampus and Serotonin

Serotonin (5-HT) is a main monoamine neurotrans-
mitter in the central nervous system. Serotonergic neu-
rons innervate a variety of brain regions such as the 
hippocampus (Balazsa, et al. 2008; Micheau and Van 
Marrewijk 1999). Serotonergic fibers arising from the 
dorsal raphe heavily innervate the prefrontal cortex, 
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lateral septum, amygdala, striatum and ventral hippo-
campus (Hensler 2006). Moreover, some areas of the 
mammalian brain receive both serotonergic and cholin-
ergic innervations (e.g., the hippocampus and the corti-
cal mantle) or comprise cholinergic nuclei that receive 
extrinsic serotonergic innervations (e.g., basal forebrain 
nuclei, such as the septum) (Jeltsch-David, et al. 2008). 
It is probable that serotonergic and cholinergic systems 
together modulate hippocampal function (Stancampi-
ano, et al. 1999). 

On the other hand, Farr et al. (2000) indicated thatei-
ther directly or indirectly, the enhanced serotonin recep-
tor activity may increase the firing rate of the GABA 
interneurons in the hippocampus. Serotonin projections 
from the raphe nuclei make multiple synaptic contacts 
with the hippocampal GABAergic interneurons, which 
synapses on pyramidal cells (Farr, et al. 2000). 

5.7. Hippocampus and Adrenalin

The hippocampal formation is innervated by norad-
renergic fibers from the locus coeruleus (Herman, et al. 
2003; Jackisch, et al. 2008; Swanson-Park, et al. 1999; 
Azami, et al. 2010; Oropeza, et al. 2007). Noradrenaline 
increases memory formation when administered into 
different brain regions including hippocampus, entorhi-
nal cortex and amygdale (Azami, et al. 2010). More-
over, Noradrenaline promotes the late phase of LTP in 
the dentate gyrus (Swanson-Park, et al. 1999). 

5.8. Hippocampus and Opioid

Hippocampus has numerous opiate receptors (Farah-
mandfar, et al. 2011; Khajehpour, et al. 2008; Jafari-
Sabet and Jannat-Dastjerdi 2009). The presence of en-
dogenous opioid peptides, enkephalin and dynorphin 
and different opioid receptor subtypes have been dem-
onstrated in different regions including CA1 area of rat 
hippocampus (Pourmotabbed, et al. 1998; Skyers, et al. 
2003). Several lines of evidence suggest that there is a 
close relationship between the cholinergic system and 
opioid receptors in memory performance. For instance, 
opiates decrease the hippocampal acetylcholine release 
(Vilpoux, et al. 2002). Some reports have denoted that 
the presynaptic μ-(in the hippocampus) (Drolet, et al. 
2001; Gazyakan, et al. 2000; Khajehpour, et al. 2008), 
and δ-opioid receptors (in the striatum) (Denovan-
Wright and Robertson 2000) mediate inhibition of ace-
tylcholine release (Khajehpour, et al. 2008). μ-opioid 
receptors-selective agonists can inhibit acetylcholine 
release in hippocampal slices suggesting that cholin-
ergic terminals may contain μ-opioid receptors. On the 

other hand, cholinergic activation can pre-synaptically 
modulate the release of enkephalin in the dentate gyrus. 
The overlapping distribution of μ-opioid receptors-con-
taining interneurons and cholinergic neurons in the hip-
pocampus suggest that these two systems actin synergy 
so that to regulate hippocampal functions (Kaplan, et 
al. 2004). μ-opioid receptors are present almost exclu-
sively on inhibitory interneurons (primarily GABAer-
gic) in the CA1 area of the hippocampus. Activation 
of µ-opioid receptors has a net excitatory effect in the 
hippocampal formation through inhibition of GABA-
containing interneurons (Drake and Milner 1999). It 
is well known that activation of μ-opioid receptors al-
ters information coding, synaptic plasticity, and spatial 
memory CA1 region of the hippocampus (Jafari-Sabet 
and Jannat-Dastjerdi (2009). 

