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Introduction: The right and left-hand motor imagery (MI) analysis based on the 
electroencephalogram (EEG) signal can directly link the central nervous system to a computer 
or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity 
features quantified by transfer entropy (TE) to characterize the relationship between brain 
regions from EEG signals and create a hierarchical feature selection and classification for 
discrimination of right and lefthand MI tasks.

Methods: TE is calculated among EEG channels as the distinctive, effective connectivity 
features. TE is a model-free method that can measure nonlinear effective connectivity and 
analyze multivariate dependent directed information flow among neural EEG channels. Then 
four feature subset selection methods namely relief-F, Fisher, Laplacian, and local learningbased 
clustering (LLCFS) algorithms are used to choose the most significant effective connectivity 
features and reduce redundant information. Finally, support vector machine (SVM) and linear 
discriminant analysis (LDA) methods are used for classification.

Results: Results show that the best performance in 29 healthy subjects and 60 trials is achieved 
using the TE method via the Relief-F algorithm as feature selection and support vector machine 
(SVM) classification with 91.02% accuracy.

Conclusion: The TE index and a hierarchical feature selection and classification can be useful 
for the discrimination of right- and left-hand MI tasks from multichannel EEG signals.
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1. Introduction

rain-computer interface (BCI) is a method 
(Matthews et al., 2007; Yin et al., 2015) that 
helps paralyzed people to communicate with 
the environment without using the periph-
eral nervous system and muscles (Wolpaw 
et al., 2002). Electroencephalography (EEG) 

(Wolpaw et al., 2000), magnetoencephalography (MEG) 
(Mellinger et al., 2007), fMRI (Sitaram et al., 2007), and 
near-infrared spectroscopy (NIRS) (Naseer & Hong, 
2015) are non-invasive methods for BCI system. Among 
them, for practical applications, EEG, which measures 
brain activity via metal electrodes positioned on the 
scalp, is the most used due to its noninvasive, low cost, 
and high temporal resolution and is widely used in neu-
roscience applications (Cincotti et al., 2008; Rehan & 
Hong, 2012). A type of BCI known as motor imagery 
(MI) refers to the imagination of particular action with-
out actual execution. Instead of doing another mental 
task or multiple control command, MI offers a more effi-
cient approach for healthy people to learn new skills and 
paralyze people to rehabilitate (Sharma et al., 2006). MI 
studies usually use different limbs’ imagination, such as 
the left and right hand, feet, and tongue.

In the last decades, several studies from one-channel 
EEG have been presented to classify MI. Power spectral 
density (Kim et al., 2018), discrete wavelet transform 
(Athif & Ren, 2019), autoregressive model coefficients 
(Jansen et al., 1981), common spatial pattern (CSP) 

(Park et al., 2017; Shin et al., 2016), sparse representa-
tion (Shin et al., 2012), and Hilbert transform (Sun et al., 
2015) were employed for feature extraction from EEG 
signals. Despite significant results, none of these meth-
ods have been proven to be adequately reliable in practi-
cal settings because features from single-channel EEG 
during MI tasks cannot attain reliable information and 
multi-channel EEG-based features must be measured.

The functional and effective brain connectivity analyses 
are powerful tools to investigate the relationship among 
different brain regions for the EEG analysis to identify 
the complicated neurophysiological changes during task 
performance (19-20). Functional connectivity is gener-
ally inferred by the correlation, coherence, phase lag in-
dex (PLI), and phase lock value (PLV) in EEG signals 
(Qin et al., 2010; Rubinov & Sporns, 2010; Vinck et al., 
2011). PLV was calculated for event-related desynchro-
nization/synchronization (ERD/S) between two types of 
MI tasks (Gu et al., 2020) and for the phase coupling 
of sensorimotor during tounge-MI task (Spiegler et al., 
2004). Santamaria and James employed PLV and wave-
let coherence to classify two different MI tasks with six 
different classification algorithms (Santamaria & James, 
2016). PLV was also used directly to categorize left and 
right hand MI (Gonuguntla et al., 2016) and during left 
and right hand, foot, and tongue imagery (Brunner et al., 
2006). Finally, Hamedi et al. used coherence to classify 
four distinct MI tasks (Hamedi et al., 2015). 

