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Introduction: The impaired mitochondrial function in neurons is a principal abnormality in 
many medical conditions. Behavioral changes are the key aspects that emerge under these 
conditions. In the current study, we investigated whether social interactions are influenced 
by 3-nitropropionic acid (3-NP)-induced mitochondrial failure. We also assessed changes in 
glucocorticoid receptor (GR) and FKBP5 protein levels, cytochrome contents, and monoamine 
oxidase (MAO) A and B activities in the striatum (ST), hippocampus (HIP), and prefrontal 
cortex (PFC) of the subjects.

Methods: Adult male Wistar rats were treated with 3-NP. Then, the social and non-social 
behaviors of 3-NP-treated rats were investigated. Different dissected brain regions were 
considered regarding GR and FKBP5 protein levels, cytochrome contents, and MAO-A 
and MAO-B. 

Results: We found a significantly decreased duration of social behaviors and impaired non-
social behavioral tests. We detected a decreasing trend in GR and FKBP5 protein levels. 
Moreover, cytochrome contents and MAO A and B activities decreased in the dissected 
brain regions.

Conclusion: Impaired social/non-social behaviors and decreased levels of investigated 
molecular variables in the regions mentioned above after 3-NP treatment might point to 
processes connecting mitochondrial failure to behavioral impairment, particularly social type.

Article info:
Received: 02 Jun 2024
First Revision: 06 Aug 2024
Accepted: 07 Aug 2024
Available Online: 01 Mar 2025

Keywords:
3-Nitropropionic acid (3-NP), 
Glucocorticoid receptor 
(GR), FKBP5, Cytochrome, 
Monoamine oxidase (MAO), 
Social behavior

Citation Nasehi, F., Khodagholi, F., Kaveh, N., Maleki, A., Zeinaddini-Meymand, A., & Mousavi, M. A., et al. 
(2025). Mitochondrial Toxicity by 3-NP Enhanced Susceptibility to Defective Social Behaviors in Male Wistar Rats. 
Basic and Clinical Neuroscience, 16(2), 489-504. http://dx.doi.org/10.32598/bcn.2024.6604.1

 http://dx.doi.org/10.32598/bcn.2024.6604.1

Use your device to scan 
and read the article online

A B S T R A C T

Copyright © 2025 The Author(s); 
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-By-NC: https://creativecommons.org/licenses/by-nc/4.0/legalcode.en), 
which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

* Corresponding Authors: 
Fariba Khodagholi, PhD.
Address: Neuroscience Research Center, Shahid Beheshti University of 
Medical Sciences, Tehran, Iran.
Tel: +98 (21) 22429768
E-mail: khodagholi@sbmu.ac.ir

http://bcn.iums.ac.ir/
https://orcid.org/0000-0001-8720-5081
https://orcid.org/0000-0002-4911-4530
https://orcid.org/0000-0003-1033-4509
https://orcid.org/0000-0003-1334-8527
https://orcid.org/0000-0002-5505-4503
https://orcid.org/0000-0001-6919-688X
https://orcid.org/0000-0003-3589-7324
https://orcid.org/0000-0002-9787-5721
https://bcn.iums.ac.ir/
http://bcn.iums.ac.ir/page/74/Open-Access-Policy
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en
https://www.ncbi.nlm.nih.gov/mesh/68060825


Basic and Clinical

490

March & April 2025, Vol 16, No. 2

1. Introduction

ormal mitochondrial function is a pivotal 
player in maintaining the cellular physi-
ological state through mechanisms such as 
providing energy and buffering cytosolic 
Ca2+ concentration (Rizzuto et al., 2012). 
Many biochemical reactions depend on or 
can be modulated by the levels of cellular 
adenosine triphosphate (ATP) and Ca2+. 

Therefore, the mitochondrial function is a hub that indi-
rectly sends modulatory signals to the cellular machin-
ery. The importance of mitochondria in neurons is even 
more prominent because of their high energy demands 
(Hyder et al., 2013). Mitochondrial failure in neurons 
can affect their excitability, neurotransmitter release, 
and viability (Kann & Kovacs, 2007).

