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1. Introduction

pilepsy is a recurrent seizure-related disor-
der of the central nervous system that af-
fects approximately 1% of the world popu-
lation (Khreisat, 2011). A seizure occurs 
when there is an increase in synchronous 

behavior of a localized group of pyramidal cells within 
the cerebral cortex, resulting in a surge of electrical 
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Localization of sources in patients with focal seizure has recently attracted many 
attentions. In the severe cases of focal seizure, there is a possibility of doing 
neurosurgery operation to remove the defected tissue. The prosperity of this heavy 
operation completely depends on the accuracy of source localization. To increase 
this accuracy, this paper presents a new weighted beamforming method to 
precisely localize the focal seizure sources from the electroencephalogram (EEG) 
signals. First, synchronization value is determined just between each two adjacent 
channels, and the channel with maximum average in synchronization index is 
selected as the nearest channel to the dominant focal sources. Next, weight of each 
channel is determined based on its Euclidean's distance to the selected channel. 
The determined weights act as a prior knowledge, incorporating in multiple signal 
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exact place of seizure source. Next, the effect of estimated source is removed from 
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all focal sources being determined. To verify and validate the proposed scheme, 
65 channels EEG signals were simulated and a linear weighting was applied to 
the three groups based on some sources. The proposed scheme and some known 
beamforming methods such as conventional beamformer, MUSIC, Weighted 
MUSIC, Capon’s, Eigenvector and also SLORETA were applied to the simulated 
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superiority of the proposed method to the rival schemes in terms of localization 
accuracy, both in clean and noisy environments. 
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activity. The over-stimulation at the seizure focus irri-
tates neighboring regions, causing the seizure to spread. 
Some forms of epilepsy may be treated with medication 
while other types are medically intractable. For the lat-
ter, a suitable treatment option is to surgically remove 
the seizure focus. Therefore, a robust and accurate al-
gorithm for localizing the seizure focus is necessary for 
successful surgical treatment (Russell & Koles, 2006).
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Electroencephalogram (EEG) signals, which carry the 
physiological- basis information, are repeatedly used as 
a reliable source for this kind of diagnosis. A number of 
methods for localizing EEG sources have been inves-
tigated by different research teams (Latif et al., 2006). 
These methods totally can be divided into two catego-
ries: "equivalent current dipole" approach, in which the 
EEG signals are assumed to be generated by a relatively 
small number of focal sources, and the "linear distrib-
uted" approach, in which all possible source locations 
are considered simultaneously. However, the accuracy 
of such approaches is dependent on the number of both 
sources and sensors (channels). Moreover, mostly a 
head volume conductor and a source model need to be 
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plexity is generally very high (Latif et al., 2006).
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process, sampled at an array of sensors, was spatial 
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ing in literatures. A beamformer is a mere application 
of Fourier-based spectral analysis to spatio-temporally 
sampled data. In other words, a beamformer performs 
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frequency content but originate from different locations 
(Van Veen & Buckley, 1988; Karim & Viberg, 1996).

A normal beamformer is a pure application of Fourier-
analysis and source localization can be done by maxi-
mizing the output power. Due to the limitation of near-
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Chia, 2007); different weighting schemes have been de-
veloped to overcome these shortcomings. Furthermore, 
subspace-based methods have been deployed to extract 
the weights for recalculation of spatial spectrum.

On the other hand, synchronization of EEG signals 
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information from the brain cortical layer. In this study, 
due to the fact that most epilepsy sources expose in the 
brain cortical layer, utilizing synchronization values for 
reformulating the beamformer seems logical. In this 
way, phase synchronization index of the successive 
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mation about the approximate location of the sources. 

The remainder of this paper is structured as follows. 
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Section 3, synchronization method and the proposed 
methodological strategy are introduced. In Section 4, 
data simulation and noise estimation are proposed. In 
Section 5, experimental results produced by applying 

the simulated data on the explained schemes are shown. 
Finally, Section 6 presents the conclusion, and opens a 
new horizon to future work.