5.9. Hippocampus and Cannabinoid

CB1 cannabinoid receptors are widely expressed 
throughout the brain, more abundantly in the basal gan-
glia, cerebellum, neocortex, the hippocampus, nucleus 
accumbens, septum nuclei and amygdaloid nuclei 
(Denovan-Wright and Robertson 2000; Gessa, et al. 
1998; Fernandez-Ruiz, et al. 2000; Romero, et al. 1998; 
El Khoury, et al. 2012). The high densities of CB1 re-
ceptors in hippocampus is related to the frequently de-
scribed disruptive effects of cannabinoids on memory 
(Gonzalez, et al. 2005; Svizenska, et al. 2008; Ameri 
1999; Yim, et al. 2008), and cognition (Svizenska, et al. 
2008; Ameri 1999). The  CB1 receptors of the hippo-
campus are mostly located in GABAergic, inhibitory in-
terneurons (De Oliveira Alvares, et al. 2008). It has been 
shown that the  activation of CB1 receptors through the 
endogenous agonists, endocannabinoids, negatively 
modulates the release of different neurotransmitters 
(including GABA (Zarrindast, et al. 2010; Cinar, et al. 
2008; Zavitsanou, et al. 2 010; Morales, et al. 2008; 
Zachariou, et al. 2007; Beinfeld and Connolly 2001), 
dopamine (Zavitsanou, et al. 2010; Beinfeld and Con-
nolly 2001), acetylcholine (Zarrindast, et al. 2010; Za-
vitsanou, et al. 2010; Beinfeld and Connolly 2001; Vi-
veros, et al. 2006), serotonin (Zavitsanou, et al. 2010), 
glutamate (Zarrindast, et al. 2010; Ameri 1999; Yim, 
et al. 2008; Zavitsanou, et al. 2010), and noradrenaline 
(Zarrindast, et al. 2010; Oropeza, et al. 2007; Ameri 
1999). These changes occur  in many brain regions in-
cluding those involved in cognition, memory and main-
tenance of mood, such as the hippocampus and the pre-
frontal cortex (Zavitsanou, et al. 2010).
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6. Conclusion

The current review article compiled insights from dif-
ferent studies investigating the role the septo–hippo-
campal pathway in learning and memory. An attempt 
has been made to describe different neurotransmitters 
within the septum and the hippocampus which modu-
late learning and memory in the septo–hippocampal 
system. To do so, the outcome of various experimental 
studies were discussed here.

The septo-hippocampal system is important for learn-
ing and memory-related behaviors (Thinschmidt, et al. 
2005). Some studies indicate that septo-hippocampal 
cholinergic fibers are under continuous inhibition by 
endogenous GABA. GABA acts on hippocampal ace-
tylcholine release largely through GABA receptors in 
the medial septum and on cholinergic nerve terminals 
in the hippocampus (Moor, et al. 1998). One possibil-
ity is that septal GABA receptor activation might indi-
rectly influence the learning and memory by modulating 
cholinergic function in the hippocampus (Degroot and 
Parent 2001). On the other hand, hippocampal GAB-
Aergic interneurons are innervated by septal choliner-
gic neurons and their excitability can be modulated by 
acetylcholine via muscarinic (mAChRs) and nicotinic 
receptors (nAChRs) (Potier, et al. 2006).

Several lines of evidence have  implicated that gluta-
matergic inputs to the septum exert a tonic excitatory 

influence on septal GABAergic activity, thus they might 
indirectly inhibit the septal-hippocampal cholinergic 
neurons (Cervera-Ferri, et al. 2012; Giovannini, et al. 
1998; Ayala-Grosso, et al. 2004). Importantly, Ogren  et 
al. (2008) have shown that the medial septal glutamater-
gic NMDA receptors contribute to hippocampal-depen-
dent learning in the rat (Ogren, et al. 2008).