In several medical settings, the main challenge is de-
creased mitochondrial function in neurons. It may be 
acute and have an extrinsic origin, like when the oxy-
gen and or glucose supply is disturbed in the brain (e.g. 
ischemic and hemorrhagic stroke, perinatal hypoxia, 
and prolonged cardiopulmonary resuscitation), or may 
be chronic and intrinsic, like when the mitochondrial 
energetic capacity of neurons is reduced (e.g. aging and 

neurodegenerative diseases). These functional losses 
decrease the level of available ATP, increase reactive 
oxygen species, and disturb Ca2+ hemostasis (Yin et al., 
2014). The consequences of these turbulent events in 
the brain can be observed at the cellular and behavioral 
levels.

One of the obvious features that can be significantly 
influenced by altered mitochondrial function is behav-
ioral change (social or non-social type). Significantly 
altered behaviors have been reported in several models 
with impaired mitochondrial function (Kupsch et al., 
2014; Pacelli et al., 2010; Watson et al., 2014). One 
model characterized by impaired mitochondrial func-
tion is the 3-nitropropionic acid (3-NP) model, which 
is widely used to imitate Huntington disease (HD) 
symptoms (Borlongan et al., 1997). Although several 
studies have investigated different behavioral changes, 
including altered locomotor activity and memory, in 
the context of 3-NP exposure (Dhir et al., 2008; Jain & 
Gangshettiwar, 2014; Kumar et al., 2010; Thangarajan 
et al., 2014), evaluation of social interaction and other 
non-social behaviors is quite limited.

Highlights 

● The 3-NP treatment impairs social/ non-social behaviors in adult male Wistar rats.

● The 3-NP treatment reduces the GR and FKBP5 protein levels in ST, HIP, and PFC. 

● The 3-NP treatment reduces cytochrome contents in ST, HIP, and PFC.

● The 3-NP treatment reduces monoamine oxidase A and B activities in ST, HIP, and PFC.

Plain Language Summary 

Proper brain function depends on a sufficient energy supply, with the mitochondrial electron transport chain 
playing a crucial role in generating this energy. Impairment in mitochondrial function can disrupt brain cell functions 
at the molecular level and ultimately lead to behavioral impairments. In this study, we investigated the effects of 
3-nitropropionic acid (3-NP), a mitochondrial toxin, on social interactions in male Wistar rats. We also examined 
changes in glucocorticoid receptor (GR) and FKBP5 protein levels, cytochrome content, and monoamine oxidase A and 
B (MAO-A and MAO-B) activities within different brain regions. The findings revealed that both social and non-social 
behaviors were significantly impaired following 3-NP administration. Additionally, we observed a decreasing trend in 
GR and FKBP5 protein levels, cytochrome content and MAO-A/B activities across the analyzed brain regions. These 
results suggest that mitochondrial dysfunction contributes to both behavioral and molecular disturbances in the brain. 
This may help explain the behavioral abnormalities observed in neurodegenerative conditions such as Huntington’s 
disease. Furthermore, our findings highlight the potential of targeting mitochondrial health as a novel approach to 
improving social behaviors in related disorders.

N
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The activity of the hypothalamic-pituitary-adrenal 
(HPA) axis is a modulator of behavior (Iniguez et al., 
2014; Packard et al., 2016). For example, overactivity 
of the HPA axis has adverse behavioral consequences 
like anxiety (Faravelli et al., 2012), depression (Pari-
ante & Lightman, 2008), and impaired social behaviors 
(Bagosi et al., 2017). The brain’s glucocorticoid recep-
tor (GR) participates in the feedback loop and con-
trols HPA axis activity. Alongside GR, FK506 binding 
protein 5 (FKBP5) is a cellular protein that modulates 
GR function (Zannas et al., 2016). Despite these roles, 
how these proteins respond to mitochondrial failure 
and complex II inhibition, in particular, is unclear. 
Measuring the content of mitochondrial cytochrome 
may also help to better understand the processes after 
complex II inhibition in the electron transport chain.

Monoamine oxidase (MAO) enzymatic activity is an-
other possible agent that can have significant impacts on 
controlling behavior and contribute to the pathogenesis 
of a wide range of mental disorders and neurodegen-
erative diseases, from antisocial personality disorder to 
Parkinson’s disease (Bortolato & Shih, 2011). Socio-
behavioral disorders due to the disruption of mitochon-
drial processes can be related to altering MAO activity 
(Bortolato et al., 2013). 

