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Introduction: This study aimed at investigating the stimulation by intra-spinal signals 
decoded from electrocorticography (ECoG) assessments to restore the movements of the leg 
in an animal model of spinal cord injury (SCI).

Methods: The present work is comprised of three steps. First, ECoG signals and the associated 
leg joint changes (hip, knee, and ankle) in sedated healthy rabbits were recorded in different 
trials. Second, an appropriate set of intra-spinal electric stimuli was discovered to restore 
natural leg movements, using the three leg joint movements under a fuzzy-controlled strategy 
in spinally-injured rabbits under anesthesia. Third, a nonlinear autoregressive exogenous 
(NARX) neural network model was developed to produce appropriate intra-spinal stimulation 
developed from decoded ECoG information. The model was able to correlate the ECoG 
signal data to the intra-spinal stimulation data and finally, induced desired leg movements. In 
this study, leg movements were also developed from offline ECoG signals (deciphered from 
rabbits that were not injured) as well as online ECoG data (extracted from the same rabbit after 
SCI induction).

Results: Based on our data, the correlation coefficient was 0.74±0.15 and the normalized root 
means square error of the brain-spine interface was 0.22±0.10.

Conclusion: Overall, we found that using NARX, appropriate information from ECoG 
recordings can be extracted and used for the generation of proper intra-spinal electric 
stimulations for restoration of natural leg movements lost due to SCI.
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1. Introduction

pinal cord injury (SCI) prevents impulse 
transfer from the brain to motor muscles, 
causing permanent movement disability 
and subsequent atrophy in the paralyzed 
limb muscles (Duggan et al. 2016). Func-
tional electrical stimulation through phys-
iotherapy is regarded as an efficacious way 

of stimulating paralyzed organs’ nerves and muscles 
(Hagen et al., 2015) and is used against muscle atrophy 
and joint stiffness development (Freund et al., 2011). 
Nevertheless, it helps patients to control the paralyzed 
limbs under the control of the brain. Thus, an approach 
that decodes the brain’s electrical activities (based on 
intra-cortical local field potentials, electrocorticography 
(ECoG), electroencephalography (EEG)) (Ragnarsson et 
al., 2008; Caldwell et al., 2019; Jackson et al., 2012), to 
produce appropriate electrical stimuli, could potentially 
restore arbitrary/intentional movements. Using such an 
approach, the affected region of the spinal cord can be 
bypassed to make the transfer of nerve impulses from the 
brain to the motor muscles possible.

For this purpose, several steps should be considered: 
firstly, the motor modules down the affected region of the 
spinal cord that controls the contraction of certain motor 
muscles should be identified (Bizzi et al., 2008) and then, 
appropriate electric stimuli should be deciphered. 

In our previous study, to reveal motor modules in 
the spinal cord of anesthetized SCI rabbits, we aimed 
at restoration of SCI animal leg movements by intra-
spinal stimulation based on a manual open-loop meth-

od (trial and error stimulation) (Younessi Heravi et al. 
,2020). Since the trial-and-error approach is a tedious 
not-efficient approach to produce stimulation patterns, 
a close-loop computerized control strategy instead of 
a trial-and-error process for module stimulation could 
potentially improve the results and enhance leg restora-
tion outcomes. One of the simplest and most functional 
methods for movement control based on intra-spinal 
electric stimulation is the fuzzy control method, which 
produces a proper set of electrical stimuli to induce natu-
ral movements of the limb (Roshani et al., 2013). The 
system demonstrated great success for this purpose and 
it could restore natural movements through intra-spinal 
electric stimulation (Asadi et al., 2012). 

How to relate the brain electrical activity impulses (ex-
tracted from ECoG data) with the intra-spinal stimulation 
signals, is the key point in the recovery of a paralyzed 
limb. In recent years, many studies have been performed 
on brain signal decoding. In many of these approaches, 
attempts have been made to record the signals in animal 
models based on training, and then to restore physical ac-
tivities, such as lower limb movements and upper limb 
movements (Bonizzato et al, 2018; Capogrosso et al., 
2016; Samejima et al., 2021). The development of these 
studies on humans has also been limited (Ajiboye et al., 
2018; Wagner et al., 2018). There are different linear tech-
niques in online brain decoding, like partial least square 
regression (Foodeh et al., 2020; Shin et al., 2012), sparse 
linear regression (Heravi et al., 2020), and Kalman filter-
ing (Asgharpour et al., 2020; Malik et al., 2010). In an-
other previous study done by Heravi et al. (Heravi et al., 
2020), a SLiR-based brain-spine interface was developed 
to decode intra-spinal stimulation from ECoG signals. 

