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 A new approach is introduced to estimate the formal information of neurons. 
Formal Information, mainly discusses about the aspects of the response that 
is related to the stimulus. Estimation is based on introducing a mathematical 
nonlinear model with Hammerstein-Wiener system estimator. This method 
of system identification consists of three blocks to completely describe the 
nonlinearity of input and output and linear behaviour of the model. The introduced 
model is trained by 166 spikes of neurons and other 166 spikes are used to test and 
validate the model. The simulation results show the R-Value of 92.6 % between 
estimated and reference information rate. This shows improvement of 1.41 % in 
comparison with MLP neural network.
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                 1. Introduction

s a brief definition, information methods 
are those that estimate the mutual infor-
mation between an ensemble of spike 
trains and some other experimental vari-

able (Goldberg, Victor and Gardner, 2009). As it was 
proposed by Reich, Mechler and Victor (2001), we 
could simply distinguish two categories for this con-
cept: formal information and attribute-specific informa-
tion. “Formal information” mainly discusses about the 
aspects of the response that is related to the stimulus. 
Difference between the entropy of responses to an en-
semble of temporally rich stimuli and the entropy of 
responses to an ensemble of repeated stimuli has main 
effect on calculation of this kind of information. On the 
other hand, “Attribute-specific information” refers to 
the amount of information that responses have about a 
parameter which is obtained in a particular experiment. 
Category specific information is the case which the 

A
parameter describes one of several discrete categories 
(Victor, 2006).

Recently some complex information theory methods 
such as entropy method, Binless method and metric 
space method are presented to estimate the neural in-
formation, but studying this problem as a system iden-
tification problem, there will be more methods to reach 
such a result. The approach of the work is modelling 
a mathematical system to calculate the information 
of neuron. This model is based on designing a system 
with a particular type of neural network to simulate the 
calculated information by Goldberg et al. (2009). With 
this approach, we have used the presented model by 
Goldberg as a mother model and tried to fit a nonlinear 
system on it. This newly estimated model could eas-
ily calculate the output (Neural Information in words 
of Goldberg) without the calculation cost of the mother 
model.
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In system identification methods, nonlinear process 
identification has recently became one popular method 
in both research institutions and industry. Linear models 
can only achieve limited performance which is mainly 
because of the nonlinear nature of the real-world pro-
cesses. As a consequence, nonlinear system identifica-
tion using Hammerstein-Wiener model is proposed. 
Hammerstein-Wiener model belongs to the class of 
block-oriented models. They are described as a series or 
parallel combinations of linear dynamic and static non-
linear functions (Zhu, 1999).  The interest in block-ori-
ented model is increasing due to several factors, i.e. low 
cost in identification computation, easy to comprehend 
and easy to use in control (Patcharaprakiti et al., 2010). 

Hammerstein-Wiener model could represent the non-
linearity through algebraic polynomial expressions, 
piecewise-linear, basis function, wavelets, neural net-
works, look-up tables and fuzzy models (Biagiola and 
Figueroa, 2009). Meanwhile, the linear dynamic is 
represented either by impulse response, pulse transfer 
models and state space models. Neural networks and 
estimation based on them could have a big part in neu-
roscience research. Recent publication of Lotfi-Noghabi 
et al. (2012) shows one of these applications in estima-
tion of optimal dosage of sodium valproate in idiopathic 
generalized epilepsy.

Recently, Hammerstein-Wiener model have been used 
in other biomedical applications such as estimation of 
muscle force from electromyography signals (Abbasi-
Asl et al., 2011)

In this paper we will introduce a non-parametric mod-
el based on Hammerstein-Wiener model with use of 
sigmoid network in nonlinear block of model which can 
be classified in neural network model category. Section 
II will discuss on different aspects of Neural Informa-
tion. Structure of Hammerstein-Wiener model will be 
introduced in section III. In section IV, Model Output 
and Simulation Results will be described and finally a 
conclusion remark will be represented. 

Information

Understanding the brain function in processing and 
representation of information is such a complex issue 
that there is no certain method to comprehend it. Part 
of brain function is involved with processing sensory 
and motor commands in different contexts. Neurons are 
basic components of the brain structure that process and 
convey information. In any context, neural activities 
represent the feature of stimulus and motor command. 
In neural coding problem which comprises the infor-

mation transfer and the response function, information 
theory has a basic role (Goldberg et al., 2009). The con-
struction of neural code has a fundamental role in neu-
roscience. Neural coding refers to this matter that what 
is being encoded and how? Achieving the response of 
these questions requires experimental research and com-
putational methods. Computational neuroinformatics is 
a significant tool that collaborate these due to synthe-
size neural representation and information processing. 
Nonetheless not many researchers have used informa-
tion theory method in neural coding problem. Some 
of them used only a linear decoding filter to model the 
stimulus–response function, and obtained only the cor-
responding lower-bound estimate of information (Borst 
and Theunissen, 1999). 