The current study investigated whether mitochondrial 
complex II inhibition influences social or non-social 
behaviors. To better understand the underlying mecha-
nisms, we measured the levels of GR, FKBP5 protein, 
cytochrome contents, and MAO A and B (MAO-A and 
MAO-B) activities in the striatum (ST), hippocampus 
(HIP), and prefrontal cortex (PFC) of rats after 3-NP 
treatment. The findings of this study suggest a relation-
ship between mitochondria and social behavior.

2. Materials and Methods

Study animals

Adult male Wistar rats (220-240 g) were obtained from 
the Laboratory Animal Center of Pasteur Institute, Teh-
ran, Iran. Rats were kept under controlled environmental 
conditions of constant temperature (23±2 °C) and a 12 h 
light/12 h dark cycle. The animals had access to food and 
water ad libitum. 

Drug administration

The animals were divided into two groups: Control 
(which received the vehicle daily) and treatment. 3-NP 
(Sigma-Aldrich, St. Louis, MO, USA) was dissolved 

in saline. The rats in the treated group received 3-NP 
treatment (20 mg/kg/d, intraperitoneally [IP]) for five 
consecutive days (n=8-10/group), as it was approved for 
the HD model.

Behavioral tests

Before conducting the social interaction test, the ani-
mals were habituated in a row in an open field arena 
(OF). On the test day, the rats were separately segregated 
into small cages in the test room for three hours. After 
that, two unfamiliar rats were placed in opposite corners 
of the OF arena, and their activities were videotaped for 
10 minutes. The test was recorded using a video camera 
suspended 2 m above the testing apparatus. Immediately 
after behavioral testing, the animals were returned to 
their cages, and OF was wiped entirely with 70% ethanol 
and tissue paper to reduce any lingering olfactory cues.

The observed behaviors were divided into the follow-
ing two categories. Social behaviors include social nose 
contact (advertent nose-to-body contact with the other 
rodent), genital investigation (sniffing or assessing the 
anogenital region), and play behaviors (chasing the other 
rodent within a tail length distance), wrestling (harsh and 
tumble play) and pouncing (one rodent nosing or rub-
bing the nape of the other one) (Mikulecká et al., 2014). 
Non-social behaviors include (Manfré et al., 2018) ex-
ploring (walking around the field and sniffing the walls 
and floor), self-grooming (any grooming behavior that a 
rodent performs in a normal sequential pattern to clean its 
own body and fur) (Silverman et al., 2010), rearing (the 
total time that the rodent temporarily stands on its hind 
legs with the intention exploring) (Valvassori et al., 2017), 
solitary behavior (activities that are not aimed toward an-
other rat), and immobility (del Angel Ortiz et al., 2016; 
Lorbach et al., 2018). Behaviors were blindly scored and 
assessed by two independent observers for each animal. 
The time spent by two rats engaging in social behaviors, 
including play behavior, genital investigation, and social 
nose contact, was also calculated to assess their total so-
cial behavior (Lech et al., 2021).

Tissue preparation

After assessment of behavioral tests, rats were eutha-
nized by CO2 asphyxiation and decapitated. The brains 
were removed, ST, HIP, and PFC were dissected on ice, 
frozen in liquid nitrogen, and then stored at -80 °C for 
further molecular analysis.
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Western blotting 

Different dissected brain regions (ST, HIP, and 
PFC), based on the Paxinos and Watson’s stereotax-
ic atlas, were homogenized in a lysis buffer (Roche, 
Penzberg, Germany). The Bradford colorimetric 
method was used to determine protein concentration 
(Bradford, 1976). Sixty micrograms of total protein 
were loaded on sodium dodecyl sulfate (SDS)-poly-
acrylamide gels and were separated by electrophore-
sis. Proteins were electrotransferred onto polyvinyli-
dene difluoride (PVDF) membranes. Membranes 
were blocked and incubated with primary antibody 
overnight at 4 °C and then with secondary antibody 
for 90 minutes. Immunoreactive polypeptides were 
revealed by enhanced chemiluminescence reagents. 
The protein bands were analyzed by ImageJ soft-
ware and normalized to β-actin as a housekeeping 
protein. We used the primary, including GR, FKBP5, 
and β-actin (1:1000, Cell Signaling Technology, 
Beverly, MA, USA) and secondary HRP-conjugated 
anti-rabbit antibodies ‎(1:3000, Cell Signaling Tech-
nology, Beverly, MA, USA)‎.