The ascending dopamine pathway to the septal area 
may play a role in modulating septo-hippocampal 
pathway during conditions of arousal and stress. Sev-
eral studies have pointed out that the overlap between 
cholinergic and dopaminergic fibers in the lateral septal 
nucleus may help modulating the septo-hippocampal 
cholinergic activity via the medial septal nucleus (Ad-
ams and Moghaddam 2000). Even though, some stud-
ies have indicated that dopamine exerts an inhibitory 
influence on septo-hippocampal cholinergic activity 
(Hellweg, et al. 2001) while D1/5 receptors were shown 
to stimulate septo-hippocampal cholinergic projection 
(Jeltsch-David, et al. 2008).

Histamine affects the hippocampal formation indirect-
ly via its effects on the medial septum, which provides 
the cholinergic input to the hippocampal formation. 
Histamine strongly depolarizes the cholinergic septal fi-
bers, mainly through the histamine H1 receptors, which 
should lead to an increased acetylcholine release in the 
hippocampal formation (Le Merrer, et al. 2006; Svizen-
ska, et al. 2008; Beinfeld and Connolly 2001). 

Figure 3. Schematic illustration of the sites sending projections into the hippocampus. For details see text in Section 5. MS: 
medial septum; LS: lateral septum; R: raphe nucleus; LC: locus coeruleus; VTA: ventral tegmental area; En. cortex: entorhinal 
cortex; Tub: tuberomammillary nucleus; Arc: arcuate nucleus.
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Serotonergic neurons are known to innervate septo-
hippocampal neurons (Hellweg, et al. 2001). Several 
investigators suggest that 5-HT released from raphe 
afferents in septo-hippocampal neurons may affect the 
excitability of septal cholinergic and GABAergic fibers 
via postsynaptic 5-HT1A receptors (Rutz, et al. 2007; 
Ogren, et al. 2008) and thereby influence hippocam-
pal functions such as learning, memory and emotional 
state (Luttgen, et al. 2005; Ogren, et al. 2008; Yim, et al. 
2008). Furthermore, 5-HT2A receptor is present in GA-
BAergic and cholinergic septo-hippocampal neurons in 
the MS/DB and in the hippocampus. Moreover, the ac-
tivation of 5-HT2A receptors in septal cholinergic cells 
could modulate hippocampal transmission in multiple 
ways (Luttgen, et al. 2004). 

Noradrenergic fibers are known to have a stimulatory 
action on the septo-hippocampal cholinergic pathway, 
which results directly and/or indirectly from a disin-
hibitory action of noradrenaline in the hippocampus, for 
instance via an enhancement of glutamate action (Hell-
weg, et al. 2001).

Activation of opioid receptors in the medial septum 
nucleus appears to inhibit a population of GABAergic 
interneurons which influence both cholinergic and GA-
BAergic cells projecting to the hippocampus. Intra-sep-
tal infusions of opioid agonists impair learning, memory 
and reduce acetylcholine release in the hippocampus 
(McNay, et al. 2006).

The high level of cannabinoid CB1 receptor which 
present in the septum and diagonal band of Broca, where 
hippocampal cholinergic neurons originate, supports 
the contention that cannabinoid receptors are located on 
cholinergic nerve terminals (Gessa, et al. 1998).

 Galanin-containing cholinergic neurons in the MS/DB 
region project to the ventral hippocampus in rat (Semba 
2000). Galanin administrated into the medial septum 
increased the hippocampal acetylcholine release and 
facilitated the spatial learning, suggesting that septal 
galanin does not inhibit but excites septo-hippocampal 
cholinergic neurons (Elvander, et al. 2004). 

The hippocampo-septal cells receive local axon col-
laterals from the pyramidal cells enabling them to ef-
fectively transfer the pyramidal cell synchrony to the 
septum. On the other hand, hippocampal GABAergic 
inhibition of MS/DB fibers could be strong enough to 
suppress MS/DB neurons firing, e.g. during the hip-
pocampal sharp wave or theta oscillation. Noting the 
above, changes in hippocampal oscillatory activity may 

shift the oscillatory activity of MS/DB neurons to the 
same direction without significantly impacting their fir-
ing rate (Ujfalussy, et al. 2007).
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