2. Methods

In this section, the beamforming methods are ex-
pressed in a conceptual way rather than explaining 
its mathematical details. Suppose the head surface is 
molded by L electrodes, and EEG signals are recorded 
simultaneously. For an L-element electrode array of ar-
bitrary geometry, the array output vector (EEG signal 
of all channels) is obtained as (Karim & Viberg, 1996; 
Huang et al., 2004; Ronhovde et al., 2002)
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channel in the polar coordinate. The attenuation vector 
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head model by which signals of channels can back proj-
ect to the sources by multiplying the inverse of matrix 
a to the EEG signals arranged within the matrix x. As 
it is shown in Fig. 1, beamforming method acts as an 
inverse problem that estimates the position and signal 
of the source located at r0 from the origin.

In the presence of an additive noise n(t) we now get the 
model commonly used in array processing:
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where n(t) contains all disturbances and artifacts that 
undesirably are added to the EEG signals during the re-
cording. The only consideration that should be taken is 
that the number of channels should be more than the 
number of sources. Therefore, this approach can just be 
applied to focal seizure that is faced with low number of 
seizure sources. However, it cannot be applied to EEG 
signals of patients with generalize seizure in which the 
whole brain acts like a distributed source. In this kind 
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sources.
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es by means of electrode arrays was through beamform-
ing techniques. The idea is to "steer" the array in one 
direction in a moment, and measure the output power. 
The steering location which results in maximum power 
produces the DOA estimates (Karim & Viberg, 1996). 
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In this study, the conventional beamformer was used. 
The conventional beamformer, mostly called Bartlett, is 
a natural extension of classical Fourier-based spectral 
analysis to sensor array of data. For an array of arbi-
trary geometry, this algorithm maximizes the power of 
beamforming output for a given input signal. Capon's 
beamformer, also known as the Minimum Variance 
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attempts to minimize the power contributed by noise 
and any signals coming from other undesired directions 
(Karim & Viberg, 1996).

In contrast to the beamforming techniques, the MU-
SIC algorithm provides statistically consistent esti-
mates. Though the MUSIC method (Karim & Viberg, 
1996) does not represent a spectral estimate, its impor-
tant limitation is still failing to resolve closely spaced 
signals in small samples and at low SNR scenarios. This 
loss of resolution is more pronounced for highly cor-
related signals.
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The most notable was the unifying theme of weighted 
MUSIC, which was particularized to various algorithms 
for different W. It is clear that a uniform weighting of 
the eigenvectors, i.e. W=I, results in the original MU-
SIC method. This is indeed the optimal weighting in 
terms of yielding estimates of minimal asymptotic vari-
����!� �
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sample, low SNR and highly correlated signals, a care-
fully chosen non-uniform weighting may still improve 
the resolution capability of the estimator without seri-
ously increasing the variance (Karim & Viberg, 1996). 

3. Synchronization

Synchronization, in general, means that many subsys-
tems of a system respond in phase. In a brain subsystem, 
the term means that all neurons in that subsystem should 
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used to denote that waves occur at the same time on 
both sides of the scalp. In other words, the phase of the 
two waves is the same (in-phase). For a single channel, 
the high amplitude, low frequency EEG denotes syn-
chronization while the low amplitude, high frequency 
EEG denotes de-synchronization (Kushwaha & Malow, 
1997). 

Synchronization of different signals of EEG chan-
nels gives us considerable information about activ-
ity of cerebral cortex. Therefore, according to medical 
knowledge, since epilepsy sources are close to the cor-

tex area, receiving synchronicity information in studies 
related to epilepsy is very important. There are several 
ways to check the synchronization between the signals; 
for example, the phase synchronization methods that can 
����������������
��^^<��������	������	�!���	����#����
to non-linear behavior of neurons, there are also ways to 
consider the chaos as the basis of phase synchronization. 

In this study, phase synchronization is applied to im-
prove the localization accuracy. Note that by assuming 
the stationary condition of EEG signals, we can use 
the FFT method for phase synchronization. For non-
stationary signals, we must use the Wavelet method for 
phase synchronization. 

3.1. Phase Synchronization

Z����	�
�;�/
�������J�����	&
����	���	�"�������	����	����
����������
�
����
�����
�����
�$��­��J������&����������
���������$���������	��	���¤���¨�®��&�����$�����������
integers. For convenience of calculation, in this study, 
we shall keep m = n = 1 (Majumdar, 2009).
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lag should be almost uniform across all harmonics. In 
this way, synchronization gives a measurement between 
���@�����	���������%���	�����������
�������
����	�
���	
���
(perfect synchronization) scale (Majumdar, 2009).