Cytochrome measurements

Williams’s method (1964) was applied to determine the 
content of various cytochromes in isolated mitochondria 
(Clark & Nicklas, 1970). A double-beam scanning spec-
trophotometer was used to get the cytochrome spectra of 
the mitochondria. Small amounts of sodium dithionate 
and hydrogen peroxide were added to obtain the reduced 
minus-oxidized spectra (Jones & Poole, 1985; Kumar et 
al., 2008; Mehrotra et al., 2015).

MAO-A and MAO-B activities

To estimate MAO-A activity, the sample was mixed 
with a buffer containing sodium phosphate buffer and 
5-hydroxytryptamine (4 mM). The change in absor-
bance was recorded at a wavelength of 280 nm against 
the blank. The sample was mixed with sodium phos-
phate buffer and benzylamine (100 mM) to estimate the 
MAO-B activity. Then, absorbance was recorded at a 
wavelength of 249.5 nm against the blank (Dhingra & 
Goyal, 2008; Saleem et al., 2023).

Data analysis

All the results were expressed as Mean±SEM. 
The normal distribution of data was checked using the 
Kolmogorov–Smirnov test. The data were analyzed us-
ing an unpaired t-test. The statistical analyses were per-

formed using GraphPad Prism software, version 9.5.1 
(San Diego, CA, USA). Statistical significance was ac-
cepted at P<0.05.

3. Results

Social interaction test analysis

Social behaviors

The behavioral test yielded that 3-NP-injected rats had 
a significantly lower duration of play behavior (Figure 
1A) and genital investigation (Figure 1B) than those in 
the control group with the Mean±SEM of 12.37±0.46 vs 
26.87±2.70 s for play behavior (P=0.0001, t=5.290) and 
4.37±0.75 vs 20.62±3.59 seconds for genital investiga-
tion (P=0.0006, t=4.423). The duration of social nose 
contact in 3-NP-treated animals was lower than in the 
control rats; however, this difference was not statistically 
significant (24.37±3.49 vs 28.87±3.69 s, respectively, 
P=0.3909, t=0.885, Figure 1C). Total time spent on so-
cial behavior in the 3-NP group (41.12±3.80 s) decreased 
significantly compared to the control (76.37±6.73 s, 
P=0.0005, t=4.553, Figure 1D).

Non-social behaviors

There was a significant decrease in the rearing (P=0.0001, 
t=5.057, Figure 2A) and solitary behavior (P=0.0006, 
t=4.271, Figure 2D) time in the exposed rats compared 
with the control ones (28.00±3.52 vs 65.12±6.96 s for 
rearing and 282.0±13.14 vs 368.50±15.59 s for solitary 
behavior). Although self-grooming (P=0.154, t=1.495, 
Figure 2B) and exploring time (P=0.143, t=1.540, Figure 
2C) showed decreasing trends, they did not differ signifi-
cantly between the groups (46.30±6.09 vs 60.12±6.98 s 
for self-grooming and 207.70±12.50 vs 243.25±20.63 s 
for exploring). Additionally, considerably longer periods 
of immobility were seen in the injected group when com-
pared to the control (177.77±25.62 vs 12.75±7.80 s, re-
spectively, P<0.0001, t=5.842, Figure 2E).

Molecular analysis

Decreased GR levels 

In the ST, the GR level was significantly lower than 
in the control animals (P<0.0001, t=8.922, Figure 3A). 
The hippocampal GR level in the injected rats was 
also considerably lower than the control (P<0.0001, 
t=12.82, Figure 3B). However, the GR level in the PFC 
did not alter following the treatment (P=1.102, t=1.558, 
Figure 3C).
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Declined FKBP5 levels 

The striatal FKBP5 level in 3-NP exposed rats was sig-
nificantly lower than the control ones (P=0.024, t=2.651, 
Figure 3D). A considerable decrease was also observed 
in the level of the hippocampal FKBP5 compared to 
the control (P<0.0001, t=28.52, Figure 3E). Moreover, 
a noticeable decrease was detected in the FKBP5 level 
of PFC compared to the non-treated rats (P=0.0009, 
t=4.652, Figure 3F).