Highlights 

• Effective connectivity features were extracted from electroencephalogram (EEG) to analyze relationships between regions.

• Four feature selection methods used to select most significant effective features.

• Support vector machine (SVM) used for discrimination of right and left hand motor imagery (MI) task.

Plain Language Summary 

In this study, we investigated brain activity using effective connectivity during MI task based on EEG signals. The 
motor imagery task can accomplish the same goal as motor execution, since they are both activated by the same brain 
area. Transfer entropy, coherence, and Granger casualty were employed to extract the features. Differential patterns 
of activity between the left vs. right MI task showed activity around the motor area rather than other areas. In order to 
reduce redundant information and select the most significant effective connectivity features, four feature subset selec-
tion algorithms are used: Relief-F, Fisher, Laplacian, and learning-based clustering feature selection (LLCFS). Then, 
support vector machine (SVM) and linear discriminant analysis (LDA) are used to classify left and right hand MI task. 
Comparison of three different connectivity methods showed that TE index had the highest classification accuracy, and 
could be useful for the discrimination of right and left hand MI tasks from multichannel EEG signals.
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Another popular brain connectivity widely used in 
neuroscience is effective connectivity which refers to 
the influence that one neural system exerts over another 
(Friston, 2011). These methods are used to define direc-
tional effects between any pair of EEG signals. Effective 
connectivity is usually computed using several methods, 
including structural equation modeling (SEM) (Ander-
son & Gerbing, 1988), dynamic causal modeling (DCM) 
(Harrison & Penny, 2003), and Granger causality (GC) 
(Granger, 1988). However, SEM is not appropriate for 
time series, in which the time constants of neuronal he-
modynamics are generally much larger than the fluc-
tuating inputs driving them (Friston, 2011). Moreover, 
DCM, which partially covers nonlinear interactions, 
always requires selecting a prior model in advance. In 
other words, a priori information about system input and 
connections between the system’s parts is required (Fris-
ton et al., 2003). However, this information always is not 
available. Finally, GC, partial directed coherence (PDC), 
and directed transfer function (DTF) use a linear stochas-
tic model for the signal’s intrinsic dynamic and limit the 
effective connectivity pattern to specific templates (Chen 
et al., 2019; Granger, 1969; Liang et al., 2016; Rathee 
et al., 2016). PDC and DTF can determine the direction 
and spectral characteristics of the EEG signals simulta-
neously (Kaminski & Blinowska, 1991; Sameshima & 
Baccalá, 1999). Liang et al. employed PDC combined 
with multivariate empirical mode decomposition dur-
ing the left/right hand MI tasks to improve classification 
performance (Liang et al., 2016). DTF has been used 
to investigate brain activity dynamics (Kamiński et al., 
2001) and evaluate motor task experiments (Ginter et 
al., 2001). The pattern of EEG in beta and gamma bands 
during left and right-hand movement imagination was 
also investigated by DTF (Ginter et al., 2005; Kus et al., 
2004). Generalized partial directed coherence (GPDC), 
partially directed coherence factor (PDCF), and full-
frequency DTF (ffDTF) are other extensions of the ef-
fective connectivity methods that have been used in the 
BCI (Billinger et al., 2013).

In summary, these effective connectivity methods 
have these problems, the need for a priori information 
or model, the inability to detect nonlinear connections, 
the inability to detect all connectivity in the complex net-
work, and the lack of robustness against linear cross-talk 
between electrophysiological signals (Nalatore et al., 
2007; Nolte et al., 2008). Therefore, characterizing and 
understanding brain dynamics during MI tasks should be 
done in a way that does not have the mentioned prob-
lems. Hence, an essential nonlinear criterion to estimate 
effective connectivity with the name of transfer entropy 
(TE) is presented (Schreiber, 2000). In this method, the 

Wiener causality concept and the conditional mutual in-
formation in the context of information theory are com-
bined. This method is a model-free method and does not 
need a priori assumptions on connectivity patterns due 
to its exploratory nature, robustness against linear cross-
talk, and can measure all linear and nonlinear effective 
connectivity between brain regions. This method recent-
ly has become popular and widely applied to analyze 
multi-channel EEG signals (Weinrich & Wise, 1982).