Figs. 2 and 3 show two channels of synchronous EEG 
signals in time and phase domain. Although there is 
not complete likelihood in time domain between them 
in Fig. 2, Fig. 3 shows that when two signals have the 
same behavior, their phase is similar too.

3.2. Clustering

Here, clustering means the neighborhood construc-
tion for each EEG electrode. It should not be confused 
with clustering in pattern recognition. Neighborhood of 
a channel, here means the set of channels contain the 
desired channel and the channels closest to it. For ex-
ample, for 60 channels, there are 60 neighborhoods or 
clusters. The i’th cluster has been formed according to 
the following rules:

1. Include the i’th Channel

2. Draw a circle centering the i’th channel so that at 
least one channel falls on the circumference and no 
channel is inside other than the i’th channel.
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3. Include all the channels falling within the circum-
ference. 

In this study, the minimum Euclidean distance as the 
radius of a circle is used, and therefore, only one neigh-
�
���������

���������������!��������	�
��

�	�������-
age cumulative phase synchronization and the average 
cumulative signal power of the i’th cluster have been 
done according to the following equations: 

Here, P(i) is the average cumulative phase synchroni-
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channels of the i’th cluster other than the i’th channel, 
²°²����	������������	��

�°����������	��������#����$���-
tive signal power of the i’th cluster, and pow(j) denotes 
the signal power at channel j. Since different clusters 
consist of different numbers of channels, we have taken 
the average of cumulative values of both the phase syn-
chronization and power of each cluster in order to nul-
lify the effects of channel population in a cluster (Ma-
jumdar, 2009).

3.3. Localization

After applying all the above steps on a EEG signal 
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to the source with the knowledge that both the phase 
synchronization of a channel with its neighbors and the 
cumulative signal strength are high values near the cor-
tical sources.

In the study, the high threshold value of 0.6 for the 
normalized signal and 0.2 for the phase synchroniza-
tion was used, and if the signal was noiseless, the high 
threshold 0.4 for the phase synchronization was applied. 
After setting up the channels and holding (or satisfying) 
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repetitions of selected channels at various time intervals 
was considered. Channels that have all the above condi-
tions will be introduced as the closest channels to the 
source. If this method is applied to the simulated signal 
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this is not a defect of this method. The source is located 
just under this electrode; but the direction of its bipo-
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from our simulation. So, values of power and phase syn-
chronization of signal for this channel are higher than 
the others.

In the algorithm, shown in Fig. 4, a step-by-step pro-
cedure for source localization of this project is repre-
sented.

4. Data Simulation and Noise Estimation

Neural current sources in the brain produce external 
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measured, using Magneto Encephalography (MEG) and 
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nals can be separated into two components, the primary 
current term, representing the impressed neural and mi-
croscopic passive cellular currents, and the secondary 
or volume currents that are a result of the macroscopic 
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sources, the forward problem is then to determine the 
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current sources. The inverse problem is to estimate the 
location of these primary current sources.
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relationship between a primary current source distribu-
tion and the data at the sensor array. The linearity of the 
forward model can be expressed as the inner product of 
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the presentation here, the primary current to current 
dipoles are restricted, since more complicated sources 
can be expressed as sums or integrals of these elemental 
sources. Solutions are described to the forward problem 


���������"��	�	�
���#�	���������������	
�	���"�
���	�
of a sensor matrix, a kernel matrix, and the moment of 
the dipole. The most commonly used head model as-
sumes that it is made up of a set of nested concentric 
spheres, each with homogeneous and isotropic conduc-
tivity. Under this assumption, the EEG problem admits 
to well-known closed form solutions. Here, the forward 
solutions are described for both problems for the spheri-
cal model using kernel matrices. The matrices are ex-
plicitly stated here in Cartesian coordinates (Mosher et 
al., 1999).
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For the biological signals of interest in EEG, the time-
derivatives of the associated electric and magnetic 
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Maxwell’s equations. The typical head model assumes 
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and isotropic within these regions. The gradient of the 
conductivity is therefore zero except at the surfaces be-
tween regions, which allows the volume integrals to be 
reworked into surface integrals. We assume our volume 
can be divided into M + 1 region with conductivities 
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region outside the head. 
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quasi-static and the shape of the homogeneous regions 
of the head are known and of known constant isotropic 
conductivity (Mosher et al., 1999).