Decreased cytochrome content 

The quantity of striatal cytochrome aa3 (Cyt aa3), b 
(Cyt b), c (Cyt c), and c1 (Cyt c1) decreased significantly 
compared to the control group with the P <0.0001, and t 
were 8.526, 10.58, 7.37, and 7.642 respectively (Figure 
4A). In the HIP, the 3-NP group had decreased content of 
Cyt aa3 (P<0.0001, t=6.967), Cyt b (P=0.0006, t=4.614), 
Cyt c (P=0.004, t=3.503), and Cyt c1 (P=0.003, t=3.597) 
compared with the non-treated animals (Figure 4B) 
meaningfully. According to the cytochrome contents of 
PFC, the 3-NP treatment decreased the levels of Cyt aa3 
(P=0.019, t=2.793) and Cyt b (P=0.024, t=2.656). How-
ever, the levels of Cyt c and Cyt c1 did not alter follow-

Nasehi., et al. (2025). 3-NP and Social Interaction. BCN, 16(2), 489-504.
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Figure 1. Comparing between social behaviors of the control and 3-NP-treated groups in the social interaction test

3-NP: 3-nitropropionic acid. 

***P<0.001. 

Note: Duration of social behaviors including A) Play behaviors, B) Genital investigation, C) Social-nose contact, and D) The 
total social behavior time is presented (n=8-10/group).The data are presented as Mean±SEM. 
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ing the 3-NP treatment (P=0.648, t=0.470, and P=0.361, 
t=0.955, respectively, Figure 4C) compared to the con-
trol group.

Decreased MAO-A and MAO-B activities 

Compared with the control group, the MAO-A ac-
tivity was significantly lower in the 3-NP-treated ani-
mals in STR (50.40% of control, P=0.001, t=3.994), 
HIP (80.75% of control, P=0.006, t=3.262), and PFC 
(81.45% of control, P=0.023, t=2.556). Similarly, MAO-
B activity in the 3-NP group showed a significant decline 
in STR (P=0.001, t=3.939), HIP (P=0.007, t=3.158), and 

PFC (P=0.043, t=2.242) compared to the control groups 
(39.84, 78.20, and 81.76% of control, respectively; Fig-
ures 5A- 5F). 

4. Discussion

We found that 3-NP treatment impaired the social be-
havior index. Certain non-social behaviors have also 
been impacted. It also reduced GR, FKBP5 protein lev-
els, cytochrome contents, and MAO-A and MAO-B ac-
tivities in the studied brain regions.
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Figure 2. Comparing non-social behaviors between the control and 3-NP-treated groups in the social interaction test

3-NP: 3-nitropropionic acid. 

***P<0.001, ****P<0.0001. 

Note: Duration of non-social behaviors, including A) Rearing, B) Self-grooming, C) Exploring, D) Solitary behavior, and E) Im-
mobility is presented (n=8-10/group). The data are presented as Mean±SEM. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

A B C 

D E 

http://bcn.iums.ac.ir/


Basic and Clinical

495

March & April 2025, Vol 16, No. 2

Many medical conditions with mitochondrial failure 
can impair social behavior, including cerebral hypoper-
fusion (Lee et al., 2015), hypoxia (Chauhan et al., 2022), 
ischemia (Girard et al., 2014), Alzheimer’s disease (Fila-
li et al., 2011), or autism spectrum disorders (Frye, 2020; 
Rossignol & Frye, 2012). Numerous animal studies 
have investigated affective symptoms in these disorders 
(Prasad & Hung, 2020; Ruan & Yao, 2020; Southwell et 
al., 2018). The literature suggests that the inhibition of 

complex I in adulthood leads to reduced social interac-
tion (Madiha & Haider, 2019; Siena et al., 2021). How-
ever, the role of mitochondrial complex II in regulating 
social behaviors remains unknown. It subsequently in-
spired the concept of designing this study.

There is also cumulative evidence showing our studied 
brain regions’ participation in processing social behaviors. 
For example, social interaction in rats has been reported to 

Nasehi., et al. (2025). 3-NP and Social Interaction. BCN, 16(2), 489-504.
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Figure 3. Comparing the GR and FKBP5 levels in the ST, HIP, and PFC between the control and 3-NP-treated groups

Abbreviations: 3-NP: 3-nitropropionic acid; G: Glucocorticoid receptor; FKBP5: FK506 binding protein 5. 