Highlights 

• Using the fuzzy controller, movement fitted the natural leg movement of the healthy animals confirming a strong 
correlation between the acquired simulated movements’ and natural movements data.

• The nonlinear autoregressive exogenous (NARX) neural interface was able to produce intra-spinal stimulations that 
matched electrocorticography (ECoG) signals’ data at an acceptable level.

Plain Language Summary 

This study aimed to design a NARX-based neural interface that extracts motor commands from the cerebral cortex 
and generates fuzzy-based intra-spinal stimulations to restore the leg movements in spinal cord injury animals. the 
results of the present study showed that the fuzzy-based intra-spinal stimulation and the developed NARX neural in-
terface could restore leg movements. Using NARX, appropriate information from ECoG recordings can be extracted 
and used for the generation of proper intra-spinal electric stimulations for restoration of natural leg movements lost 
due to SCI.
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Since the brain-spine system has a nonlinear dynamic 
nature, a powerful nonlinear dynamic system should 
be employed to model it. In this regard, using dynamic 
nonlinear computer-based algorithms may help to reveal 
relationships between brain electrical activity and intra-
spinal electrical stimuli to induce intentional movements 
of a paralyzed limb (Hatsopoulos et al., 2009; Shakibaee 
et al., 2019). The nonlinear autoregressive exogenous 
(NARX) neural network model is one of these approaches 
that can be used for the dynamic neuromuscular systems 
associating the neural impulses with limb kinetics (Liu et 
al., 2017). Using this dynamic and nonlinear system, de-
coding intra-spinal stimulation from the ECoG data could 
be executed. As far as our literature survey showed, the 
current study is the first that used a nonlinear technique 
for the restoration of leg movements in rabbits under an-
esthesia.

Two major issues that exist in the restoration of the func-
tion of a paralyzed motor through the use of intra-spinal 
stimulation are (1) the production of appropriate patterns for 
electrical stimulations that lead to the restoration of move-
ments and (2) the development of a neural interface to de-
code electrical stimulation patterns from ECoG information. 

Here, we aimed to introduce and assess the efficacy 
of a new approach to bypass SCI using NARX and the 
fuzzy control system as the interface between the ECoG 
signals and intra-spinal electric stimuli, to induce leg 
movement in rabbits with SCI.

2. Materials and Methods

All animal procedures were done at the School of Med-
icine North Khorasan University of Medical Sciences, 
Bojnurd, Iran, based on the national guidelines for in 
vivo experimentation. Figure 1 shows the block diagram 
explaining different parts of the study. The relationship 
between the leg movement-related brain activity and the 

relevant electrical intra-spinal stimulation was achieved 
in three steps using three male Dutch rabbits (1.63±0.25 
kg, 3.8±0.55 months old) with SCI. To this end, the 
brain’s (cerebral cortex) electrical activity was first re-
corded along with the spontaneous leg movements (Fig-
ure 2 A). Then, the best possible spinal cord-stimulating 
pulse patterns fitting spontaneous movements were de-
termined by a fuzzy controller, which was a homemade 
program comparing the spontaneous data with the data 
achieved from the same animals after SCI induction 
(Figure 2 B). Finally, the relationship between ECoG 
data and the optimum pulse was attained by a nonlinear 
autoregressive exogenous (NARX) model (Figure 2 C). 