4.2. EEG and Spherically Symmetric Conductor

The simplest case in EEG is a single spherical shell 
head model, i.e., the entire conducting volume is mod-
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form of the solution, presented by Zhang in (Zhang, 
1995), is used. The single spherical shell is too unrealis-
tic as a model for the head due to the large difference be-
tween the conductivities of brain and skull. The typical 
multi-shell spherical model includes three layers for the 
brain, skull, and scalp; some also include a cerebrospi-
����=���������!�<���$��	�X�����������
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When computing the solution to this forward problem, 
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Various approximations for the multi-shell case have 
been proposed. In this paper, the method proposed by 
Berg in (Berg & Scherg, 1994) is applied. For a given 
M-shell head model, these so-called “Berg parameters” 
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4.3. Matrix Kernel for Spherical Heads
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cation and moment, then implementation of the above 
formulas could proceed directly. The inverse problem, 
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sources that adequately describe the data recorded by a 
limited set of sensors. As shown in Mosher et al. (1992), 
the inverse problem can often be better approached if 
the linear moment parameters q are separated from the 
�
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In this section, as shown in Mosher et al. (1999), we can 
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solution will be represented as the EEG scalar v(r)=k^T 
�����������&�����%����������������¥������	
��%�����!�<�����
�����%�����������	�����
$������&�	��	�������
��������-
	����	���� 	
�������������	��$�	������

� �����������&�����
are clearly separated from the dipole moments.

According to the relations represented in Mosher et 
al.(1999), for a 3-shell model we can write:

(5) 

k3 (r,rq��¶�1 k1���·1 Rq���¶�2 k 2���·2 Rq���¶3 k3����·3 rq)

&�����µ¶ 1�· 1�¶ 2�· 2�¶ 3�· 3¸����� 	���+��#�"���$�	���!�
In this step, by using the table 1 (Xu et al., 2004), and 
knowing the position of the source and the sensors, it 
is easy to calculate the kernel, and literately, the 3-shell 
model of EEG can be found.

4.4. Noise Estimation

Noise estimation is an important issue in all areas of 
signal processing. As we noted in last sections, in some 
���$
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the noise. There are several ways to noise estimation. In 
this study, the soft thresholding method was used. A soft 
thresholding technique is applied in an attempt to im-
prove the accuracy of signals with low signal-to-noise 
ratios (SNR). We will remove noise from the signal and 
estimate the noiseless signal.

^
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step, the signal is divided into different windows. Then, 
the signal of every window is projected to an orthonor-
mal basis. In the other words, the FFT is taken from 
��#���!�?
	��&�����	����
�
�����	�������
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ing order, squared and summed to produce the variable 
»�m. J samples of a white Gaussian are then generated to 
estimate the expected value and variance of the variable 
»�$!�?��&�	��$����$
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the integer value J improves the accuracy of the estima-
tion at the cost of computing power and time. A graphi-
cal depiction of the de noising process is represented in 
Fig. 5.

5. Simulation Results and Discussions

5.1. Data Simulation

In the recent section, the EEG signal simulation meth-
od was described completely. On this basis, it is possible 
to say that having the location of electrodes to record the 
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the current study, the standard model of 10-10 (65 chan-
nels) was used. It should be noted that when the num-
ber of channels increases, the localization scheme acts 
better. Afterward, by using the Brain-Storm software, 
the location of electrodes was obtained. In table 2 the 
schematic of some electrode positioning is represented.

In the next step, three groups of signals were pro-
duced: 

1. EEG signals with single-source localized at the 
frontal-temporal left or right side of the head.

2. EEG signals with punctual sources localized at the 
frontal-temporal of the head.

3. EEG signals with distributed sources within the 
head.

According to the clinical information of epilepsy, the 
focal epilepsy sources are in the frontal-temporal area 
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using the Fig. 6, the location of the source for different 
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placed on the right side and close to the electrodes Fp1, 
F7 and Af7, as shown on Fig. 6, and 10 other signals 
with the source placed on the opposite side and close 
to the electrodes Fp2, F8 and Af8 and at a depth of ap-
proximately 2.2 cm. For the second group, three closely 
sources were placed in the same area. The signals of 
the third group, are achieved by three sources located at 
different areas of the head and are almost simulated the 
global epilepsy.