In some studies of sensory and motor system it is as-
sumed that the spike numbering of a neuron in an ar-
bitrary time window is related to the stimulus features 
that are encoded. But in this point neurons are normally 
studied individually (Averbeck and Lee, 2004). Various 
information theory methods such as entropy method, 
Binless method, metric space method, etc. were devel-
oped. Many of these methods have high potential in 
understanding neural coding, information processing 
strategies, and mental disorders. Information theory 
utilizes statistical methods to identify how a neuron re-
sponse changes with various stimulates. It means that 
these methods define what information about stimulus 
is included in spiking patterns. Another usage of infor-
mation theory methods is calculation of maximum rate 
of information conveyance (Borst et al., 1999).

Neuroinformatic methods are used in estimating 
stimulus parameters from spike timing and spiking 
patterns. Spike timing decoding is used in sensory and 
motor system identification. For example, in auditory 
system, spike timing contains important information in 
sound source specification. Also, information estimated 
through neuroinformatic methods, are used in deter-
mining movement kinematics and object properties in 
grasping task (Goldberg et al., 2009).

There are some evidences that show another role of 
precise spiking patterns. In some cases that precise spik-
ing patterns carry additional information that is not re-
lated to stimulus features, like information of temporal 
structure that is relevant within the spike trains of single 
neurons (Averbeck and Lee, 2004).

In this work, we proposed a new system of identifica-
tion method based on Hammerstein-Wiener model to 
estimate the neural information from spikes.
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(1)

For the second block:

(2)

Equation (2) is a linear transfer function.  has the same 
dimension as  where B and F are similar to polynomi-
als in the linear Output-Error model. For  outputs and  
inputs, the linear block is a transfer function matrix con-
taining entries:

(3)

where:

(4)

Finally for the third block:

(5)

which is a nonlinear function that maps the output of 
the linear block to the system output.  and   are internal 
variables that define the input and output of the linear 
block, respectively. Because f acts on the input port of 
the linear block, this function is called the input non-
linearity. Similarly, because h acts on the output port of 
the linear block, this function is called the output non-
linearity. If system contains several inputs and outputs, 
you must define the functions f and h for each input and 
output signal.

2. Methods: Hammerstein-Wiener Model

A. Structure of Hammerstein-Wiener Models

Figure 1 illustrates the block diagram of a Hammer-
stein-Wiener model structure. We could study this mod-

el as a combination of three series blocks. To formulate 
the problem, we have equation (1) which is a nonlinear 
function transforming input data u (t) and w (t) has the 
same dimension as u (t).

 

Figure 1. Block diagram of a Hammerstein-Wiener model

It is not necessary to include both the input and the out-
put nonlinearity in the model structure. When a mod-
el contains only the input nonlinearity f, it is called a 
Hammerstein model. Similarly, when the model con-
tains only the output nonlinearity h, it is called a Wiener 
model.

The nonlinearities f and h are scalar functions, one non-
linear function for each input and output channel.

The Hammerstein-Wiener model calculates the output 
y in three stages:

1. Calculates w (t)= f (u(t)) from the input data. w(t) is 
an input to the linear transfer function B/F. The input 
nonlinearity is a static (memoryless) function, where 
the value of the output at given time t depends only 
on the input value at time t. The input nonlinearity 
can be set as a sigmoid network, wavelet network, 
saturation, dead zone, piecewise linear function, one-
dimensional polynomial, or a custom network. It is 
possible to remove the input nonlinearity.

2. Computes the output of the linear block using w(t) 
and initial conditions by (2). Configuration of the lin-
ear block will be done by specifying the numerator B 
and denominator F orders.

3. Compute the model output by transforming the out-
put of the linear block  using the nonlinear function h 
(as it mentioned in (5)).

The input-output relationship will be decomposed into 
two or more interconnected elements, when the output 
of a system depends nonlinearly on its inputs. So, we 
can describe the relationship by a linear transfer func-
tion and a nonlinear function of inputs. The Hammer-
stein-Wiener model uses this configuration as a series 
connection of static nonlinear blocks with a dynamic 
linear block.
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Applications of Hammerstein-Wiener model are in 
wide areas, for example we can mention modelling 
electro-mechanical system and radio frequency compo-
nents, audio and speech processing and predictive con-
trol of chemical processes. These models have a useful 
block representation, transparent relationship to linear 
systems, and are easier to implement than heavy-duty 
nonlinear. Therefore, they are very useful. 