Simultaneous ECoG and leg kinematics in a se-
dated healthy animal 

To record ECoG, four custom-made tungsten elec-
trodes (0.40 mm in diameter) were inserted into the ce-
rebral cortex of the rabbits that were anesthetized by ket-
amine (35 mg/kg)/xylazine (5 mg/kg). Next, four holes 
were made into the skull (bregma region) and electrodes 
were implanted through these holes and fixed (Figure 2 
A). Seven days later, sedation was induced by chloro-
form exposure for a few seconds, to indicate their fast 
activity. The rabbits were held in a position, in which 
they only had free movements of the leg. To analyze leg 
kinematics, the hip, knee, and ankle joints of the right leg 
were colored in blue and three typical rabbit leg move-
ments on sedate condition (i.e. pushing the leg toward 
the back, pulling the leg into the abdomen, and pushing 
the leg forward), were recorded by employing a digital 
camera (at 50 frames/sec). Using a homemade program 
in Microsoft visual studio C#, the real-time joint angle 
changes were monitored. Concurrently, the correspond-
ing ECoG was recorded using the PowerLab system 
(sampling frequency 500 Hz) (AD Instrumentation. Co, 
Australia). Under sedation, ECoG signals and related 
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Figure 2. The experimental setup

A) One pair of electrodes was implanted +1.0 cm from the bregma and 2 cm lateral to the midline, and another pair was im-
planted -1.0 cm from the bregma and 2 cm lateral to the midline. A ground electrode consisting of a free wire was placed under 
the neck’s skin. Hip, knee, and ankle joint angles were calculated by C#.Net software based on the blue indicator;

B) A partial laminectomy was performed to damage the spinal cord (i.e. to induce SCI), and then, motor modules related to 
three types of movements were detected. For controlling each module, a fuzzy controller was designed to restore the move-
ments. The joint angle error was considered as the input of each controller;

C) Final ECoG data were applied as inputs of the NARX model and the outputs of the model were intra-spinal stimulations 
delivered to electrodes in spinal modules.

http://bcn.iums.ac.ir/
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joint angles of the leg were recorded 40 times for each 
leg movement.

Intra-spinal cord stimulation based on the Fuzzy 
control strategy in an SCI model 

After leg kinematics analysis, motor modules were 
spotted by a trial-and-error approach on the spinal cord-
based three electrodes (silver, 0.04 mm thickness, A-M 
Systems, USA) and a custom-made stimulator (Heravi 
et al., 2019). The configuration of the proposed control 
strategy is schematically depicted in Figure 2 B. For con-
trolling each module, a controller was designed to restore 
each movement. Each controller has a stimulation signal 
(monophasic pulse, width=0.5 ms, amplitude=100 to 
200 µA, and frequency=50 Hz) as an output, which is 
delivered to the module of the spinal cord via the im-
planted electrode. For each controller, 25 sets of “if…
then…” were considered as a rule base. The output of 
fuzzy control was calculated by the fuzzy rule base, 
Mamdani method, Gaussian membership functions, and 
centroid defuzzification as previously shown (Heravi 
et al., 2019). In the proposed fuzzy control, fuzzy sets 
consist of negative big (NB), negative small (NS), zero 
(Z), positive small (PS), positive medium (PM), and 
positive big (PB) (Kovacic et al., 2018, Roshani et al., 
2013). The movement-triggered delay after stimulation 
(i.e. constant time delay), was experimentally estimated. 
This time delay was approximately 200 ms. Joint angles 
recorded before SCI induction were compared with joint 
angles recorded after SCI induced by a combination of 
three fuzzy controllers output. By calculation of normal-
ized root mean square (NRMS) error, the error tracking 
was assessed using Equation 1: 

1. (ya max -y
amin)NRMS=

∑n
i=0(yi

p-yi
a))2

n

For each time point (i) ), yi
p,and are the joint angle 

before SCI and after stimulation. ya
max and ya

min are the 
maximum and minimum of the joint angle before SCI. 
The similarity of before-SCI joint angles and those re-
corded after intra-spinal stimulations induced by fuzzy 
controllers is reported as the correlation coefficient (CC).