*P<0.05, ***P<0.001, ****P<0.0001.

Note: Changes are seen in the striatal (A, D), hippocampal (B, E), and prefrontal (C, F) protein ratio to β-actin (n=4/group). The 
data are presented as Mean±SEM. 
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Figure 4. Comparing the cytochrome contents in the different studied brain regions between 3-NP-treated groups and the control

3-NP: 3-nitropropionic acid. 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

Note: The quantities of striatal (A), hippocampal (B), and prefrontal (C) cytochromes in the 3-NP group are presented as a 
percentage of the control group (n=6/group). The data are presented as Mean±SEM. 
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be associated with increased c-Fos expression as a marker 
of cellular activity in PFC and ST (van Kerkhof et al., 2014). 
The inactivation of different subregions of PFC impairs 
play behavior (van Kerkhof et al., 2013). Also, impaired 
glutamatergic signaling in the ST and HIP modulates so-
cial behavior (Finlay et al., 2015; van Kerkhof et al., 2013). 
The structural features like dendritic length and density of 
dendritic spines in PFC and HIP (Silva-Gomez et al., 2003) 
and the oxidative state in PFC and ST (Moller et al., 2011) 
affect this behavior. 

We found that 3-NP significantly impairs social interac-
tion. It reduced the duration of play behavior, genital inves-
tigation, and the total time spent on social behaviors. These 
findings are in line with the aforementioned conditions of 

mitochondrial failure. 3-NP is also used to replicate HD 
symptoms in rats. Similar to our observations, HD trans-
genic animals also show reduced levels of social interaction 
(Manfré et al., 2018; Wood & Morton, 2015). However, 
a study also reports no social interaction deficit following 
3-NP exposure (Wiprich et al., 2020). This controversy 
might be attributed to the different animal models (zebraf-
ish) and experimental conditions used in the study. 

In addition, the duration of non-social behaviors of the ani-
mals revealed a decrease in the time spent on rearing and soli-
tary behavior. It also showed an increase in the duration of 
immobility. These findings, demonstrating impaired motion 
activity following 3-NP injection, are consistent with previ-
ous studies (Duan et al., 2000; Thangarajan et al., 2014).

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 
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Figure 5. Comparing MAO-A and MAO-B activities

MAO: Monoamine oxidase.

*P<0.05, **P<0.01.

Note: The activities are compared in the ST (A, D), HIP (B, E), and PFC (C, F) between the control and 3-NP-treated groups 
(n=6/group). The data are presented as Mean±SEM. 
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Investigations show restraint stress (Chiba et al., 2012), 
social defeat stress (Buwalda et al., 2001), prenatal stress 
(Weinstock, 2008), early-life maternal separation (Aisa 
et al., 2008), and low maternal care (Weaver et al., 2004; 
Weaver et al., 2006) can decrease GR levels in different 
brain regions. This reduction is associated with psychiat-
ric symptoms like anxiety and depression. Beyond these 
physical and emotional stresses, metabolic stress may 
also reduce the GR level in the brain and cause behav-
ioral abnormalities.

Here, we found that 3-NP reduces the GR level in the 
ST and HIP regions. These findings align with those of 
other studies in which the normal energetic function of 
mitochondria in the brain is impaired. For example, ma-
ternal hypoxia in rats causes a decrease in the GR level 
in the HIP of both male and female fetuses (Gonzalez-
Rodriguez et al., 2014). Also, a study on adult rats dem-
onstrates that transient ischemia in the brain reduces GR 
levels in the HIP (Pang et al., 2015). It is reported that 
transient brain ischemia can also reduce the GR level in 
the cortex of newborn rats (Lee et al., 2007). We also 
found a declining trend in the amount of this receptor in 
the PFC; however, this was not statistically significant. 
It may be because the frontal cortex consists of different 
subregions. Each of these subregions may have different 
biochemical capacities and reactions.