The Hammerstein-Wiener model can be used as a 
black-box model structure since it prepares a flexible 
parameterization for nonlinear models. It is possible to 

estimate a linear model and try to improve its quality 
by adding an input or output nonlinearity to this model 
(Wingerden and Verhaegen, 2009).

Also, we can use Hammerstein-Wiener model as a grey 
box structure to take in physical knowledge about pro-
cess characteristics. For instance, the input nonlinear-
ity might represent typical physical transformations in 
actuators and the output nonlinearity might describe 
common sensor characteristics (Wang, Chen and Wang, 
2009).

Figure 2. The input nonlinearity

Figure 3. The output nonlinearity
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B. Selected Parameters for Hammerstein-Wiener 
Model 

In this work, the sigmoid network is chosen to repre-
sent the input and output nonlinearity. This network can 
model the system smoother and more dynamic than the 
others. Other networks have been simulated too, but the 
results were satisfactory when sigmoid network is used. 
Number of units for the sigmoid network has been set to 
20. This amount of units, estimate the model very pre-
cisely, on the other hand, the simulations time are not 
too much in this case.

For the linear block, the selected dimensions for the 
poles and zeros are 3 and 2, respectively. Simulations 
showed that this is enough to model the linear behaviour 
of the system. 

3. Results

As it mentioned in previous system, the model needs 
to be trained by some input-output data, i.e. we should 
train the model by some computed information as the 
output for some neural spikes which are as our input. 
After training the model, the validation will be done 
by some other spikes. In this work, we used the spikes 
and computed information presented by Goldberg et al. 
(2009). 166 spikes are used to train the model and 166 
spikes are used to test it. 

As a pre-processing approach, we up-sampled both 
spikes and computed information presented by Gold-
berg et al. (2009), by 100 samples. In this case, the mod-
el could be trained into a more dynamic nature. 

The nonlinearity value of the input and output of the 
system, which is obtained after training of the model, is 
shown in figures 2 and 3. 

Figure 4. Our Model estimated information and computed information in [1] for 30 test spikes

Model output for 30 up-sampled test spikes has been 
depicted in figure 4 (solid curve). The computed infor-
mation by Goldberg et al. (2009) is also shown in this 
figure (dashed curve). As it could be realized from these 
figures, Hammerstein-Wiener model could successfully 

estimate the information. For the 100 sample-intervals 
which we have a constant information, our model out-
put has a stable value. Figure 5 shows how the model 
tries to keep the output in a constant value.
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4. Discussion: Model Validation

To validate the introduced model, we have estimated the 
information using MLP neural network. MLP network 
is designed with two layers and 10 neurons in each lay-
er. Sigmoid network, which is used in training process 
of first layer and the second one, have been designed in 
a linear manner. The correlation coefficient (R-Value) 

Figure 5. Stable answer for the constant 100 sample-intervals

Figure 6. Model output for train data

R-Value NRMSE

MLP	Neural	Network 90.65 % 0.129

Hammerstein-Wiener 92.06 % 0.147

Table 1. R-Value and NRMSE of the 166 Test spikes informa-
tion calculated by Hammerstein-Wiener and MLP method

R-Value NRMSE

MLP	Neural	Network 95.39 % 0.112

Hammerstein-Wiener 96.46 % 0.100

Table 2. R-Value & NRMSE of the 166 Train spikes informa-
tion calculated by Hammerstein-Wiener and MLP method

between designed models output and computed infor-
mation by Goldberg et al. (2009) is calculated and is 
listed in table 1. We also run the model for the train-
ing data (Figure 7). The validation parameters for the 
train spikes are listed in table 2. All These values are 
archived from up-sampled data. As we can see, the 
R-Value is high and acceptable and has improvement 
in comparison with MLP neural network. The normal 
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Figure 7. Scatter plot of the test spikes information

root mean square error is listed in next column for both 
models which shows that the Hammerstein-Wiener has 
improvement in estimation of the neural information. It 
should be mentioned that the results are related to con-
formity rate of the estimated output via calculated infor-
mation by Goldberg et al (2009).

The scatter plot for the estimated information of test 
data set is depicted in figure 9. An acceptable correla-
tion is achieved by the introduced model. 
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5. Conclusions

A new method is introduced to estimate the informa-
tion of the neural spikes. The estimation is based on 
Hammerstein-Wiener model. This mathematical model 
could be replaced by the model presented by Goldberg 
et al (2009) and will save time and calculation cost in 
comparison with it. The nonlinear block in this model 
is based on sigmoid network which can smoothly esti-
mate the output values. Simulations results shows that 
this model have low error rate. In further works we will 
add more complex pre-processing and post-processing 
approaches to our signal processing aspect of our work 
and also will try to reduce the NRMSE value for simula-
tion results. 
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