Decoding intra-spinal stimulation from ECoGs 

After finding the appropriate intra-spinal stimulation 
by fuzzy control strategy, a model was developed to re-
late the intra-spinal stimulation with the ECoG signal 
to restore the natural movements of the leg under brain 
order (Figure 2 C). To this end, firstly, the ECoG signals 
achieved in “Simultaneous ECoG and leg kinematics in 

sedated healthy animal” were preprocessed using the 
common average reference method (Chen et al., 2013, 
Ludwig et al., 2009). In this method, the signal values 
of four electrodes (each pair entered one channel), im-
planted in the cerebral cortex, were averaged, and then 
the values were subtracted from this mean for each chan-
nel. Then, each preprocessed signal was grouped into 
five frequency bands. The δ, θ, α, β, and γ bands ranged 
0~4, 4~8, 8~14 Hz, 14~30, and 30~50 Hz, respectively 
(Shin et al. 2012). These data were digitally rectified and 
smoothed. Then, the signals were down-sampled from 
500 to 50 Hz, i.e. from the sampling frequency of ECoG 
signal measurement to the sampling frequency of the 
intra-spinal stimulations (Younessi et al., 2020). Finally, 
each smoothed signal was normalized according to the 
z-score Equation 2:

2. zi(t)=
xi (t)-μi

σi
i=(1 to 2×5)

Where, i ranges from 1 to 10 (2 of ECoG channels 
* 5 of frequency bands), and denote the Mean±SD of 
xi(t). The zi(t) was the final ECoG data to be related to 
the intra-spinal stimulation signal’s data achieved in “ 
Intra-spinal cord stimulation based on the Fuzzy control 
strategy in an SCI model”. The next step was to figure 
out how to convert the normalized data of ECoG to the 
appropriate intra-spinal stimulation data. This was done 
with the aid of the NARX neural network model, which 
dynamically converts ECoG data obtained over time to 
the relevant intra-spinal data with recurrent feedback 
from the spinal stimulation data. The NARX neural net-
work is a nonlinear dynamic recurrent network that en-
closes several layers with feedback connections (Liu et 
al., 2017). Three NARX models were designed for three 
spinally-injured rabbits. The inputs of the model were 
from the final ECoG data zi(t) and the outputs were the 
intra-spinal stimulation data that were delivered punctu-
ally to the detected modules. These went through the fol-
lowing layers: first, through input nodes, which was the 
collection of ECoG data recorded over time; then, they 
were coded in the hidden nodes, and finally, the intra-
spinal stimulation data were decoded from the ECoG 
data according to the Equations 3 and 4.

3.Un(t)=f1 ∑ ∑Ani (k) zi (t-T-k)

-∑ ∑Bnj (k) yj (t-T-k)+b1n) n=1 to 8 (or 6 or 10)

4. yj (t)=f2 ∑Cjn Un (t)+b2j) j=1 to 3

Where, Un(t) shows the output of the nth node in the 
hidden layer, n1 is the number of the hidden node, yj(t) 
is the predicted stimulation signals delivered to the jth 

i=1

10

nx

k=03

j=1

ny

k=0 m

n=1
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motor module at the time “t”, and are the number of in-
put and output delays, respectively, T is the number of 
constant delays, zi(t-T-k) is the ith ECoG feature, (zi), yj 
(t-T-k) is jth stimulation signal predicted by the NARX 
model at time lag m+k, and Ani, Bnj and Cnj are respec-
tively the weight vectors for zi, yj and Un. Also, b1n and b2j 
are the bias weights for hidden and output layers. f1 and 
f2 are the activation function in hidden and output lay-
ers. Additionally, j ranges from one to three (the module 
for three movements) and i ranges from one to ten (2 of 
ECoG channels *5 of frequency bands). 