For all of these three groups, source is a sinusoid with 
three different harmonics
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,
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It is the source of noise near the epilepsy sources. The 
obtained signals were recorded by sampling rate 128 
��$!�]���������
�	���$���	�����!�!��[������$"����!�?��
��
it is necessary that 2 channels are assumed as the earth 
(reference), therefore there are only 63 channels. 

In Figs. 7, 8 and 9, the samples of these signals for 
an arbitrary channel of noise-less data and in Fig. 10, a 
sample of a signal for an arbitrary channel of noisy data 
are shown.

5.2. Noise Estimation

As described in section 4.4 and the algorithm repre-
sented in Fig. 5, the noise of signals can be calculated 
and the noise from the original signals removed. Fig. 11 
shows a primary, estimated noise-less and noise estima-
tion of signal, for an arbitrary channel.

5.3. Beamforming Methods Implementation

In this section, the beamforming methods described in 
���	�
����&��������!�?	����	����¦���������$�	����������-
essary. The Brain-Storm software for calculation of this 
matrix was applied. The next step is working with maxi-
mization and minimization of the power function for the 
source localization. Although LORETA based methods 
are designed for correlated sources while beamforming 
methods are assumed based on independent sources, 
SLORETA is applied to simulated EEG signals and to 
compare its results with the other applied methods in 
this paper (Sekihara et al., 2005).

 As studied, punctual sources are the same as a sin-
gle source. The distributed sources are more irregular 
than the others, but in general, it is true to say that the 
WMUSIC methods have the minimum accuracy while 
the Conventional beamfromer (bf), in average, has the 
best accuracy.

5.4. Synchronization 

To use the synchronization methods proposed in sec-
	�
������	����	���	��������������	
������������#��
��

��

�
electrodes. For every electrode, the Euclidean's distance 
to other electrodes is calculated, and the minimum of 
these distances will be found. It is obvious that, every 
electrode has only one neighbor. Afterward, by divid-
ing the signal into time windows of 200 samples, the 
synchronization and power in every window of differ-
ent channels are studied. By this method, the channel, 
neighbor with maximum value of synchronization, and 
power in every window can be obtained. Then, the chan-
nel in every window, which has the maximum value of 
synchronization and power, is selected as the closest 

"��	�
��
Estimated Berg Parameters for 3-Shell Head Model

L ������� �������

1 0.51346275 0.10663283

2 -0.45889827 0.098806681

3 0.062551069 0.32614976
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The number and location of some electrodes