After the EEG feature extraction, these features must 
be optimized by a wide variety of feature selections or 
dimensional reduction, such as principal component 
analysis (Vickers, 2017), independent component analy-
sis (Ruan et al., 2018), and sequential floating forward 
search (Asensio-Cubero et al., 2016). Finally, these op-
timized features must be classified to develop MI tasks, 
such as Bayesian classifier (He et al., 2015), extreme 
learning machine (Hsu, 2015), and deep learning ap-
proaches (Zhang et al., 2019). Despite the different ma-
chine learning algorithms, no universally superior algo-
rithm exists for this application. 

This study aims to provide a nonlinear effective con-
nectivity method named TE index as feature extraction 
to characterize the nonlinear directed interaction among 
neural EEG channels. Four different feature selection 
methods and advanced classification methods are used 
to improve the accuracy of discrimination of left vs. right 
hand MI tasks in 29 participants.

2. Materials and Methods

Participants and experimental design

Twenty-nine healthy subjects (fourteen males and 
fifteen females with a mean of 28.5±3.7 years) with 
no reported brain-related diseases participated in this 
study (Shin et al., 2016). The subjects sat on a comfort-
able chair at a 1.6-meter distance from a 50-inch white 
screen and were not allowed to move their body during 
the task. The experiment consisted of three sessions of 
right and left-hand MI. Each session consisted of 60 s 
of rest before the experiment, 20 repetitions of the task 
(10 trials for each left and right hand MI), and 60 s post-
experiment resting period. After the task started with a 
visual introduction, a task period of 10 s, and a resting 
time between 15 to 17 s, which is randomly done. In the 
task period, subjects imagine opening and closing their 
hands at a speed of 1 Hz. Figure 1 shows the schematic 
diagram of the experiment. Therefore, for each subject 
in the whole three sessions, 30 trials for left and 30 trials 
for right hand MI were performed. EEG raw data was 
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recorded at a 1000 Hz sampling rate and then downs-
ampled to 200 Hz. EEG electrodes were placed at the 
same cap according to the international 10-5 system with 
thirty active electrodes (AFp1, AFp2, AFF1h, AFF2h, 
AFF5h, AFF6h, F3, F4, F7, F8, FCC3h, FCC4h, FCC5h, 
FCC6h, T7, T8, Cz, CCP3h, CCP4h, CCP5h, CCP6h, 
Pz, P3, P4, P7, P8, PPO1h, PPO2h, POO1, POO2, and 
Fz as ground and reference electrode). 

Preprocessing

All data pre-processing was done using EEGLab in 
MATLAB sotware, version R2018b. The measured 
EEG data were filtered by a 1 Hz FIR high pass filter 
and re-referenced using a common average reference. 
Independent component analysis (ICA)-based electro-
ocoulogram (EOG) rejection was performed by toolbox 
in EEGLAB (Delorme & Makeig, 2004).

Effective connectivity

Effective connectivity as a feature extraction method is 
used to study brain communication mechanisms of dif-
ferent areas (direction and strength of the information). 
Effective connectivity is used to analyze more than one 
signal simultaneously and refers to a casual activity that 
one neural network has on the activity of another neural 
network (Friston, 2011). In this study, TE was used to 
estimate nonlinear effective connectivity. All effective 
connectivity calculation was done in MATLAB.

Transfer entropy (TE) 

TE is a nonparametric method for estimating effective 
connectivity, that can measure all linear and nonlinear 
causal relationships (Vicente et al., 2011). In this meth-
od, the Wiener causality concept and conditional mutual 
information are combined. MI(x, y) shows the mutual 
information and is defined by Equation 1. 

1. MI(x, y)=∑(x.y)p(x.y)log( p(x.y)
p(x)p(y)

)

In Equation 1, p(x) and p(y) are the probability density 
functions, and p(x,y) is the joint probability density func-
tion. MI(x, y) can be rewritten using Shannon entropy 
according to Equation 2 (Vicente et al., 2011).