The main components of the NARX neural network 
are network architecture and learning algorithms. The 
network architecture consisted of the number of input 
delays (nx), the number of output delays (ny), and the 
number of hidden nodes and type of activation func-
tion. With respect to the input (ECoG signal) and output 
(Intra-spinal electric stimulation) delays, each delay re-
ferred to the 20 msec period before sampling. For this 
purpose, 1 to 20 delays were tested, which correspond-
ed to 20 sampling from ECoG and intra-spinal electric 
stimulation at every 20 msec. Constant delays (T) were 
tested at 50, 100, 150, 200, 250, and 300 msec, which 
was the time before the first ECoG sampling. From up to 
20 nodes tested in the hidden layer, a sufficient number 
of nodes was chosen to explain the relationship between 
the input and output layer data. The mentioned samples 
were given to the different learning MATLAB built-
in algorithms having varying numbers of nodes, from 
which the best possible one was chosen to explain the 
relationship between ECoG and intra-spinal stimulation 
data. In addition, different activation functions were test-
ed on the data for the hidden and output layers. Similarly, 
the best possible function was chosen. We verified the 
validity of the previously defined NARX modes using 
10-fold cross-validation (Liu et al., 2017). Firstly, The 
ECoG final data and corresponding intra-spinal stimu-
lating data were divided randomly into ten segments, 
which were then used for training and testing the NARX 
model. For this, the first none segments were used in the 
training phase, and then in the test phase, the developed 
NARX model was tested by the remaining segment (i.e. 
the tenth segment) and the intra-spinal stimulation re-
sponse in the segment was predicted. Again the process 
was repeated by using segments two to ten for training 
the NARX model and testing the developed model based 
on the first segment data. The process repeated ten times 
and each segment’s data were taken to test the developed 
NARX model. In each step, NRMS (Equation 1) and 
CC were calculated for every single segment and their 
results were summed up. Based on Equation 1, yp and 
ya are the predicted NARX output and the actual intra-

spinal stimulating data related to three types of move-
ments, respectively. 

Intra-spinal cord stimulation based on the de-
coded commands extracted from ECoGs in the 
sedated SCI animal

The developed NARX model was tested in an SCI rab-
bit for the online condition. In online condition, simulta-
neous changes in the ECoG signals, intra-spinal stimula-
tion data, and leg joint movements were analyzed in a 
sedated spinally-injured animal. The ECoG signals for 
the sedated animal after SCI induction were inputted to 
the developed NARX model and intra-spinal stimula-
tion related to ECoGs was delivered to the modules. The 
movements based on predicted intra-spinal stimulation 
were recorded. The movements were also compared to 
movements recorded before SCI.

Data analysis

Data analysis and processing were performed by MAT-
LAB software, version 2011a using digital signal pro-
cessing and statistical analysis toolbox at a significance 
level of 5%. The fuzzy controllers and NARX models 
were developed by using the fuzzy logic and neural net-
work toolbox. The online data acquisition and process-
ing were implemented by simulink, real-time workshop, 
and real-time windows target. 

3. Results:

Fuzzy control induced-leg movements in SCI rab-
bits strongly matched those of healthy ones 

An example of joint angles (hip, knee, and ankle) 
changes in each rabbit (before (healthy condition) and 
after SCI (induced by the fuzzy control), both under an-
esthesia) is given in Figure 3. Overall, joint angles of 
SCI and healthy rabbits were comparable, reflecting 
that the fuzzy control system could simulate natural leg 
movements. Three types of movements were successful-
ly restored by fuzzy control for all the leg joints. These 
movements lasted 0.46±0.24 seconds for pushing the leg 
toward the back, 0.53±0.23 seconds for pulling the leg 
into the abdomen, and 0.41±0.19 seconds for pushing 
the leg forward, which matched those observed for natu-
ral movements in healthy animals.

Next, the single movements were repeatedly induced 
to restore the whole jumping movement using the fuzzy 
control system. Figure 4 shows the simulated movements 
produced by electric stimulations delivered to the motor 
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Table 1. The results of spinal cord stimulation in three types of leg movements produced by the fuzzy controller

Types of Leg Movement
Mean±SD

Pushing Leg to the Back Pulling Leg to Abdomen Pushing Leg Forward 

Hip 

Khip 0.34±0.04 

Joint angle range 82.33±2.46-92.66±2.17 81.22±3.22-91.66±3.08 81.18±2.75-93.33±2.07

CC 0.71±0.16 0.72±0.20 0.69±0.18

NRMS 0.26±0.16 0.25±0.12 0.29±0.14

Knee 

KKnee 0.46±0.06

Joint angle range 94.33±4.24-111±3.96 91.33±2.33-114±2.13 95.66±4.11-110.33±2.38

CC 0.70±0.24 0.73±0.16 0.70±0.13

NRMS 0.27±0.11 0.25±0.09 0.28±0.11

Ankle 

KAnkle 0.19±0.04

Joint angle range 108.21±2.14-118.33±1.94 105.79±1.59-114±2.44 109.33±1.76-113.63±1.88

CC 0.70±0.17 0.72±0.19 0.71±0.21

NRMS 0.29±0.09 0.25±0.11 0.25±0.09

a Khip, KKnee and KAnkle are constant coefficients to normalize the error of the joint angles (hip, knee, ankle). All data are shown 
as Mean±SD.