One reason for the decreased GR level may be the epi-
genetic and post-translational changes. It is shown that 
even milder stressors inhibit GR gene expression by in-
ducing epigenetic changes in the GR gene promoter and 
raising the level of a specific microRNA that lowers the 
GR mRNA expression (Mifsud et al., 2017). This pro-
cess may become even more prominent when rats are 
subjected to a greater stress level, such as progressive 
mitochondrial failure. Also, the duration of treatment 
and chronic glucocorticoid increases can result in a com-
pensatory downregulation of GR levels as well as a de-
crease in glucocorticoid binding (Burnstein et al., 1991; 
Dufour & McBride, 2019).

FKBP5 is another protein that is closely linked to GR 
signaling. Its level can mirror the efficiency of the GR 
signaling pathway (Menke et al., 2012; Vermeer et al., 
2003). Stressors can cause alterations in the brain by 
influencing the interactions between GR and FKBP5 
(Rowson et al., 2024). Studies on animal models have 
revealed that all brain regions can be affected by glu-
cocorticoid induction of FKBP5 expression (Lee et al., 
2010; Merkulov et al., 2017; Scharf et al., 2011). 

We found that 3-NP decreases FKBP5 levels in all the 
studied brain regions. Similar to our findings, two trans-
genic models of HD show significantly lower FKBP5 
levels in the ST (Bailus et al., 2021) and generally higher 
corticosterone levels (Dufour & McBride, 2016). These 
findings show that FKBP5 level drops in the brain in this 
context of mitochondrial failure, even though glucocor-
ticoid level increases.

Here, the decreased FKBP5 level can be justified through 
the hypothesized concept that in chronic stress, increased 
FKBP5 level by glucocorticoids reduces glucocorticoid 
effects on GR target gene expressions (like GR induction 
of FKBP5 biosynthesis) via restricting GR translocation 
to the nucleus. It has been suggested that, under chronic 
stress and stress-related psychological states, inappropri-
ate downregulation of these genes contributes to glucocor-
ticoid resistance (Merkulov et al., 2017). 

Reduced GR signaling in the brain is a primary patho-
physiology of psychiatric disorders (Hasler, 2010; Tsi-
gos & Chrousos, 2002). For example, post-mortem stud-
ies have shown lower GR expression levels in different 
brain regions of individuals with major depressive dis-
order (MDD) than in controls (Alt et al., 2010). Patients 
with MDD also have lower GR sensitivity in their pe-
ripheral tissues, which can be a proper reflection of GR 
sensitivity in the brain (Pariante, 2004). 

In rodents, many environmental factors mentioned ear-
lier induce anxiety and depression by reducing GR sig-
naling in the brain (Aisa et al., 2008; Weaver et al., 2004; 
Weaver et al., 2006; Weinstock, 2008). Downregulation 
of GR in the forebrain can impair the HPA axis balance 
and increase levels of corticosterone and depression-like 
behaviors (Boyle et al., 2005). 3-NP exposure also in-
duces anxiety and depression (Khodagholi et al., 2022). 
The current study suggests that reduced levels of GR in 
the ST and HIP can be grounds for 3-NP-related social 
behavior impairment. Even in the PFC, where we only 
found a falling trend without a significant change in GR 
level, decreased FKBP5 level may indicate an attenuated 
GR signaling pathway.

Beyond anxiety and depression, social behaviors are 
also closely modulated by HPA axis activity. For exam-
ple, restraint stress that increases HPA activity and cor-
ticosterone levels (Flores et al., 1990) can impair social 
interaction behaviors (Zain et al., 2019). Social defeat 
stress also acts similarly (Iniguez et al., 2014). Although 
social behaviors have been studied in other contexts with 
mitochondrial failure, the underlying relation behind that 
is less known. Based on our findings, it can be hypoth-

Nasehi., et al. (2025). 3-NP and Social Interaction. BCN, 16(2), 489-504.

http://bcn.iums.ac.ir/


Basic and Clinical

499

March & April 2025, Vol 16, No. 2

esized that 3-NP reduces GR levels in the brain, which 
may lead to HPA axis overactivity and result in impaired 
social behaviors. 