Number Name Type Comment ������� Weight

1 Fp1 EEG AVERAGE REF [0.10233; 0.03703; 0.02756] [0.00000; 0.00000]

2 Fp2 EEG AVERAGE REF [0.10329; -0.03411; 0.02931] [0.00000; 0.00000]

3 F4 EEG AVERAGE REF [0.06860; -0.05644; 0.09604] [0.00000; 0.00000]

4 F3 EEG AVERAGE REF [0.06904; 0.06351; 0.08832] [0.00000; 0.00000]

5 C3 EEG AVERAGE REF [0.01337; 0.07109; 0.11798] [0.00000; 0.00000]

6 C4 EEG AVERAGE REF [0.00881; -0.06629; 0.12502] [0.00000; 0.00000]

7 P4 EEG AVERAGE REF [-0.05785; -0.04645; 0.12011] [0.00000; 0.00000]

8 P3 EEG AVERAGE REF [-0.05316; 0.05598; 0.11294] [0.00000; 0.00000]

9 O2 EEG AVERAGE REF [-0.08635; -0.03571; 0.07554] [0.00000; 0.00000]

10 O1 EEG AVERAGE REF [-0.08293; 0.03991; 0.07072] [0.00000; 0.00000]

11 F8 EEG AVERAGE REF [0.03567; -0.07747; 0.04631] [0.00000; 0.00000]

12 F7 EEG AVERAGE REF [0.04473; 0.07734; 0.04155] [0.00000; 0.00000]

13 T8/T4 EEG AVERAGE REF [-0.01189; -0.08315; 0.05781] [0.00000; 0.00000]

14 T7/T3 EEG AVERAGE REF [-0.00978; 0.08329; 0.04781] [0.00000; 0.00000]

15 P8/T6 EEG AVERAGE REF [-0.05759; -0.06776; 0.06901] [0.00000; 0.00000]

16 P7/T5 EEG AVERAGE REF [-0.05586; 0.06852; 0.06158] [0.00000; 0.00000]

17 Pz EEG AVERAGE REF [-0.05550; 0.00643; 0.13830] [0.00000; 0.00000]

18 Fz EEG AVERAGE REF [0.08864; 0.00106; 0.11618] [0.00000; 0.00000]

19 IO1 EEG AVERAGE REF [0.07137; 0.04361; -0.03335] [0.00000; 0.00000]

20 IO2 EEG AVERAGE REF [0.07281; -0.04416; -0.03404] [0.00000; 0.00000]

21 AF9 EEG AVERAGE REF [0.05533; 0.06914; -0.00074] [0.00000; 0.00000]

22 AF10 EEG AVERAGE REF [0.05293; -0.07036; 0.00536] [0.00000; 0.00000]

23 F9 EEG AVERAGE REF [0.03067; 0.07735; 0.00751] [0.00000; 0.00000]

24 F10 EEG AVERAGE REF [0.02609; -0.07823; 0.01914] [0.00000; 0.00000]

25 CB1 EEG AVERAGE REF [-0.06755; 0.05743; 0.01767] [0.00000; 0.00000]

26 CB2 EEG AVERAGE REF [-0.07926; -0.04810; 0.02327] [0.00000; 0.00000]

27 TP7 EEG AVERAGE REF [-0.03196; 0.07948; 0.05498] [0.00000; 0.00000]

28 TP9 EEG AVERAGE REF [-0.03746; 0.07484; 0.02512] [0.00000; 0.00000]

29 TP10 EEG AVERAGE REF [-0.04789; -0.07197; 0.03208] [0.00000; 0.00000]

30 TP8 EEG AVERAGE REF [-0.03302; -0.07820; 0.06251] [0.00000; 0.00000]

Date Channel 21 Channel 22 Channel 23 Mean of other Channel

1 82 % 77 % 86 % 15 %

2 85 % 12 % 25 % 16 %

3 14 % 91 % 15 % 12 %

"��	�
��
Each channel column is repetition rate of synchrony one channel with its neighbor 
at all of windows.  Data 1 is a signal with 3 distributed sources, data 2 is a signal whit single 
source and data 3 is a signal with 3 punctual sources.
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Figure 1. The functionality of beamforming is simply depicted; the place and 
signal of source signal are estimated using back projection of all EEG chan-
nels. 

Figure 2.  Two channels of an EEG in time domain Figure 3. Two channels of an EEG in Phase domain

Figure 4. Step-by-step procedure for source localization
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Figure 5. A graphical depiction of the denoising process, where x is the input signal, x* is the ideal, 
noiseless signal, w is the Gaussian noise, and the output, y is equal to the noiseless signal, x*.

Figure 6. The schematic of electrode positioning

Fast Fourier
Transform (FFT)
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Figure 7. Simulated noise free signal of a single source

Figure 8. Simulated noise free signal of a distributed source

Figure 9. Simulated noise free signal of a punctual source

Figure 10. Simulated noisy signal of a single source

Figure 11. The blue signal is the primary, the black one is noiseless and the red one is 
the noise estimation.
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Figure 12. The distance between real and localized source 
and a single source, before application of multiplication fac-
tor.

Figure 14. The average and standard deviation of distance to 
the real source of a single source sample.

Figure 13. The distance between the real and localized source 
and a single source, after application of multiplication factor.

Figure 15.�|���V�����������%�������<������%������������������-
tributed sources. 
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Figure 16. The second stage of localization for signal with distributed sources.

Figure 17. The third stage of localization for signal with distributed sources.

Figure 18. The noise effects and improvement multiplication for signal with a single 
source.
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Figure 19. The noise effects and improvement multiplication for signal with dis-
tributed sources.

Figure 20. The noise effects and improvement multiplication for signal with punc-
tual sources.

channel to the source. It is obvious that for signals with 
distributed sources, more than one channel is obtained. 
It is necessary to note that for specifying the maximum 
value of synchronization and power, it is crucial to de-
������	�����
��!�/��	�����	�������#��	�����
���"
&������-
ue of 0.6 was used for the normalized signal and 0.2 for 
the phase synchronization. Table 3 presents repetition 
rate of synchrony of one channel with its neighbor at all 
of the windows as an example to understand this sec-
tion; This example is as to one channel in the different 
data with three types of sources.   