2. MI(x.y)=H(x)+H(y)-H(x.y)=H(x)-H(x│y)=H(y)-
H(y│x)

In Equation 2, H(x) is Shannon entropy, H(x, y) is 
the joint entropy of random variables. Also, H(x|y) and 
H(y|x) are the conditional entropies (Vicente et al., 2011): 

Conditional mutual information MI (x.y|z) is depen-
dent on observing the random variable z and is calcu-
lated by Equations 3 and 4 (Vicente et al., 2011). 

3. MI(x.y├|z┤)=∑x.y.z p(x.y.z)log( p(x.y|z┤)
p(x├|z┤)p(y|z┤)

)= 

∑x.y.zp(x.y.z)log((p(p(x.y.z)p(z)
p(x.z)p(y.z)

)

4. MI(x.y├|z┤)=H(x.z)+H(y.z)-H(z)-H(x.y.z)

By combining the Wiener causality and the MI (x.y|z), 
TE is obtained (Vicente et al., 2011). or TE(x→y) or 
TExy expressions that by assumption of knowing the past 
statement of the random variable x, how much it adds to 
the available information about the random variable y 
(Vicente et al., 2011).

5. TE(x→y)=TExy=MI(y(t+τ)، _xt
dx،τx)│ _yt

dy، τy)

_xt
dx،τx=(x(t).x(t-τ_x ). ... .x(t-(d_X-1) τ_X ))

 _yt
dy، τy=(y(t).y(t-τ_y ). ... .y(t-(d_y-1) τ_y ))

(xt
dx،τx) and ( _yt

dy، τy) are the past status vectors.τX and 
τY are embedding delay, and x and y and dX and dY are 
embedding dimensions of x and y, respectively. When 
TE=0, no causality is observed between x and y and 
(>0): x is causing y. Embedding dimension (d) is the 
memory of the Markov process in each signal. Also, em-
bedding delay (τ) is the autocorrelation time of the sig-
nal, i.e. when the envelope of the autocorrelation func-
tion decreases to 1/e (0.32).

Feature selection

The insignificant extracted features obtained from ef-
fective connectivity methods must be deleted. This re-
duction of features and selection of the best features 
can influence the improvement of classification perfor-
mance. Feature selection methods are divided into three 
models, wrapper, embedded, and filter methods. The 
wrapper method employs classifiers to score a given 
subset of features, and the embedded method utilizes 
a selection process to learn classifiers. In contrast, the 
filter selection methods are based on the general char-
acteristics of data, and any predictor and classifiers are 
ignored (Roffo, 2016). In the filter selection method, 
which is based on the intrinsic properties of data, fea-
tures are considered individually, ranked, and then a sub-
set is extracted. In this study, four widely filter selection 
algorithms named, relief-F, Fisher, Laplacian, and local 
learning-based clustering feature selection (LLCFS) 
algorithms are employed to choose the best features. 
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Relief-F is an iterative, randomized, and supervised 
method (Liu & Motoda, 2008). Fisher, which is a super-
vised method, calculates a feature score as the ratio of 
interclass separation and intra-class variance, where the 
feature is evaluated independently (Gu et al., 2012). In 
the Laplacian score, an unsupervised method, its power 
of locality preservation evaluates the importance of a 
feature based on the nearest neighbor graph (He et al., 
2005). Finally, the LLCFS algorithm tries to ensure that 
the cluster tag of each data point is near the tag predicted 
by the local regression model, with its adjacent points 
and their cluster tags (60).

Classification

Support vector machine (SVM) (Meyer et al., 2003) 
and linear discriminant analysis (LDA) (Tharwat et al., 
2017) as supervised learning algorithms are used for 
classification in this study. The LDA method is used to 
find a linear combination of features. SVM is used as a 
binary classifier to categorize the data to maximize the 
margin between the hyperplane and the nearest data. 
In this method, when overlapped features exist, sup-
port vector classification maps the feature into a higher 
dimension space by nonlinear function and creates an 
excellent discriminatory hyperplane in that space. All 
analyses were computed in MATLAB software, version 
2018 (The Mathworks, Inc., Natick, MA, USA). 