For a more accurate assessment of the effects of com-
plex II inhibition by 3-NP treatment, measuring key 
variables in the next steps of the mitochondrial respira-
tory chain, including kinds of cytochromes, can offer 
a broader view of the affected processes. We observed 
that 3-NP reduces various cytochrome levels in differ-
ent studied brain regions. Previously, the ST has shown 
reduced cytochrome contents following 3-NP exposure, 
per our findings (Mehrotra et al., 2015; Sandhir et al., 
2014). In the current study, Cyt aa3 and Cyt b were sig-
nificantly reduced in all studied regions compared to the 
control group. Cyt c and Cyt c1 also revealed significant 
decreases in the ST and hippocampal areas. However, 
their levels did not alter in the PFC. The simultaneous 
reduction of Cyt b related to complex III and Cyt aa3 of 
complex IⅤ, while no change in Cyt c and Cyt c1, proba-
bly indicates the greater resistance of these cytochromes 
to 3-NP treatment in the PFC. It may also be related to 
the compensatory responses in PFC.

MAO is a fundamental brain enzyme located mainly 
on the outer membrane of the mitochondria (Youdim et 
al., 2006). MAO-A and MAO-B are two types of this en-
zyme that metabolize monoamines (e.g. dopamine, sero-
tonin, noradrenaline) in the brain and other tissues (Mar-
key, 2007). According to investigations, alteration in 
MAO enzymatic activity may have significant impacts 
on controlling behavior and contribute to the pathogen-
esis of a wide range of mental disorders and neurode-
generative diseases, from antisocial personality disorder 
to Parkinson disease (Bortolato & Shih, 2011). MAO in-
hibitors are therapeutic agents for improving symptoms 
of affective disorders like depression (Pletscher, 1991; 
Yanez et al., 2012). Inhibition of this enzyme is also ben-
eficial in the treatment of anxiety disorders like social 
anxiety disorder (Williams et al., 2017). However, MAO 
might have a different role when the neurons are under 
the pressure of mitochondrial failure.

In the current study, MAO-A and MAO-B activities de-
creased significantly in 3-NP-treated animals in ST and 
HIP compared to the control group. It was different from 
our initial expectations since post-mortem studies of HD 
patients show that MAO-A and MAO-B levels increase 
in several brain regions (Richards et al., 2011). Howev-
er, we found that our findings are in line with previous 
studies in which 3-NP administration has been shown to 
reduce total MAO activity in the ST (Chakraborty et al., 
2014; Haider et al., 2022; Salman et al., 2022; Salman et 

al., 2022). Also, according to another study, 3-NP most 
likely reduces dopamine breakdown in isolated striatal 
nerve terminals by indirectly lowering MAO-A activity 
(Herrera-Mundo & Sitges, 2010).

In the lack of a clear-cut explanation for the controversies 
mentioned, it seems that unequal MAO-A and MAO-B 
responsibilities for metabolizing different monoamines in 
various species (Youdim et al., 2006), the different poten-
tial affinity of these enzymes and the monoamine dynam-
ics under mitochondrial failure in the brain (Chakraborty 
et al., 2014; Eradiri & Starr, 1999; Jamwal & Kumar, 
2016; Johnson et al., 2000; Kraft et al., 2009; Kumar et 
al., 2010) can be the causes of these observations.

Furthermore, 3-NP can also reduce the dopamine and 
norepinephrine levels in brain regions like ST, cortex, and 
HIP, even when the MAO activity is decreased (Kumar et 
al., 2010; Salman et al., 2022). It shows that MAO activ-
ity might not be the pivotal modulator of the monoamine 
dynamic in the brain. However, lower activity of these 
enzymes may lead to behavioral changes. For example, 
lower activity of the MAO-A enzyme in the human brain 
is related to more aggressive behaviors, which is the op-
posite of social behavior (Alia-Klein et al., 2008).

Also, recent studies show that MAO activity not only 
fails to increase the cytosolic hydrogen peroxide (H2O2) 
but also activates the electron transport chain and ATP 
production by shuttling electrons to the intermembrane 
space of mitochondria (Graves et al., 2020). Together 
with our findings, it can be suggested that 3-NP-induced 
reduction in MAO-A and MAO-B activities prevents 
the cells from a potentially compensating role of MAO 
activity and can exacerbate mitochondrial failure. How-
ever, determining the key players in the molecular and 
behavioral consequences of 3-NP still needs more in-
vestigation. Study of stress or other neurotoxic effects 
of 3-NP, except mitochondrial dysfunction, along with 
behavioral changes in future research might disclose this 
toxin’s more exact mechanism of action.
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