/�/�
 �����������
 ��
 ;����������
 ���
 *$���

Synchronization Methods

Beamforming approach localizes the sources based on 
delay of the received signals of electrodes. In EEG pro-
cessing, due to the small distance between sources and 
electrodes, this delay is very low; so that it’s a disadvan-
tage to apply beamforming for EEG localization. Using 
information of phase synchronization compensate this 
���������!�
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Now, the closest channel to the source has become 
clear. In this step, some data are changed, and this fol-
lowed some changes in power functions of beamform-
ers. It is assumed that the closest channel to the source 
is the "source channel". In cases of every synchroniza-
tion method, it is possible to obtain only one channel, 
and to multiply data of every channel by the distance of 
obtained channel to the source channel. For the source 
channel, the 0.0000001 was used as the multiplication 
factor. 

In this study, 3 channels near the sources are obtained 
for the signal of the distributed sources by using the 
synchronization method. In this case, the distances of 
every channel to the source channels are calculated and 
the minimum one is used as the multiplication factor. 
Also, for the source channels, 0.00000001 is used as the 
multiplication factor. It is obvious that for channels near 
the source, multiplication factors are smaller than chan-
nels away. So it is expected that beamforming methods, 
which have minimum noise of power as basis of local-
ization, are better than before. Our criterion for evalua-
tion of accuracy of results is the distance between real 
and estimated source. 

From the results that obtained from a single source 
EEG signals, and by comparing Figs. 12 and13, it is 
clear that the distance from real source for WMUSIC 
to bf is decreased. For the methods as MUSIC, which 
is dependent on Eigen-vector of estimated noise, there 
is not much variation; because the multiplication fac-
tor of one matrix does not change corresponding Eigen-
vectors.

Fig. 14 shows the average and standard deviation of 
distance to the real source.

The results obtained from data analysis with punc-
tual and distributed sources show that implementation 
of one stage beamforming of data localized only one 
�
����!�<����

����	
�����
	�����
��������	����	��	����
-

��	��

�	�����"��������
�����������$
��������	����	���
resulted signal is given to the algorithm. This work is 
�
�	������	
����������
�����!�

In this study, to remove the effect of one source in 
one stage by nullifying the row corresponded to loca-
	�
��

����	������������	���

��
&��#�����	�
�;��	��&½��
x(t), and then by multiplying w^(-H)in matrix, the data 
are returned to the primary signal space. In the resulted 
��	���	���������
	������

��	�

��"��������
����!�^�#!����
��
&��	������	��	�#��

�	��������	�����	��

��	������	���-
uted sources.

As shown in Fig.15, one source is located as much 
as possible near to one of the real sources. In the next 
�	�"���
	�����$
���#�	����

��	�
��	�����"��������
������
	������	��
�����&����"��������^�#!��[������	����	������	�
source is allocated (Fig. 17).

Above mentioned steps were repeated for localiza-
tion of punctual sources. The results in general have the 
same diagrams, but the localized sources have less ac-
curacy. 

5.6. The Noise Effects

To study the noise effects on described methods, only 
for one data, the noise functions are implemented in 
three forms: randn, 5 × randn, and 0.5 × randn. Figs. 
18, 19, and 20 show the noise effects on a single source 
��#���!� <��� ���	� �	�#�� ���	����	��� �
������ ��#���� ����
punctual sources signal, respectively. It is clear that im-
proved multiplication factor is maximum for WMUSIC 
method.

)+��	������	��
����������-	�/

In this study, the source localization is presented for 
seizures with focal and global epilepsies, and by combi-
nation of two represented methods, it is tried to improve 
the results of localization. Main problems of localiza-
tion methods are source localization accuracy and sen-
sitivity of methods to noise. In the improved method, 
these problems are almost solved. Another advantage of 
this method is being non-invasive.

The results show that combination of two applied pro-
cedures for signals with single source has the best ac-
curacy for conventional beamforming; but standard de-
viation for their results is much higher than WMUSIC. 
It can be said that WMUSIC method has more reliable 
results. Moreover, signals with punctual sources follow 
the same results. Results for signals with distributed 
sources show that WMUSIC has the best performance 
and minimum sensitivity to noise. 

For future studies, it is suggested to apply Adaptive 
Beamforming methods to source localization. Also it 
is possible to combine EEG signals and MRI images. 
This procedure was applied on simulated EEG signals. 
Applying real EEG data validates our approach and its 
results.
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