Statistical analysis

Ten-fold cross-validation was used in this study due to 
the limited dataset. In this method, data are divided into 
10 parts of equal sizes, and in each run, the classification 
parameters are constructed with 90% of data (80% train 
and 10% validation [for selecting the optimized number 
of features]) and tested with 10%of data. Therefore, in 
the first step, we used only 90% of the data, and 10% of 
the test data is set aside in each run. When the optimal 
number of features is selected based on the validation 
dataset for 10 folds, the final classification results are re-
ported based on the testing data of each 10 fold. Evalua-
tion performance is reported by averaging the ten results.

3. Results

We calculated the effective and functional connectiv-
ity between all EEG signals using TE, coherence, and 
Granger causality index in 10-s windows in each trial 
run for the whole experimental period and all subjects. 
For 29 subjects in the entire three sessions with perform-
ing 30 trial runs for left and 30 trials for right hand MI, 
we have 30×29=870 trial runs for each class in the clas-

sification procedure. We used the Hermes toolbox to 
extract features. Having a 30-channel EEG, 900(30×30) 
connections between channels as functional and effec-
tive connectivity features are extracted, making further 
computations complex. As a result, we performed four 
feature selection methods (Fisher, LLCFS, Laplacian, 
and relief-F) to choose the best features for the dis-
crimination of left and right MI tasks. Finally, the best-
selected features are fed to SVM and LDA classifiers 
to classify EEG data into left vs. right MI tasks in 29 
participants. We evaluated different kernels and different 
parameters in validation data through trial and error and 
finally used an SVM with RBF kernel and sigma of 0.9. 
A-10 fold cross-validation was performed. In our case, 
we used 10% of the data for tests and 90% for training 
and validation (80% train and 10% validation). Figure 2 
shows the diagram of the proposed method. 

Table presents the testing classification accuracies 
obtained by the TE, coherence and GC measure and 
four feature selection methods and classification meth-
ods over all participants. As can be seen, the proposed 
method by TE revealed better results rather than other 
connectivity methods (coherence and GC). Also, as can 
be seen, the SVM classifier revealed better results rather 
than LDA in all feature selection methods. Finally, TE 
with SVM and feature selection via the relief-F method 
yield the best results with high testing classification accu-
racy (91.02%). It is noteworthy that the best testing clas-
sification accuracy was obtained in the TE method with 
a smaller number of features rather than in GC and co-
herence methods. Afterward, TE with SVM and feature 
selection via Fisher’s method yields a testing classifica-
tion accuracy of 86.93. Figure 3 shows raw 900(30×30) 
connectivity features for the TE method overall left vs. 
right MI tasks. In this Figure, a higher absolute value 
of the connectivity feature is shown in warmer colors. 
We have also plotted P of all connectivity features by the 
TE method between the left and right hand to show the 
map of separability in Figure 4. P for 30×30=900 fea-
tures (except 30 diagonal channels) between two classes 
are calculated and plotted. A lower value of P, shown in 
blue, has more separability. As can be seen, during the 
MI task, EEG signals have high separability around the 
motor area, parietal, and temporal. Figure 5 shows the 
results of validation classification accuracy by SVM vs. 
the number of TE features selected by relief-F and Fish-
er, which have the highest classification accuracy. Each 
box plot demonstrates the results of validation accuracy 
for each number of features for 10 folds. As can be seen, 
with an increasing number of selected features, the ac-
curacy of the classification reaches its maximum value 
and then decreases. In these figures, the numbers 12 and 
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13 of the features have high average validation classifi-
cation accuracy for 10 folds. When the optimal number 
of features is selected based on the validation dataset, the 
final classification results are reported in Table 1 based 
on the testing data. 

4. Discussion

In this article, a new automated method based on non-
linear effective connectivity named TE index among 
different brain regions as features and hierarchical ma-
chine learning algorithms is used to discriminate of left 
vs. right hand MI task from 30-channel of EEG signals 

in 29 participants with a satisfactory testing classifica-
tion accuracy of 91.02%. TE index, which measures the 
transfer of information between collaborative processes 
based on information theory, is a suitable index during 
hand MI tasks. The novelties of our paper are the use of 
the TE method to quantify the connectivity of the EEG 
signals during the MI task and proposing a hierarchical 
machine learning structure based on different feature se-
lection methods (relief-F, lapalacian, LLCFS, and Fish-
er) to filter the best discriminative features and then fed 
to SVM classifier.