Table 2. The optimum architect and predictive performance of the three NARX model

NARX model a
Mean±SD

Rabbit 1 Rabbit 2 Rabbit 3

Delays in the input layer (nx) 3 4 3

Hidden layer nodes 8 6 10

Activation function in the hidden 
layer Sigmoid Sigmoid Tansig

Delays in the output layer (ny) 3 3 2

CC

Module 1b 0.77±0.13 0.77±0.11 0.80±0.14

Module 2c 0.72±0.17 0.78±0.14 0.78±0.14

Module 3d 0.75±0.16 0.75±0.13 0.76±0.14

NRMS

Module 1 0.21±0.08 0.24±0.07 0.23±0.07

Module 2 0.22±0.11 0.25±0.09 0.21±0.08

Module 3 0.23±0.08 0.23±0.11 0.22±0.10

a In all NARX models, the activation function in the output layer and learning algorithm was linear (pureline) and Levenberg-
Marquardt, respectively. The constant time delay was also considered as 100 ms. b-d: Predicted intra-spinal stimulations for 
modules related to pushing the leg toward the back, pulling the leg into the abdomen, and pushing the leg forward (Mean±SEM 
of 10 trials, i.e. 10-fold cross-validation for each model).
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modules in the spine with the help of the fuzzy controller. 
Table 1 summarizes the results of spinal cord stimulation 
in three types of leg movements by the fuzzy controller. 
Similar to the single movement, it was found that the 
simulated movements perfectly followed those observed 
in natural rabbits jumping with respect to three types of 
leg movements. Three cycles of combined movements 
were achieved in response to the stimulations’ patterns. 
The acquired response (i.e. movements angles) of the 
three rabbits was almost within the same range (Table 
1); in this regard, the hip joint angle changes for pull-
ing the leg into the abdomen ranged from 81.22±3.22 to 

91.66±3.08 with around 3% deviation from the mean. 
These movements were governed by the fuzzy control-
ler with weighted constant coefficients (K; for different 
joints: Khip, Kknee, and Kankle), which normalized the errors 
of the angles. Using this system, the restored movement 
fitted the natural leg movement of the healthy rabbits, 
evidenced by high CC (about 0.70) but low NRMS er-
rors (about 0.2) confirming a strong correlation between 
the acquired simulated movements’ and natural move-
ments data. Our t-test analysis indicated no remarkable 
difference in joint angle changes between the SCI and 
the healthy rabbits.

Figure 3. The changes in joint angles observed in natural leg movements before the spinal injury

A, B and C) Show these changes during pushing the leg to the back, pulling the leg to the abdomen, and pushing the leg for-
ward, respectively.

 Data are shown as Mean±SEM (n=10).

Figure 4. Three simulated movements produced by electric stimulations were delivered to the motor modules in the spine 
using the fuzzy controllers

A) Shows the electric stimulation patterns for the specific modules; B, C, and D) Illustrate the corresponding three rounds of 
hip, knee, and ankle joints’ movements, in response to the electric stimulations, respectively. 
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Development of the NARX model

An optimum NARX model capable of deciphering 
ECoG data to produce intra-spinal stimulations was 
developed through multiple steps (Table 2). In the first 
step, the appropriate constant time delay was attained 
(100 msec). Then, the suitable number of input and out-
put delays were achieved for each rabbit (nx=3, ny=3 
for model 1, nx=4, ny=3 for model 2, and nx=3, ny=2 for 
model 3). After that, it was found that about six to ten 
hidden nodes were sufficient in this algorithm. The acti-
vation function of these nodes was sigmoid type in two 
rabbits and hyperbolic tangent sigmoid in the third one. 
Also, linear activation function was considered in output 
layer for all models. Finally, the learning algorithm of 

Levenberg-Marquardt was taken from the built-in algo-
rithms in MATLAB software. 