Figure 1. Schematic diagram of the experimental paradigm

 

  

 

 

                                                            

 

 

 

 

(a)                                                              (b)                                                             (c) 

               

 

 

 

 

                        (e)                                                                                                 (d) 

Raw 30 EEG 
channels data 

Pre-processing: 
filtering  

Connectivity 
matrice for EEG 

based on Transfer 
Entropy 

Feature selection (fisher, llcfs, 
laplacian score and reliefF)  

Classification using 
SVM and LDA 

Figure 2. The process of the proposed system, raw EEG data

A) Preprocessing; B) Construction of effective connectivity features; C) Selection of significant extracted connectivity features 
using relief-F, Fisher, Laplacian, and LLCFS and ranking them; D) Classification using SVM and LDA.
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To estimate effective brain connectivity for the left 
vs. right hand MI task, we had several options, such as 
SEM, GC, and DCM. However, each of these methods 
has some problems. SEM is not appropriate for time se-
ries, in which the characteristic time constants of neuro-

nal hemodynamics are much larger than the fluctuating 
or exogenous inputs that drive them. GC methods limit 
the effective pattern to specific templates based on the 
linear parameters of the MVAR model. In contrast, the 
natural dynamics of brain connections cannot be simply 

A

Figure 3. Raw 900(30×30) TE connectivity features overall participants for MI task, a higher absolute value of connectivity 
feature showing with warm colors

 A) Transfer entropy EEG features for right hand imagination; B) Transfer entropy EEG Features for left hand imagination.

B

Figure 4. P of all connectivity features by TE method between left and right hand to show the map of separability

 A lower value of P is shown in blue, has more separability.
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isolated with a predetermined limiting model. Finally, 
DCM, which partially covers nonlinear interactions, 
always requires a priori information about the network 
connections, and this information is not always available. 
Consequently, if we want to use an appropriate effective 
connectivity method for a complex network of the brain, 
it should not require a priori information, be able to de-
tect and measure nonlinear interaction across brain func-
tion, be robust against linear cross-talk between signals 
because EEG contains electrophysiological data, and 
finally detect effective connectivity with a wide distribu-
tion of interaction, because signaling between two areas 
of the brain may involve various pathway over various 
axons that connect two areas. Therefore, the use of the 
above-mentioned effective connectivity methods leads 
to incorrect brain connection estimation, and an impor-

tant nonparametric and nonlinear criterion for estimating 
effective connectivity with the name of TE for studying 
multi-channel EEG signals is presented. TE index does 
not assume any particular model and can describe linear 
and nonlinear interactions existing in a system quantita-
tively and can properly detect directional connectivity. 

Motor imagery and motor execution activate the same 
brain area (Beisteiner et al., 1995), and the same goal can 
be achieved by motor imagery task. During the interval 
between the motor imagery and the motor execution, 
several cells in the premotor cortex fired vigorously and 
then stopped firing after the execution (Weinrich & Wise, 
1982). As shown in Figures 3, and 4, differential patterns 
of effective connectivity between the left vs. right MI 
task in the TE method are around the motor areas rather 

Figure 5. SVM validation classification accuracy vs. the number of TE features selected by (left) Fisher and (right) relief-F fea-
ture selection methods

Table 1. The classification accuracy obtained by TE, coherence, and GC measures 

Connectivity 
Mthod Classifier

Feature Selection Methods (No. )

Relief-F Laplacian LLCFS Fisher

TE
LDA 85.74±0.002 

(14)
82.31±0.0021

(18)
71.69±0.0011

(15)
84.9±0.002

(14)

SVM 91.02±0.0015 
(12)

86.87±0.0031 
(17)

85.21±0.0030 
(13)

86.93±0.003 
(13)

Coherence 
LDA 75.12±0.002 

(20)
66.32±0.002

(25)
67.85±0.001

(19)
63.45±0.002 

(22)

SVM 80.67±0.0021 
(17)

81.42±0.003 
(23)