Off-line evaluation of the acquired NARX model

The offline evaluation of the acquired NARX model 
was carried out by testing the model ten times based on 
the ECoG data achieved in “Simultaneous ECoG and 
leg kinematics in a sedated healthy animal”. These out-
comes were compared with intra-spinal stimulation data 
achieved by the fuzzy control. 

Based on our data, the Mean±SD of CC and NRMS er-
ror for three rabbits (ten trials each) were 0.75±0.15 and 
0.23±0.10 (for the first module), 0.76±0.12 and 0.22±0.08 
(for the second module), 0.73±0.15 and 0.22±0.09 (for 
the third module). Here, CC was 0.74±0.15, and NRMS 
error was 0.22±0.10. This model was able to produce in-

Figure 5. The simulation of ECoG signal-to-intra-spinal relation according to the NARX model

A) Shows the raw ECoG data obtained from the healthy rabbit (i.e. before spinal injury), where the start and stop points were 
taken for analysis; B) Shows five frequency bands and also digitally rectified and smoothed signals; C) Illustrates the intra-
spinal stimulation signals achieved from the NARX outputs and the intra-spinal stimulation signals achieved from the fuzzy 
controller; D) Illustrates the total correlation of ECoG to the intra-spinal data in three rabbits as recorded in 10 test trials, as well 
as the NRMS associated with these relations. 

Data are shown as Mean±SEM (n=30) for each trial. 

Younessi Heravi et al. (2023). Decoding Intra-spinal Stimulation From the ECoG Signals for Movement Restoration by NARX Neural Network. BCN, 14(1), 43-56

http://bcn.iums.ac.ir/
https://www.mathworks.com/help/nnet/ref/tansig.html
https://www.mathworks.com/help/nnet/ref/tansig.html
https://www.mathworks.com/help/nnet/ref/tansig.html
https://www.mathworks.com/help/nnet/ref/tansig.html
https://www.mathworks.com/help/nnet/ref/tansig.html


Basic and Clinical

52

January & February 2023, Volume 14, Number 1

tra-spinal stimulations that matched ECoG signals’ data 
at an acceptable level (Table 2). 

Figure 5 shows the simulation of the ECoG signal-to-intra-
spinal relation according to the NARX model. The intra-spi-
nal stimulation developed using the ECoG information fitted 
the intra-spinal stimulation data achieved by the fuzzy con-
trol (Figure 5 C). Additionally, overall CC and NRMS val-
ues revealed a robust relationship between the NARX model 
predicted outputs and those of the fuzzy control (Figure 5 D). 
The CC outcome in different trials was above 0.7, denoting 
a strong correlation. In this regard, the NRMS was about 0.2, 
which indicates a minimal level of error in the prediction. 

On-line evaluation of the acquired NARX model

As shown in Figure 6, the ECoG signal data related to 
the defined leg movement were similar to those of the 
non-injured rabbit recorded during the leg movement 
(Figure 6 A). These ECoG signals almost matched intra-
spinal electric stimulation data (Figure 6 B), which final-
ly produced the three types of movements (Figure 6 C). 
Overall, CC and NRMS values for the online prediction 
performance of NARX were 0.65±0.12 and 0.33±0.09, 

respectively. Of note, leg movements produced under 
the NARX model, to some extent, matched the natural 
leg movements when the animal was not paralyzed. The 
CC was 0.61±0.08 and the NRMS tracking error for 
joint angles was 0.37±0.11 in the online experiment

4. Discussion

In our study, the fuzzy control and NARX system were 
used in a different way compared to previously published 
similar attempts. In this context, previously, a fuzzy 
control and lag compensator was used to control the 
movement of one joint (i.e. ankle) through intra-spinal 
stimulation (Roshani et al., 2013). Besides, the NARX 
model was used for rehabilitation purposes by correlat-
ing electroencephalography-to-muscle movement (Liu 
et al., 2017; Shakibaee et al., 2019). Nevertheless, we 
correlated the ECoG signal to the intra-spinal electric 
stimulation based on the presumption that the remnant 
neural system in the spinal cord down the injured area, 
could govern the leg movements. It should be noted 
that the present work was conducted in continuation of 
our previous works (Heravi et al., 2020a; Heravi et al., 
2020b) in spinally injured rabbits. Previously, we used a 
brain-spine neural interface based on a SLiR model and 
trial-and-error stimulation for leg movement restoration 

Figure 6. On-line leg movements restoration in a spinally-injured animal using the NARX model

A) Illustrates five ECoG bands in two channels at the time of leg movement in three trails; B) Shows the intra-spinal stimulation 
amplitude predicted by the NARX model and induced by fuzzy controllers; C) Shows the hip, knee, and ankle joint changes 
associated with these intra-spinal stimulations and ECoG signals. 
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(Heravi et al., 2020a). In another study, we employed the 
SLiR model but used closed-loop fuzzy control, which 
led to improvement in the leg restoration outcomes and 
we found it less time-consuming (Heravi et al., 2020b). 
Nevertheless, in the present work, we used a nonlinear 
model, which is unlike the SLiR model that is a linear 
model; this resulted in better prediction of intra-spinal 
stimulation and enhanced leg restoration results com-
pared to our previous works (Heravi et al., 2020b). 

The present system indeed predicted the leg movement 
based on the brain ECoG signals and then, applied the 
retrieved information to generate spinal electric signals 
down the affected region. The electric signal delivered 
to three detected motor modules eventually induced leg 
movements similar to those recorded prior to SCI induc-
tion. In general, the model successfully rehabilitated 
the paralyzed rabbit, but, occasionally, the induced leg 
movement’s slightly varied from the natural movements 
in three maneuvers. 

This approach was beneficial for the paralyzed ani-
mals; however, some limitations existed. The arbitrary 
leg movement with the help NARX system and the 
closed-loop fuzzy control may eliminate the need for 
constant physiotherapy for the prevention of muscle at-
rophy and joint stiffness in spinally-injured cases. How-
ever, the leg maneuver restored in the present work was 
far from the ideal leg movement. First of all, the results 
of the online restored movements indicated that ECoG 
data partly correlates with the electric spinal stimulus, as 
shown by the medium level of correlation (0.61±0.08). 
This emphasizes the complexity of the neural system 
and the brain-to-muscle movement relationship. Be-
sides, we used three modules detected in the animals’ 
spine, while under real-life conditions, the number of 
these modules is supposedly markedly higher. It is pos-
tulated that by increasing the number of motor modules, 
a higher precision in terms of leg movement correlated 
to the ECoG data, could be achieved, which merits in-
vestigation. Secondly, the technique still needs to be im-
proved as the strength and speed of the movement are 
important factors, which were not studied in our study. In 
this regard, the exploitation of sufficiently higher motor 
modules down the affected region in the spinal cord may 
induce leg movements that could lift and hold the body 
in a natural way. 

Under offline conditions, the series-parallel NARX 
model was used. This structure was used because the 
true past values of signals were available. In online as-
sessments, the parallel NARX neural network was per-
formed. This approach can be helpful for prediction 

before online applications. In addition, we achieved the 
best NARX model and the fuzzy control system through 
a trial and error approach with constant time delay. In 
this regard, other logical approaches, like genetic al-
gorithms rather than trial and error, may lead to an im-
proved NARX model, which can explain the relation-
ship between brain signals and leg movement under an 
electric stimulus. Another issue was the constant time 
delay used in the development of the NARX model, 
which might be different for each movement. As a result, 
the application of variable time delays is worth investi-
gating. As a limitation of the present work, it should be 
emphasized that the present findings are translatable for 
anesthetized conditions, and future studies are needed to 
be conducted also in awaking animals to record the brain 
signals before SCI induction and apply them in injured 
animals for restoration of leg movements.

5. Conclusion

Thus, the results of the present study showed that the 
fuzzy-based intra-spinal stimulation and the developed 
NARX model could restore leg movements. Using 
NARX, appropriate information from ECoG recordings 
can be extracted and used for the generation of proper 
intra-spinal electric stimulations for restoration of natu-
ral leg movements lost due to SCI.
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