79.69±0.003 
(17)

67.42±0.003
(23)

GC
LDA 80.13±0.0012 

(18)
82.36±0.0036 

(20)
74.63±0.0021

(18)
73.35±0.002

(17)

SVM 82.48±0.0021 
(16)

83.64±0.0026 
(18)

84.12±0.0029 
(17)

74.36±0.0034
(15)

Abbreviations: TE: Transfer entropy; LLCFS: Local learning based clustering; SVM: Support vector machine; LDA: Linear 
discriminant analysis; GC: Granger causality; LLCFS: Local learning-based clustering feature selection.
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than other areas. These discriminative features are simi-
lar to previous studies (Hermes et al., 2011). Also, the 
parietal and temporal area has more activity than other 
areas, resulting from imagination, and the frontal area 
has some activity due to the decision thinking during the 
MI task (Xu et al., 2014). 

In this study, four widely featured selection methods 
(relief-F, Fisher, Laplacian, and LLCFS) were applied. 
In these methods, features are individually ranked, and 
then a feature subset is extracted for classification in 
the next step. Relief-F and then Fisher feature selection 
methods which are supervised methods yielded better 
classification results in our study. The relief-F method, 
with the highest accuracy, considers the relevance of fea-
tures with dependent variables using statistical measures 
and estimates the quality of the features. Also, K-nearest 
neighbors are searched and their contribution to each 
feature’s weight is averaged to prevent redundant and 
noisy features that affect the nearest neighbors’ selection.

Table 2 compares the results of our work with the prior 
studies that employed the same data set in EEG signal 
to classify left vs. right hand MI task (Shin et al., 2016; 
Yavuz & Aydemir, 2017). As it is observed, the testing 
accuracy achieved in this study by applying the effective 
connectivity method with TE as the features and hierar-
chical feature selection and SVM classifier (91.02%) is 
higher than those studies. It proves the preference for the 
proposed method. In the future, it is suggested to calcu-
late the characteristics of the effective brain connectivity 
in the localization of brain resources in the EEG signal 

with more channels and then discuss the features and 
classification. Also, we believe that the performance of 
a multi-model system based on EEG and near-infrared 
spectroscopy using Hbo and HHB as the hemodynamic 
responses (Erdoğan et al., 2014; Gagnon et al., 2014) 
compared to a single modality may improve the accu-
racy of hand MI task discrimination.

5. Conclusion

Results indicated that nonlinear effective connectiv-
ity between brain regions using TE with handling other 
problems of previous effective connectivity character-
izes brain dynamics effectively, and is an essential tool 
for understanding the neurophysiological mechanisms 
of left vs. right hand MI task. Consequently, by calculat-
ing the features of effective connectivity quantified with 
TE and a feature selection and SVM classifier to dis-
criminate left vs. right MI task from EEG signals, a test 
accuracy of 91.02% on the 29 participants is achieved.

Ethical Considerations

Compliance with ethical guidelines

All procedures performed in studies involving human 
participants were in accordance with the declaration of 
Helsinki and was approved by the Ethics Committee of 
the Institute of Psychology and Ergonomics, Technical 
University of Berlin (Code: SH_01_20150330).

Table 2. Comparison our work results with the prior studies employing the same data set inEEG Signal

Authors Dataset Year Feature Classifier Accuracy

Shin (Shin et al., 2016) 29 subject, Shin dataset 2016 CSP LDA 65.6

Yavuz (Yavuz & Aydemir, 2017) 29 subject, Shin dataset 2017 Hilbert transform
Knn 82.23

LDA 78.13

Masghsoud I (Maghsoudi & Shal-
baf, 2022) 29 subject, Shin dataset 2020

DTF

SVM

61.85

dDTF 73.66

GPDC 83.87

Proposed method 29 subject, Shin dataset 2021 TE
SVM 91.02

LDA 85.74

Abbreviations: TE: Transfer entropy; SVM: Support vector machine; LDA: Linear discriminant analysis; CSP: Common spatial 
pattern; DTF: Directed transfer function; GPDC: Generalized partial directed coherence; dDTF: Direct directed transfer func-
tion; Knn: K-nearest neighbors.
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